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Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been
showed to protect against ischemic cerebral damage both in vitro and in vivo. However,
the underlying mechanism of Rd is largely unknown. Excessive extracellular glutamate
causes excitatory toxicity, leading to cell death, and neurodegenerative processes after
brain ischemia.The clearance of extracellular glutamate by astrocytic glutamate transporter
GLT-1 is essential for neuronal survival after stroke. Here we investigated the effects of
Rd on the levels of extracellular glutamate and the expression of GLT-1 in vivo and in
vitro. After rat middle cerebral artery occlusion, Rd significantly increased the mRNA and
protein expression levels of GLT-1, and reduced the burst of glutamate as revealed by
microdialysis. Consistently, specific glutamate uptake by cultured astrocytes was elevated
after Rd exposure. Furthermore, we showed that Rd increased the levels of phosphorylated
protein kinase B (PKB/Akt) and phospho-ERK1/2 (p-ERK1/2) in astrocyte culture after
oxygen–glucose deprivation. Moreover, the effect of Rd on GLT-1 expression and glutamate
uptake can be abolished by PI3K/AKT agonist LY294002 or ERK1/2 inhibitor PD98059.Taken
together, our findings provide the first evidence that Rd can promote glutamate clearance
by up-regulating GLT-1 expression through PI3K/AKT and ERK1/2 pathways.
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INTRODUCTION
In spite of advances in technology and improved clinical care,
ischemic stroke still remains a major cause of mortality and disabil-
ity in human and the second leading cause of death in developed
countries (Goldstein et al., 2006). Two major approaches have been
developed to treat acute ischemic stroke: recanalization and neu-
roprotection (Gropen et al., 2006). The goal of neuroprotective
therapy is to save potentially viable brain tissue in the ischemic
penumbra. Unfortunately, although many neuroprotective inter-
ventions are effective for stroke in the animal model, they failed
to benefit to patients in clinical trials. Thus, developing effective
drugs to treat acute ischemic stroke still faces challenges.

Ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae), has
been widely used as a kind of traditional Chinese herbal medicine
for 1000s of years. Ginsenosides are the most active ingredients in
ginseng. Up to now more than 40 different ginsenosides, including
ginsenoside Rd (Rd) have been identified (Radad et al., 2006). Our
randomized, double-blind, placebo-controlled, multicenter trial
showed that Rd is effective and safe for the treatment of acute
ischemic stroke (Liu et al., 2009, 2012b).

In our pre-clinical studies, we found that Rd can prevent
glutamate/oxygen–glucose deprivation (OGD)-induced apopto-
sis in cultured neurons (Ye et al., 2009; Li et al., 2010), and
reduce infarction volume after transient focal ischemia in rats (Ye

et al., 2011a,b), suggesting that Rd can be served as a promising
neuroprotectant. However, the underlying mechanisms of Rd neu-
roprotection are still not fully elucidated. Numerous approaches
in neuroprotection have considered the application aimed at tar-
geting non-neuronal cells (Van der Schyf et al., 2006). Besides
directly supporting neurons, Rd can interfere with a number
of other cells such as astrocytes (Lopez et al., 2007). Astrocytes
play an important role in supporting neurons in physiological
and pathological conditions by producing various growth factors.
Particularly, they are the key cells for the uptake of excitatory
neurotransmitter glutamate (Danbolt, 2001). Excessive extracel-
lular glutamate elicits neurotoxicity and is mainly removed by
glutamate transporters, GLAST (EAAT1) and GLT-1(EAAT2),
exclusively expressed on astrocytes (Gegelashvili and Schousboe,
1997). GLAST predominantly expresses in the cerebellum and
GLT-1 in the cerebral cortex and hippocampus (Danbolt, 2001).
In the forebrain, more than 90% of the glutamate uptake is medi-
ated by GLT-1(Danbolt, 2001), and dysfunction or knockout of
GLT-1 gene leaded to elevation of extracellular glutamate and
exacerbation of acute cortical injury (Rao et al., 2001; Mitani and
Tanaka, 2003). Studies showed that GLT-1 expression was reg-
ulated by PI3K/AKT and ERK1/2 pathways (Li et al., 2006; Lee
et al., 2012a) and ginsenosides can activate these pathways (Lan
et al., 2011; Hashimoto et al., 2012; Yan et al., 2013). Therefore,
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in this study we investigated the effects of Rd on extracellular
glutamate metabolism and the expression of GLT-1, and further
explored whether PI3K/AKT and ERK1/2 pathways were involved
in this process.

