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Photonic Weyl semimetals 
in pseudochiral metamaterials
Ruey‑Lin Chern* & Yi‑Ju Chou

We investigate the photonic topological phases in pseudochiral metamaterials characterized by the 
magnetoelectric tensors with symmetric off-diagonal chirality components. The underlying medium 
is considered a photonic analogue of the type-II Weyl semimetal featured with two pairs of tilted Weyl 
cones in the frequency-wave vector space. As the ’spin’-degenerate condition is satisfied, the photonic 
system consists of two hybrid modes that are completely decoupled. By introducing the pseudospin 
states as the basis for the hybrid modes, the photonic system is described by two subsystems in terms 
of the spin-orbit Hamiltonians with spin 1, which result in nonzero spin Chern numbers that determine 
the topological properties. Surface modes at the interface between vacuum and the pseudochiral 
metamaterial exist in their common gap in the wave vector space, which are analytically formulated 
by algebraic equations. In particular, the surface modes are tangent to both the vacuum light cone 
and the Weyl cones, which form two pairs of crossing surface sheets that are symmetric about the 
transverse axes. At the Weyl frequency, the surface modes that connect the Weyl points form four 
Fermi arc-like states as line segments. Topological features of the pseudochiral metamaterials are 
further illustrated with the robust transport of surface modes at an irregular boundary.

Topological phases are new phases of matter characterized by integer quantities known as topological invariants, 
which remain constants under arbitrary continuous deformations of the system. A good example of the topo-
logical phase is the quantum Hall (QH) state1, a two-dimensional (2D) electron gas under an external magnetic 
field, in which the time-reversal (TR) symmetry is broken. A different class of the 2D topological phase in the 
absence of magnetic field is the quantum spin Hall (QSH) state2–4, where the TR symmetry is preserved, and the 
spin-orbit coupling is responsible for the topological characters. The QH phase is characterized by the Chern 
number or TKNN invariant5, while the QSH phase is characterized by the Z2 invariant2 or spin Chern number6. 
At the band gap of a QSH phase, gapless edge states exist for each spin, and the group velocity direction of the 
edge states is locked by the spin7. The spin-momentum locking enables topologically protected edge states that 
propagate unidirectionally without backscattering8. As the edge states are protected by the bulk topology, they are 
insensitive to small perturbations that do not change the topology. Theoretical concepts developed in the QSH 
states are generalized to three dimensions (3D), leading to the more general class of 3D topological insulators9,10.

In 3D gapped topological phases, that is, 3D topological insulators, gapless surface states appear inside the 
band gap between two topologically distinct bands as in 2D topological phases11,12, which can be realized in both 
TR broken13,14 and TR invariant15–17 systems. On the other hand, 3D gapless topological phases, also known as 
topological semimetals18,19, are new topological phases different from the topological insulators20–22, which do 
not have 2D counterparts. The 3D gapless topological phases are characterized by Weyl degeneracies, which are 
degeneracies between topologically inequivalent bands. The main signature of 3D gapless topological phases is 
the appearance of Weyl points, which can exist in systems that lack TR symmetry, inversion symmetry, or both. 
The Weyl points are understood as the monopoles of Berry curvature in the momentum space that carry quan-
tized topological charges, which are equal to the topological invariants of the system. An important feature of the 
Weyl points is the existence of Fermi arcs that connect the Weyl points, which correspond to the topologically 
protected surface states that are robust against disorder. A useful perspective on the Weyl semimetals is to view 
them as the transitional state between a topological insulator and a trivial insulator19.

The novel concepts of topological phases have been extended to photonic systems23–25, leading to the discov-
ery of photonic QH states26–31, photonic QSH states32–36, photonic 3D topological insulators37–39, and photonic 
topological semimetals40–46. The key aspect to construct a topological phase is having a Kramers pair in the sys-
tem, which are doubly degenerate eigenstates under TR symmetry47. The Kramers theorem, however, is usually 
valid for a TR invariant system with spin 1/28 and cannot readily apply to the photonic system with spin 148,49, 
unless additional symmetry has been imposed. Nevertheless, photons have spin properties as a result of circular 
polarization50. A spin-like quantity called pseudospin can be formed by the linear combination of electric and 
magnetic fields when a specific degenerate condition between the electric and magnetic parameters is satisfied32. 
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As a result, the photonic system can be described by an effective Hamiltonian consisting of two subsystems 
for the pseudospin states32–34, and the photonic Kramers pair can be formed in the system. In the presence of 
chirality or bianisotropy that emulates the spin-orbit coupling, a topological phase can be constructed in the 
photonic system51–54.

In the present study, we investigate the photonic topological phases in pseudochiral metamaterials character-
ized by the magnetoelectric tensors with symmetric off-diagonal chirality components55–57. Bulk modes of the 
underlying medium are represented by two decoupled quadratic equations as a certain symmetry of the mate-
rial parameters is included. When the ’spin’-degenerate condition32,34,38 is satisfied, the bulk modes are featured 
with two pairs of Weyl cones symmetrically displaced in the frequency-wave vector space. The electromagnetic 
duality allows for the photonic system to be decoupled as two subsystems for the hybrid modes defined as the 
linear combinations of electric and magnetic fields. By introducing the pseudospin states as the basis for the 
hybrid modes, the photonic system can be described by a pair of spin-orbit Hamiltonians with spin 152–54,58,59 
that respect the fermionic-like pseudo time-reversal symmetry. The topological properties of the photonic system 
are determined by the nonzero spin Chern numbers calculated from the eigenfields of the Hamiltonians. Surface 
modes at the interface between vacuum and the pseudochiral metamaterial exist in their common gap in the 
wave vector space, which are analytically formulated by algebraic equations. In particular, the surface modes are 
tangent to both the vacuum light cone and the Weyl cones, which form two pairs of crossing surface sheets in 
the frequency-wave vector space. At the Weyl frequency, the surface modes that connect the Weyl points form 
four Fermi arc-like states as line segments. Finally, the topological features of the pseudochiral metamaterials are 
illustrated with the robust transport of surface modes at an irregular boundary, which are able to bend around 
sharp corners without backscattering.

