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A B S T R A C T   

Background: Evidence indicates that chronic stress promotes progression of colorectal liver me-
tastases (CLM). Mangiferin is the active chemical constituent of the rhizomes of Anemarrhena 
asphodeloides Bunge. Mangiferin (MGF) exerts anti-inflammatory, anti-proliferative, anti- 
angiogenic, anti-fibrotic and antioxidant effects in a variety of cancers. Its mechanism in 
chronic stress and tumor growth is still poorly understood. 
Methods: To investigate the effects of MGF on the CLM and tumor-associated depression, activated 
hepatic stellate cells (a-HSCs), HT-29 CRC cells, were used in chronic unpredictable mild stress 
(CUMS) of tumor-bearing models. Potential antidepressant activity was determined by FST, TST, 
SIT and serum cytokine (IL-6, IL-18 and TNF-α) examination. Downstream signaling molecules 
were detected by Western blot, immunohistochemistry and fluorescence microscopy. 
Results: CUMS induced depression behavior and depression-related cytokines and promoted 
tumor growth in CLM. MGF-treated mice significantly improved chronic stress behaviors by 
reducing depression-related cytokines. In addition, MGF treatment inhibits WAVE2 signaling 
pathway, leading to TGF-β1 induced HSC inhibition, thereby reducing depressive behavior and 
tumor growth in CLM. 
Conclusion: MGF can alleviate CUMS induced tumor growth and the treatment of CLM patients 
with MGF may be beneficial.   

1. Introduction 

Colorectal cancer (CRC) is a major global health problem, with 2020 statistics showing that 576,858 colorectal cancer patients died 
[1], approximately 50% of CRC patients develop liver metastases, and that the 5-year overall survival rate after surgery is approxi-
mately 40%. 
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Due to informed diagnosis, lack of social support, clinical symptoms during chemotherapy [2], depression is a common and easily 
overlooked concomitant disorder during cancer treatment [3]. The prevalence of both depression and anxiety in CRC patients has been 
shown to be high [4] and epidemiological data show that 54.37% of Chinese colon cancer patients have depressive symptoms 
[5].57.9% of colon cancer patients are diagnosed with depression after surgery [6] and previous studies have demonstrated that 
tumor-related depression leads to increased mortality, poor prognosis [7]. Patients’ depression and overall survival may be affected by 
the availability of any medications and psychological coping strategies. 

New evidence indicates that antidepressants aim at the serotonergic system may play a key role in tumorigenesis and progression, 
growth inhibition in CRC in the mouse model [8]. Potential effect of serotonin has been proved to the contribution to tumorigenesis, 
metastasis and poor prognosis in CRC patients [9,10]. However, due to the heterogeneity in tissue distribution of serotonin receptors, 
different antidepressants are not effective in treating depressed patients with CRC [11]. Therefore, it is important to explore strategies 
to reduce depression in CRC patients. 

In Chinese traditional medicine, Anemarrhena asphodeloides has been commonly used with curative effects on febrile diseases, such 
as fever, bronchitis and diarrhea. It exerted neuroprotective activities in depression. Meanwhile, it also showed biological activities of 
inflammation improvement and anticancer effect [12]. Mangiferin (Formula:C19H18O11, also named as 1,3,6,7-Tetrahydroxyxanthone 
C2-β-D-glucoside) is the active chemical components isolated from the rhizomes of Anemarrhena asphodeloides Bunge, which has been 
identified as a xanthanoid with anti-proliferative, anti-angiogenic and antioxidant effects in a variety of cancers, including colorectal 
colitis and cancer [13,14]. Emerging evidence suggests that MGF has antidepressant effects in mouse chronic stress model [15]. Recent 
research has shown that MGF inhibits Rac1/WAVE2 signaling in by suppressing invasive motility in breast cancer cells [16]. Our 
previous studies found that WAVE2 was involved in the CLM tumor growth and could possibly serve as a therapeutic target for CLM 
[17]. With regard to MGF’s above-mentioned pharmacological properties, mouse CLM model was applied to validate the novel role of 
MGF in chronic stress-induced tumor growth in CLM. 

2. Materials and methods 

2.1. Ethical approval 

The project was ethically approved by Ethics Committee of XiangYa Hospital, Central South University, Permit Number: 
N02019030913. Animal care and procedures were conducted according to the ministry of science and technology’s guiding opinions 
on treating experimental animals. 