MATERIALS AND METHODS
MATERIALS
Rd with a purity of 98% was obtained from Tai-He Biopharma-
ceutical Co. Ltd. (Guangzhou, China). The stock solutions were
prepared in saline containing 10% 1,3-propanediol (v/v). Hoechst
33342 was purchased from Sigma–Aldrich Inc. (St. Louis, MO,
USA). The commercial kit for the detection of glutamate was pur-
chased from CMA (Solna, Sweden). GLT-1 antibody was obtained
from Abcam (Cambridge, UK) and other antibodies were pur-
chased from Cell Signaling (Danvers, MA, USA). All other reagents
were from commercial suppliers and of standard biochemical
quality.

FOCAL CEREBRAL ISCHEMIA
Male Sprague–Dawley rats weigh 270–320 g were used in this
study. Animal protocols were approved by the Ethics Commit-
tee for Animal Experimentation of the Fourth Military Medical
University. The focal cerebral ischemia was induced by 1.5 h
of middle cerebral artery occlusion (MCAO) as described pre-
viously with modifications (Kramer et al., 2010). In brief, animals
were anesthetized with a mixture of isoflurane (1.5–2%), oxygen
and nitrogen. Body temperature in the rectum was maintained
at 37◦C using a thermostatically controlled heating blanket con-
nected to a thermometer probe. A 4-0 nylon monofilament coated
with poly-L-lysine was introduced through the internal carotid
artery to occlude the origin of the middle cerebral artery (MCA).
The induction of focal cerebral ischemia was verified with laser
Doppler flowmetry (PeriFlux 5000; Perimed AB, Sweden). A drop
in regional cerebral blood flow (CBF) below 30% from baseline
after the insertion of the filament was considered to be sufficient
for induction of focal cerebral ischemia. Control animals were sub-
jected to the same surgical procedures except that the suture was
not advanced into the MCA. Rd with a concentration of 30 mg/kg
or vehicle was applied intraperitoneally 1 h before MCAO. Ani-
mals were sacrificed at designated times points after MCAO and
samples were collected for Western blot and reverse transcrip-
tion polymerase chain reaction (RT-PCR) experiments analysis.
The tissues from the ischemic core and penumbra were dissected
according to the protocol described by Kramer et al. (2010).

ASTROCYTE CULTURES
Astrocytes were cultured from newborn Sprague–Dawley rats
as previously described with some modifications (Lopez et al.,
2007). Rat cortex and striatum were isolated and minced. After
trypsinization, dissociated cells were passed through sterile nylon
meshes, seeded to 75 cm2 flask at a density of 1 × 106 cells and
cultured in Dulbecco’s-modified eagle medium (DMEM, GIBCO)
supplemented with 10% heat-inactivated fetal bovine serum at
37◦C. The medium was renewed three times a week. Microglia and
oligodendrocytes were removed by shaking at 260 pm overnight
at 37◦C in an orbital shaker (ShenTong, China). Astrocytes were
collected and sub-cultured for 24 h before experiments.

OXYGEN–GLUCOSE DEPRIVATION
Oxygen–glucose deprivation was carried out as described by Li
et al. (2010). Briefly, the culture medium was replaced with
pre-warmed DMEM without glucose and serum. The cell cultures
were then transferred into an anaerobic chamber equilibrated with
95% N2 and 5% CO2. The chamber was kept in a 37◦C incubator.
Control cultures were maintained in a normal oxygenated DMEM
containing 25 mM glucose. After 3 h, cultures were placed back to
the normoxic incubator with normal culture medium.

MICRODIALYSIS
Microdialysis was performed as described previously (Ye et al.,
2011b). Briefly, a microdialysis probe (BAS MD-2204, 4 mm mem-
brane) was stereotaxically inserted into the right striatum through
the cannula guide (-3 mm anteroposterior, +4 mm mediolat-
eral to the Bregma, -4 mm dorsoventral from the surface of the
brain). Artificial cerebrospinal fluid (NaCl 135 mM, KCl 1 mM,
CaCl2 1.2 mM, MgCl2 1 mM, pH 7.4) was perfused at 2 μl/min
using a microinjection pump (BeeHive BAS, USA). The microdial-
ysis samples were continuously collected into microvials collected
every 20 min. Three samples were collected as baseline values at the
end of 2 h equilibration period. The concentrations of glutamate in
the microdialysis samples were determined using a CMA 600 Ana-
lyzer (Solna, Sweden). Level changes for all measured chemicals
were expressed as percent relative to the mean baseline value.

EVALUATION OF GLUTAMATE UPTAKE
Extracellular glutamate levels were measured by a fluorimetric
method using the Amplex Red Glutamic Acid assay kit (Invit-
rogen) as described previously with some modifications (Sato
et al., 2003; Pawlak et al., 2005). After 3 h of OGD astrocyte cul-
ture medium was replaced by Hepes buffer containing 25 mM
glucose and 500 μM glutamate. At each time point, 50 μl of
supernatants was transferred into 96-well microplates, and then
mixed with 50 μl substrate mixture (100 mM Amplex Red,
0.25 U/ml horseradish peroxidase, 0.08 U/ml L-glutamate oxidase,
0.5 U/ml glutamate pyruvate transaminase, and 200 μl alanine)
and incubated at 37◦C for 30 min. Fluorescence was measured
using an automated microplate reader at a wavelength of 530 nm
(vs. reference wavelength of 590 nm). Glutamate concentrations
were calculated from the standard curve with known glutamate
amounts.

IMMUNOCYTOCHEMISTRY
Immunofluorescence labeling was performed as described
(Plachez et al., 2004). Cultured cells were fixed with 4% (w/v)
paraformaldehyde for 20 min and then washed with phosphate
buffered saline (PBS). The cells were permeablized with 0.1% Tri-
ton X-100 in PBS for 1 h at room temperature. After blocked
with bovine serum albumin (BSA) for 30 min, the cultures were
incubated with primary antibody (GLT-1 1:100) in PBS contain-
ing 0.5% (w/v) BSA and 0.1% triton X-100 at 4◦C overnight.
After washed with PBS for three times, the cells were incubated
with biotinylated anti-rabbit IgG (1:200) for 2 h, followed by
streptavidin-cy3(1:1000) for 2 h. Hoechst 33342(1 μg/ml) was
used for counterstain. The immunostaining images were observed
under a fluorescence microscope (Leica, Germany).
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REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION
Brain tissues were collected at 24 h following MCAO. RT-PCR
was performed as described (Pawlak et al., 2005). Total RNA of
brain tissues was extracted using Trizol reagent (Invitrogen Life
Technologies, Carlsbad, CA, USA) according to the manufacturer’s
instructions. 3 μg of total RNA was used for reverse transcription
using Revert AidTM First Strand cDNA Synthesis Kit (Fermentas,
Burlington, ON, Canada). The PCR amplification was carried out
as follows: a 30 min incubation at 58◦C for cDNA synthesis, a
3 min hot start at 94◦C followed by 32 cycles of denaturation at
94◦C for 30 s, annealing at 56◦C for 30 s, and extension at 72◦C
for 30 s with a final extension at 72◦C for 5 min. The amplified
products were electrophoretically separated by 1.5% agarose gels
containing ethidium bromide. Data were normalized to β-actin
expression. Forward/reverse primers were:

GLT-1 5′–CAAGCTGATGGTGGAGTTCTT-3′/5′-CACGCTTG
TCAATCCCTAGAT-3′; β-actin 5′-TGTGGCATCCATGAAACTAC
A-3′/5′-CCACCAATCCACACAGAGTAC-3′.

WESTERN BLOT
Tissue of interest was homogenized on ice in the RIPA lysis
buffer (Beyotime, China) containing 0.5 mM phenylmethyl-
sulfonyl fluoride (PMSF). Western blot was performed accord-
ing to Ye et al. (2011b). Briefly, protein samples were elec-
trophoresed on a 10% SDS-PAGE and subsequently transferred
to polyvinylidene difluoride (PVDF) membrane (Millipore, Bil-
lerica, MA, USA). The membrane was incubated in blocking
buffer containing 5% non-fat dried milk at room tempera-
ture for 1 h and then probed with the primary antibody
[GLT-1 at 1:1000; p-AKT at 1:500; p-ERK at 1:500; ERK
at 1:1000; AKT at 1:1000; and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) at 1:2000] in blocking buffer at 4◦C
overnight. The membrane was washed three times with TBST
[tris-buffered saline (TBS) and 0.1% Tween 20] and then
incubated with horseradish peroxidase (HRP)-conjugated sec-
ondary antibody at room temperature for another 1 h. Spe-
cific signals of proteins were visualized by chemiluminescence

using the enhanced chemiluminescence (ECL) western blot-
ting detection system (GE Healthcare, UK). For quantitative
analysis, the ratio of the specific signals of protein (rela-
tive intensity of the signal) to that of GAPDH protein was
calculated.