2.2. Primary HSC cultures 

Mice were liver perfused through the inferior vena cava with pronase (Nordmark, Cat# S17465022) and collagenase D (Roche) 
after anesthesia with ketamine and xyaline. To remove the hepatocytes, cell suspension was centrifuged at 50 g for 1 min, supernatant 
was collected and centrifuged at 800 g for 7 min. After removing supernatant, HSCs were then separated by 18% Nycodenz gradient by 
density gradient centrifuge for 20 min. HSCs were cultured in media containing 10% fetal bovine serum (FBS). 

2.3. Conditioned media culture and CRC cell lines 

The human CRC HT-29 cell line was purchased from the Typical Culture Collection (Manassas, VA, USA) and cultured in and 100 
U/mL Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS with penicillin and streptomycin. A serum-free DMEM 
medium was diluted with fresh media (1:1) to make HT-29-conditioned medium (HT-29-CM). 

2.4. Immunohistochemistry (IHC) and fluorescence microscopy detection 

Protocols for this study have been described previously [18]. 6-μm thick paraffin-embedded mice liver sections were stained with a 
rabbit polyclonal to CD31 (1:200; Abcam, ab32457). 

Fluorescence staining was performed as follow. TGF-β1 treated HSCs were fixed in 4% paraformaldehyde, permeabilized in 0.02% 
Triton X-100/PBS, serum blocked, and incubated with polyclonal antibody α-smooth muscle actin (α-SMA) (1:1000, Abcam, Cat. # 
ab5694). HSCs were serum blocked before incubation with secondary fluorochrome-conjugated antibodies. DAPI was used as a nuclear 
marker. 

2.5. WB assay 

Proteins were first extracted using a radioimmunoprecipitation assay lysis buffer containing phenylmethylsulfonyl fluoride, 
Na2VO3, NaF and protease inhibitor (Roche, Cat. #11873580001). Proteins (50 μg) were then denatured on 10–14% sodium dodecyl 
sulfate polyacrylamide gels (SDS-PAGE) and transferred to nitrocellulose membranes as described previously. 

2.6. Reagents 

Mangiferin and terbutaline were obtained from Sigma-Aldrich (Cat. #4773-96-0 and 139508-58-0). The stock solution was used to 
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prepare different concentrations in the test media. including β2-AR polyclonal antibody (Cat. #8513, CST), WAVE2 polyclonal 
antibody (Cat. # YT4898, ImmunoWay), VEGF polyclonal antibody (Cat. # sc-7269, Santa Cruz Biotechnology), α-smooth muscle 
actin (α-SMA) (Abcam, Cat. # ab5694), a polyclonal antibody against p-SMAD2 (Cat. #3104, CST) at a 1:1000 and GAPDH mouse 
monoclonal antibody (Cat. # ab8245, Abcam) at 1:5000 dilution. 

2.7. In vivo orthotopic implantation assay 

Male BALB/c mice with weight between 18 and 22 g were used at 6–8 weeks. They were supplied with lab mice diet and drinking 
water and housed under controlled temperature and lighting conditions. HT29-mixed HSC cells (7 × 106) were injected subcutane-
ously into athymic BALB/c mice [17]. Explanted tumor xenografts were minced into three (1 mm) pieces, then orthotopically 
implanted into the livers of BALB/c nude mice. The chronic unpredictable mild stress (CUMS) procedure was conducted as previously 
described [19]. Mice were treated with different doses of MGF. As controls, CLM mice were given only saline. Mice were categorized by 
different doses of MGF as follows: Group I, sterile saline solution (0,9% NaCl) as the negative control; Group II, MGF 10 mg/kg; Group 
III, MGF 50 mg/kg; Group IV, MGF 100 mg/kg. MGF and sterile saline solution were administered intragastric intubation twice per 

Fig. 1. Chronic stress induces depression behavior and depression-related cytokines in CLM mouse model. (A) Chemical structure of 
mangiferin and an illustration of our experiment design. (B) Serum norepinephrine and corticosterone concentrations in control and CUMS group. 
(C) Depressive behavior by FST, (D) Depressive behavior by TST, (E) Depressive behavior by SIT, (F) Serum IL-6 level, (E) Serum IL-18 level, (F) 
Serum TNF-α level. Data are presented as the mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001. 
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week [14]. Each experimental condition involved six mice. At the end of the experiment, mice were subjected to behavioral tests and 
serum cytokine measurement to assess depression levels. 