STATISTICAL ANALYSIS
All results were presented as mean with standard error mean
(SEM). Microdialysis and glutamate uptake results were analyzed
with repeated-measures analysis of variance, followed by Tukey
HSD post hoc. Other results were analyzed using one-way ANOVA
followed by Tukey HSD post test for multiple comparisons. Origin-
pro 8 software was used for statistical tests. Statistical significance
was established at p < 0.05.

RESULTS
Rd PROMOTES GLUTAMATE CLEARANCE IN VITRO AND IN VIVO
To determine the effects of Rd on extracellular glutamate
metabolism in vivo, we measured concentrations of extracellu-
lar glutamate during the period of 1.5 h ischemia and 2.5 h
reperfusion in the ischemic striatum. As shown in Figure 1A,
MCAO induced a rapid and marked increase in levels of extra-
cellular glutamate, which reached the maximum at 60–100 min
after stroke onset. The concentration of glutamate decreased after
reperfusion but did not return to the basal lines during the mea-
surement period in MCAO group. Compared with MCAO group,
Rd administration 1 h before MCAO attenuated glutamate burst
and promoted its recovery to the baseline 150 min after reper-
fusion. The differences in glutamate levels between MCAO and
Rd-treated rats were significant at 100, 120, 140, and 160 min of
occlusion (Figure 1A).

Furthermore, the effect of Rd on astrocyte glutamate uptake
was evaluated by the quantification of the clearance of exogenous
glutamate (500 μM) from the astrocytes culture medium. Follow-
ing 3 h of OGD insult, extracellular glutamate levels in the medium
from cultured astrocytes with or without Rd pre-treatment (1,
10, and 50 μM, 12 h before OGD) were examined at different

FIGURE 1 | Effect of Rd treatment on the extracellular concentrations of

glutamate (A) Time course of the glutamate concentration determined with
microdialysis in MCAO rats (n = 6), MACO rats pre-treated with Rd (depicted
as black arrow, 30 mg/kg, n = 8) or sham-operated rats (n = 7) subjected to
90-min MCAO (depicted as the black bar) followed by 150-min reperfusion.
Values are the means ± SEM. *p<0.05 vs. MCAO+Rd group. (B) Glutamate

uptake was measured by indirectly quantifying the clearance of extracellular
glutamate added. After 3 h of OGD, 500 μM glutamate was added to culture
medium. Glutamate concentrations were measured at different time points
as indicated after OGD washout. Data are expressed as mean ± SEM (n = 6).
Mean values of 500 μM glutamate were scaled to 100%.*p < 0.05 vs.
control group.
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FIGURE 2 | Effect of Rd on GLT-1 expression in the core (Co) and

penumbra (Pe) of ischemic brains. Western blotting analysis of GLT-1
expression at 4 h (A,B) and 24 h (C,D) following rat MCAO. (E,F) Analysis of

relative GLT-1 mRNA expression by semi-quantitative RT-PCR 24 h after rat
MCAO. Data are expressed as mean ± SEM (n = 9). Mean values in
sham-treated groups were scaled to 100%. *p < 0.05 vs. Rd-treated group.

time intervals. 10 and 50 μM Rd significantly enhanced the glu-
tamate uptake in astrocyte cultures, compared with the control
(Figure 1B).

Rd UP-REGULATES GLT-1 EXPRESSION AFTER MACO
Since GLT-1 is one of main transporters for removal of extra-
cellular glutamate accumulation, we next investigated whether
Rd could affect GLT-1 expression during and after rat MCAO
(Figure 2). Western blotting results showed that GLT-1 pro-
tein levels were reduced 4 and 24 h after MCAO in both core
and penumbra of ischemic rat brains, consistent with previ-
ous reports (Chen et al., 2005; Han et al., 2008). Rd treatment
up-regulated GLT-1 expression at both time points after rat
MCAO (Figures 2A–D). Similarly, RT-PCR analysis also showed
an increase in mRNA expression levels of GLT-1 in the presence

of Rd 24 h after MACO (Figures 2E,F), suggesting that Rd
up-regulates GLT-1 expression after MACO.