2.8. Behavioral tests 

Depressive behaviors were assessed by the tail suspension test (TST), forced swim test (FST) and the sucrose intake test (SIT). The 
protocol procedures of behavioral tests were referred to previous works [20]. Briefly, TST was performed as the tails of mice were 
wrapped with tape from the base to the end and placed upside down on a hook using tape. The time when the mice last did not actively 
try to escape was quantified using an automated device (BioSeb, Chaville, France). FST was performed 24 h after the TST as described 
previously. In brief, each mouse was placed individually in a transparent cylinder (height: 25 cm; diameter: 15 cm) filled with water. 
An analysis of immobility and activity time in the last 4 min was conducted using SMART v3.0 software (Panlab SL, Barcelona, Spain) 
after each mouse had swum for 6 min. SIT measured 1% sucrose intake for 1 h between 19:00 and 20:00 every Monday. Prior to the SIT, 
all mice were denied water and food. After the test, the mice were allowed to eat and drink freely. 

2.9. ELISA assay 

For the collection of murine serum, fresh blood was collected, deposited at 4 ◦C and then centrifuged. Murine serum norepinephrine 
was measured by Norepinephrine ELISA Kit (Abbexa, abx150363) and corticosterone was measured by Corticosterone (17-Deoxy-
cortisol) ELISA Kit (Abbexa, abx052182) according to the assay protocol. Murine cytokine serum were measured by IL-6 ELISA Kits 
(Abcam, ab242772), IL-18 ELISA Kits (Abcam, ab218808) and TNF-1α ELISA Kits (Abcam, ab208348). At 450 nm, the microplate 
reader measured absorbance. 

2.10. Masson’s trichrome staining 

Masson’s trichrome staining was performed according to the manufacturer’s instruction (Solarbio, China). The sections were then 
incubated with Bouin’s Fluid for 2 h, followed by 10 min of hematoxylin and 2 min of eosin. Fibrosis assessment analysis completed 
using Image J software [21]. 

2.11. Statistical analysis 

Data were expressed as mean ± standard deviation (SD) of the mean, and then analyzed using GraphPad Prism 9.4.1 software 
(GraphPad Software, Inc., La Jolla, CA). Two-tailed Student’s t-test was used to compare groups. A value of P < 0.05 was considered 
statistically significant. 

3. Results 

3.1. CUMS induced depression behavior and depression-related cytokines in CLM 

We performed a murine CLM model to examine the effects of chronic unpredictable mild stress (CUMS) on tumor growth, and 
evaluated the role of MGF in chronic stress. Depression behavior and depression-related cytokines was analyzed after daily CUMS 
during the four weeks (Fig. 1A). The stress-related hormones norepinephrine and corticosterone were both markedly higher in the 

Fig. 2. CUMS induces marked tumor growth in CLM. (A) HT29+HSC-CUMS and HT29+HSC-control tumor size was compared. (B) MVD in 
HT29+HSC-CUMS and HT29+HSC-control group. (C) Masson’s trichrome staining of xenograft. Data are presented as the mean ± S.E.M. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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serum of stressed mice than in controls (Fig. 1B). As shown in Fig. 1C, D and 1E, the CUMS group reported significantly more 
immobility behavior and more sugar intake than the control group in FST, TST, SIT. Significantly, serum levels of depression-related 
cytokine IL-6, IL-18 and TNF-α in CUMS group were higher than control (Fig. 1F). 

3.2. CUMS promoted tumor growth of CLM 

In stressed mice bearing HT-29 and HSC cells, the tumor weight was significantly higher than in control mice (Fig. 2A). HT29+HSC- 
CUMS group had significantly higher microvascular density (MVD) than the HT29+HSC-control group, according to IHC staining 
(Fig. 2B). Additionally, we measured tumor extracellular matrix in both stressor-free and stressor-loaded CLM models, and chronic 
stress facilitated the remodel of extracellular matrix (Fig. 2C). Based on these data, daily CUMS promotes CLM growth. 

3.3. CUMS induced HSC activation in CLM via β2-AR and WAVE2 signaling 

Hepatic stellate cells (HSCs) are a key promoter in CLM microenvironment, which transdifferentiate into pro-tumor myofibroblasts 
through a TGF-β-dependent mechanism [22]. α-SMA could be used to quantify the activation of HSCs since it is an activation marker 
for HSCs. α-SMA IF staining showed that chronic stress enhanced HT-29 tumor growth in mice (Fig. 3A). Due to the role of β2-AR in 
regulating the properties of HSCs [23], Terbutaline, a selective agonist of β2-AR, was used to facilitate HSC activation. To further prove 
the role of β2-AR in HSCs, HSC cells were treated with terbutaline at the concentrations of 10− 6-10− 4 mol L− 1. Expression of β2-AR and 
α-SMA was downregulated in HSC cells stimulated with terbutaline increasing concentrations (Fig. 3B). Based on above results, 
expression of HSC activation and MVD markers in HT29+HSC-CUMS were evaluated by Western blot. β2-AR, WAVE2, α-SMA and 
VEGF were significant overexpressed in HT29+HSC-CUMS group, retrospectively (Fig. 3C). 