Rd INCREASES THE LEVELS OFPHOSPHO-PI3K/AKT AND
PHOSPHO-ERK1/2
PI3K/AKT and ERK mediate crucial regulatory pathways of
cell survival (Kumar et al., 2004; Liu et al., 2012a). Both path-
ways are known to induce GLT-1 expression (Li et al., 2006;
Lee et al., 2012a). We then explored whether Rd-induced GLT-1
up-regulation was mediated through PI3K/AKT and/or ERK path-
way in astrocyte culture subjected to OGD insult. Western blotting
showed that the levels of phospho-AKT and phospho-ERK were
reduced 6 and 12 h after OGD, consistent with previous reports
(Liu et al., 2012a; Xie et al., 2012; Xu et al., 2012). After the treat-
ment of Rd, the levels of phosphorylation of AKT and ERK were

Frontiers in Pharmacology | Cardiovascular and Smooth Muscle Pharmacology December 2013 | Volume 4 | Article 152 | 4

http://www.frontiersin.org/Cardiovascular_and_Smooth_Muscle_Pharmacology/
http://www.frontiersin.org/Cardiovascular_and_Smooth_Muscle_Pharmacology/archive


“fphar-04-00152” — 2013/12/9 — 16:38 — page 5 — #5

Zhang et al. Ginsenoside Rd up-regulates GLT-1 expression

FIGURE 3 | Effect of Rd on phosphorylation of AKT and ERK1/2.

Cultured astrocytes were harvested 6 and 12 h after OGD. Western
blotting analysis of proteins extracted from astrocytes was performed
using antibodies against p-AKT/AKT (A: 6 h and B: 12 h) or p-ERK1/2

(C: 6 h and D: 12 h) as described in Section “Materials and Methods.”
Data are expressed as mean ± SEM (n = 6). Mean values in
sham-treated groups were scaled to 100%. *p < 0.05 vs.
OGD + Rd-treated group.

markedly enhanced (Figure 3), indicating that Rd can activate
PI3K/AKT and ERK pathways.

PI3K/AKT AND ERK1/2 PATHWAYS ARE INVOLVED IN Rd ENHANCED
GLT-1 EXPRESSION AND GLUTAMATE UPTAKE
Finally, we investigated whether Rd-induced GLT-1 up-regulation
and glutamate uptake enhancement was mediated by PI3K/AKT
and ERK1/2 pathways by using PI3K/AKT pathway inhibitor
LY294002 or ERK1/2 pathway inhibitor PD98059. Western blot-
ting and immunofluorescence labeling results showed that GLT-1
protein levels in cultured astrocytes decreased 12 h after OGD
(Figure 4A). Similar to MCAO results, Rd increased GLT-1 expres-
sion 6 h (data not shown) and 12 h after OGD. While pre-treatment
with LY294002 or PD98059 inhibited this effects of Rd (Figure 4B).
Next, we tested the role of PI3K/AKT and ERK in Rd-induced
glutamate uptake. As expected, Rd promoted astrocyte glutamate
clearance, which can be abolished by co-treatment with LY294002

or PD98059 (Figure 4C). Taken together, these results suggest that
Rd may promote GLT-1 expression and glutamate uptake through
PI3K/AKT and ERK1/2 pathways.

DISCUSSION
In the present study, we investigated the effects of Rd on the
expression of the astrocytic glutamate transporter GLT-1 as well
as glutamate uptake activity in cultured astrocytes and MCAO rat.
The results showed that Rd increased mRNA and protein levels
of GLT-1. This effects can be inhibited by the AKT or ERK1/2
inhibitor, suggesting that AKT and ERK1/2 signaling pathways
are involved in Rd-mediated effects on extracellular glutamate
metabolism.

Glutamate-induced excitotoxicity is an important factor
responsible for cell death in many central nervous system
(CNS) disorders (Benveniste et al., 1984). Excessive extracellu-
lar glutamate over-stimulates ionotropic GluRs, such as NMDA,
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FIGURE 4 | PI3K/AKT and ERK are involved in Rd-induced GLT-1

up-regulation and glutamate uptake enhancement. 20 μM PD98059
(PD) or 5 μM LY294002 (LY) was pre-treated 12 h before OGD. (A) Double
immunofluorescence labeling (GLT-Red, Hoechst-blue) 12 h after OGD. (B)

Western blotting results 12 h after OGD. (C) Glutamate uptake assays. After

3 h of OGD, 500 μM glutamate was added to medium, and glutamate
concentrations were measured at different time intervals (from 2 to 12 h
after OGD washout). Data are expressed as mean ± SEM (n=6). Mean
values in sham-treated groups were scaled to 100%. *p < 0.05 vs.
OGD + Rd group.

subsequently initiating a series of downstream lethal events
including oxidative stress, mitochondrial dysfunction, and inflam-
mation (Szydlowska and Tymianski, 2010). Astrocytes play a
crucial role in the removal of extracellular glutamate to pre-
vent against glutamate excitotoxicity (Rothstein et al., 1996). Two
types of glutamate transporters, GALST and GLT-1, are iden-
tified in astrocytes: GLAST is predominantly expressed in the
cerebellum and required to keep extracellular glutamate at a
physiological level (Watase et al., 1998). GLT-1 is abundant in
various area of the forebrain, including hippocampus, cere-
bral cortex, and the striatum. It is responsible for more than
90% of glutamate uptake in these areas (Danbolt, 2001). A
group of studies have showed that GLT-1 is required for uptake
of extracellular glutamate to protect neurons under ischemic
conditions. For example, knockdown of GLT-1 expression exac-
erbated ischemia-induced neuronal damage and causes enlarged
infarct volume (Rao et al., 2001). In contrast, targeted over-
expression of GLT-1 decreased the glutamate overflow and reduced
the cellular and behavioral deficits induced by ischemic stroke
(Harvey et al., 2011). Thus, GLT-1 plays a neuronal protective
role during ischemic stroke. Several studies showed decreases
in GLT-1 mRNA and protein levels in the rat brain follow-
ing ischemic insult. In addition, reduction of GLT-1 expres-
sion was observed 6 h after cerebral ischemia and was in part
causative of glutamate-induced neurotoxicity in early phases
of cerebral ischemia (Yeh et al., 2005). In our study, admin-
istration of Rd significantly increased the expression of GLT-1
mRNA and protein levels. These results suggest that Rd alleviates

excitatory toxicity at least in part by restoring the expression
of GLT-1.

Additionally, GLT-1 is also proposed to release intracellular
glutamate under ischemic conditions (Phillis et al., 2000). How-
ever, no effect of dihydrokainate, a blocker of the reversed GLT-1
uptake, on ischemia-induced glutamate release was observed
(Roettger and Lipton, 1996). Glutamate release in less severely
ischemic brain was shown to occur mainly via volume-activated
anion channels but not via GLT-1 reversal (Feustel et al., 2004).
These studies suggest that GLT-1 reversal may not be an essential
mechanism for increased extracellular glutamate concentration,
particularly in ischemic penumbra.

As critical mediators, AKT and ERK1/2 signaling pathways
are involved in cell proliferation, differentiation, and adaptation
(Kumar et al., 2004; Liu et al., 2012a). Phosphorylation of ERK1/2
and AKT activates the transcription factors, NF-kB, and cAMP-
response element binding protein (CREB), which in turn control
the transcription of GLT-1(Li et al., 2006; Lee et al., 2012a). In
addition, other types of ginsenosides, such as Rb1, Rg1, have
been reported to affect AKT and ERK1/2 pathways (Lan et al.,
2011; Hashimoto et al., 2012; Yan et al., 2013). Our present study
further showed that Rd activated AKT and ERK1/2 signaling
pathways (Figure 4), subsequently affecting GLT-1 expression and
extracellular glutamate uptake.

Estrogen receptor (ER)-mediated PI3K/AKT and ERK1/2 acti-
vation are well-documented in protection against cell death.
Recently, several reports showed that ER activation increased
GLT-1 expression and glutamate uptake (Lee et al., 2012a,b).
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Ginseng has been recommended for alleviation of the symptoms
of menopause, indicating that some components of ginseng act
as phytoestrogen involve activation of the ER (Amato et al., 2002).
Some evidence showed that ginseng extracts were able to stimulate
the growth of ER-positive cells (Duda et al., 1999). Ginseno-
sides were structurally and functionally similar to 17β-estradiol
(Lee et al., 2003; Lau et al., 2008) and activated AKT and ERK
pathways (Lan et al., 2011; Hashimoto et al., 2012; Yan et al.,
2013). Thus, we proposed that acting on ER may account for
Rd-induced AKT and ERK1/2 activation and sequential GLT-1
up-regulation. Yet, Rd may also affect the functions of GLT-1
in several ways, including cell trafficking, splicing, and post-
translational modification. Thus, the possible links between Rd
and ER still require further clarification.

In summary, in the present study we showed that
Rd could promote extracellular glutamate clearance by
up-regulating GLT-1 expression through PI3K/AKT and ERK1/2
pathways.
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