3.4. MGF inhibits depressive behavior and related cytokines 

Compared to CUMS control mice, we found that MGF dose-dependently reduced immobility time in the FST (Fig. 4A) and TST 
(Fig. 4B). We also found that MGF dose-dependently increased sugar intake in SIT compared to CUMS control mice (Fig. 4C), sug-
gesting that MGF may improve depressive status in CLM mice. To understand the mechanism of MGF-induced depression remission in 
CLM mice, we analyzed serum levels of IL-6, IL-18 and TNF-α. We found that MGF dose-dependently reduced serum depression-related 
cytokines compared to control group (Fig. 4D–F). These data suggest that the antidepressant effect of MGF may be due to reduced 
depressive behavior and related cytokines in CLM mice. 

Fig. 3. CUMS induces HSC activation of CLM in mice. (A) IF staining for α-SMA detection in HT29+HSC-CUMS and HT29+HSC-control group. 
(B) Expression of β2-AR and α-SMA was measured in HSC cells stimulated with terbutaline. (C) HT29+HSC-CUMS and HT29+HSC-control groups 
were compared for HSC activation and MVD markers. Data are presented as the mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001. 
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3.5. MGF inhibits tumor growth of CLM in vivo 

The tumor weights of the HT29+HSC-MGF mice were lower than those of the HT29+HSC-Control mice (Fig. 5A). Moreover, MVD 
in HT29+HSC-Control group was significantly higher compared to HT29+HSC-MGF (Fig. 5B), whereas Masson’s trichrome staining 
indicated that the HT29+HSC-Control had significantly higher ECM (Fig. 5C), than those in the HT29+HSC-MGF group. Besides, in the 
HT29+HSC-MGF group, IF staining revealed higher levels of a-HSCs than in the control group (Fig. 5D). Compare to control group, β2- 
AR, WAVE2, VEGF and α-SMA levels were decreased significantly in HT29+HSC-MGF group (Fig. 5E). In light of these findings, MGF 
reduced activation of the TGF-β1 signaling pathway via WAVE2 on HSCs in CLM. These evidences suggest that MGF reduced the 
activation of WAVE2-dependent TGF-β1 signaling pathway in CLM. 

3.6. MGF inhibits activation of HSC in tumor growth via the WAVE2 signaling pathway 

Previous studies have shown that MGF inhibits cellular Rac1/WAVE2 signaling protein expression, thereby suppressing invasive 
breast cancer cell motility [16]. WAVE2 can regulate myofibroblast activation in HSC through the TGF-β1 signaling pathway [17]. 
Therefore, we investigated whether MGF could inhibit the TGF-β1 signaling pathway to regulate myofibroblast activation in activated 
HSC. Immunofluorescence staining of α-SMA quantification showed that 24 h TGF-β1 stimulation in control cells induced the 
development of α-SMA-positive stress fibers in more than 60% of the HSC, whereas only 18% of the HSC myofibroblast activation when 
MGF treated. On the other hand, HSC myofibroblast activation in control group was similar to MGF treated when TGF-β1 absent. 
(Fig. 6A). Compared to control cells, protein blots showed significantly reduced α-SMA and p-SMAD2 activation in MGF-treated HSC 
(Fig. 6B). Western-blots showed activation of β2-AR and WAVE2 was enhanced in HSC when TGF-β1 treated in control group. MGF 
significantly reduced activation of both β2-AR and WAVE2 in HSC, which inhibition processes was TGF-β1 dependent (Fig. 6B). 

4. Discussion 

It is well known that depression itself may be a facilitator of tumor progression [24]. Depression and tumor growth may be related 
to innate immune activation and inflammation [25]. Pro-inflammatory cytokines are known to regulate key neurobiological correlates 
of depression [26]. Psychological stress is a common cause of CRC patients and can be a potential indicator of poor prognosis and 
clinical staging of advanced cancer. 

There is evidence that depression is positively associated with the development of CRC. However, the potential mechanisms un-
derlying the effects of psychological stress on CLM have not been fully and systematically explored. We hypothesize that chronic stress 
may affect the CRC tumor microenvironment and the regulation of WAVE2. We used the CUMS procedure to induce depression in 

Fig. 4. MGF inhibits depressive behavior and related cytokines. (A) FST, (B) TST, (C) SIT, (D) IL-6, (E) IL-18, (F) TNF-α.  
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mouse models and to establish murine models. The results showed that CLM deterioration was significantly accelerated in the CUMS +
tumor group. In addition, IL-6, IL-18 and TNF-α expression was increased in the tumor microenvironment, accompanied by an increase 
in TGF-β1 levels and activation of HSCs. Several studies have revealed that TGF-β1 activated p-Akt and p-STAT3 in response to IL-6 
stimulation [27]. Depending on context-dependent pro- and anti-cell proliferation functions of TGF-β1 [28], our results suggest a 
significant increase in α-SMA and p-SMAD2 after CUMS + tumor treatment. Thus, we demonstrate that chronic stress induced acti-
vation of HSCs by TGF-β1 signaling of transcriptionally active SMAD complexes is critical for depression-promoted CRC migration 
[29]. 

Subsequently, we investigated pharmacological effects of MGF in CLM-CUMS model. According to the literature, MGF attenuated 
lipid peroxidation, and neuronal damage and shown neuroprotective effects in vitro and in vivo. MGF further increases endogenous 
antioxidant levels, thereby protecting against oxidative stress within neurons [30]. Antioxidant and immunomodulation attenuated 
the depression-like behavior and cognitive impairment seen in a mammary tumor mouse model [31]. In line with previous reports, we 
found that mice treated with MGF significantly improved depression-related behaviors, by reducing depression-related cytokines, IL-6, 

Fig. 5. MGF reduces promoting effects of HSCs on tumor growth in mice. (A) HT-29 cells (0.5 × 106) mixed with 0.5 × 106 a-HSCs expressing 
tumors were dissected from nude mice, and tumor size was compared between the HT29+HSC-Control and HT29+HSC-MGF groups (left). (B) MVD 
in HT29+HSC-CUMS and HT29+HSC- MGF group. (C) Masson’s trichrome staining of xenograft. (D) IF staining for α-SMA detection shows that 
MGF inhibits HT-29 tumor cell growth in mice. (E)Western blot showed that expression of β2-AR, WAVE2, VEGF and α-SMA decreased significantly 
in HT29+HSC-MGF group. Data are presented as the mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001. 

Fig. 6. MGF inhibits activation of HSCs via the WAVE2 signaling pathway. (A) Transduced HSCs treated with TGF-1 (2.5 ng/mL) and IF for 
SMA show that MGF consistently suppresses TGF-1-induced myofibroblast differentiation. (B) Following 24 h of serum starvation and treatment 
with TGF-1, control and MGF-treated HSCs are shown. Western blot analysis for detection of HSC activation markers, α-SMA and p-SMAD2, and 
activator β2-AR and TGF-β1. Data are presented as the mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001. 
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IL-18 and TNF-α [19,32]. These results support a model in which MGF plays an anti-depression and anti-CLM role [15]. 
Previously, our team had proved that WAVE2 signaling participated in CLM tumor microenvironment by activating HSCs through 

TGF-β1, thus potentially being a latent therapeutic target [17]. Our results further demonstrated that this process is effectively blocked 
by MGF. In prostate cancer cells, MGF inhibits cell invasion by suppressing MMP9 expression and NF-κB activation [33]. MGF can 
inhibit tumor growth and metastasis by fatty acid metabolism and NF-κB signaling pathways in vitro in human HT29 colon cells [14]. 
Overall, these evidences support the view that MGF has been shown to exert antitumor, antiangiogenic and antimetastatic effects in 
cancer. From another perspective, we observed that MGF treatment inhibits WAVE2 signaling pathway, leading to TGF-β1 induced 
HSC inhibition, thereby reducing depressive behavior and tumor growth in CLM. The findings reported here shed new light on a potent 
mechanism of chronic stress-induced tumor growth in colorectal liver metastases. Moreover, our work contributes to existing 
knowledge of MGF by providing a novel mechanism of suppressing chronic stress-induced tumor growth. 

5. Conclusion 

In conclusion, our results suggest that MGF alleviate CUMS induced tumor growth effects in a CLM model, possibly through TGF-β1 
deactivation via WAVE2 signaling. Our findings in this study provide a new understanding of the relationship of chronic unpredictable 
mild stress and colorectal liver metastases. Another important practical implication is that MGF exhibited a novel role in anti-chronic 
stress-induced colorectal liver metastases. A greater focus on MGF could produce interesting findings that account more for its 
pharmacological effects in CLM. Further research could also be conducted to determine the effectiveness of MGF in other cancers and 
psychosomatic diseases. 
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