Results
Bulk modes.  Consider a general bianisotropic medium characterized by the constitutive relations:

where ε , µ , ξ  and ζ  are frequency-dependent permittivity, permeability, and magnetoelectric tensors, respec-
tively. Treating the combined electric field E = (Ex ,Ey ,Ez)

T and magnetic field H = (Hx ,Hy ,Hz)
T as six-com-

ponent vectors, where T denotes the transpose, Maxwell’s equations for the time-harmonic electromagnetic fields 
(with the time convention e−iωt ) are written in matrix form as

where I  is the 3 × 3 identity matrix, H′
= η0H , with η0 =

√
µ0/ε0 . Let the medium be lossless ( ε = ε† , µ = µ† , 

and ξ = ζ † , where † denotes the Hermitian conjugate) and reciprocal ( ε = εT , µ = µT , and ξ = −ζT)55, 
which implies that ε = ε∗ , µ = µ∗ , ξ = −ξ∗ , and ζ = −ζ ∗ , where ∗ denotes the complex conjugate. In the 
present study, we further assume that the permittivity and permeability tensors are uniaxial: ε = diag(εt , εt , εz) , 
µ = diag(µt ,µt ,µz) , and the magnetoelectric tensors have the following form:

where εn , µn ( n = t, z ), and γ are real-valued quantities. Note that the chirality parameter γ appears in the off-
diagonal elements of the magnetoelectric tensors ξ  and ζ  , which means that the magnetoelectric couplings occur 
in mutually perpendicular directions. The bianisotropic medium characterized by the magnetoelectric tensors 
with symmetric off-diagonal chirality components as in Eq. (4) is called the pseudochiral medium55, which has 
been employed in the study of negative refraction and backward wave56,57, and line degeneracy and strong spin-
orbit coupling of light60 in metamaterials. The underlying medium can be synthesized by two perpendicularly 
oriented �-shape microstructures55,61,62 or split ring resonators60 embedded in a host medium, or realized with 
various complex 3D structures63. In the pseudochiral medium, the inversion symmetry is broken because of the 
chirality44,64, whereas the TR symmetry is preserved23.

The existence of a nontrivial solution of E and H requires that the determinant of the 6 × 6 matrix in Eq. (3) 
be zero, which gives the characteristic equation of the bulk modes as

where k0 = ω/c . This is a bi-quadratic equation that incorporates the coupling between transverse electric and 
transverse magnetic modes. If ηt = ηz , that is, 

√
µt/εt =

√
µz/εz  , Eq. (5) can be decoupled as a product of two 

quadratic equations60:
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√
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where k′x =
(

kx + ky
)

/
√
2 , k′y =

(

−kx + ky
)

/
√
2 , a± =

√
εzµz

(√
εtµt±γ

)

 , and b = εtµt − γ 2 . The quadratic 
equations in Eq. (6) can be of elliptic or hyperbolic type, depending on the sign of the product a+a− . There exists 
a critical condition: |γ | = √

εtµt  , at which Eq. (5) is simplified to

which is further reduced to two straight lines: kx±ky = 0 at kz = 0 . There exist four symmetric points on the two 
lines: 

(

kx , ky
)

= (±ρ,±ρ) and (±ρ,∓ρ) , where ρ =
√
εtµzk0 or √εzµtk0 , which serve as the transition points 

between the elliptic and hyperbolic equations. It will be shown later that these points are identified as the Weyl 
points in the present problem (cf. “Photonic Weyl system”). In case γ = 0 , Eq. (6) is simplified to

which is a product of two identical quadratic equations.
Note that the characters of bulk modes may change with the frequency in a dispersive medium (which is 

usually the case of metamaterials), depending on the choice of frequency range. In the neighborhood of a refer-
ence frequency ωref  , εn ( n = t, z ) can be approximated as εn ≈ εn0 +

dεn
dω

∣

∣

∣

ω=ωref

(ω − ωref) ≡ εn0 + ε̃nδω/ωref  , 

where ε̃n is positive definite58. A similar relation is valid for µn ( n = t, z ). We further assume that the chirality 
parameter γ varies smoothly around ωref  and can be treated as a constant in the analysis32,52–54.

Spin‑orbit Hamiltonians.  The electromagnetic duality of Maxwell’s equations dictates that the matrix in 
Eq. (3) holds a symmetric pattern when the ’spin’-degenerate condition: ε = µ32,34,38 is satisfied. This allows us 
to rewrite Eq. (3) as

where H±

0 = ∓ωε + i
(

ck × I + ωξ
)

 and F± = E±iH′ are the hybrid modes that linearly combine the electric 
and magnetic fields. Note that F+ and F− are completely decoupled and determined by two subsystems ( 3× 3 
matrices) with a similar form. By introducing the pseudospin states ψ± = U−1ψ̃± as the basis for the hybrid 

modes, where ψ̃± =

(

−
F±x ∓iF±y

√
2

, Fz ,
F±x ±iF±y

√
2

)T

 and U = diag
(

√

ε̃z/ε̃t , 1,
√

ε̃z/ε̃t

)

 , Eq. (9) can be formulated 

as a pair of eigensystems when the frequency dispersion of the medium near the reference frequency ωref is taken 
into account. In the isotropic case, where εt0 = εz0 ≡ ε and ε̃t = ε̃z ≡ ε̃ , the eigensystems for Eq. (9) are given 
by (see “Spin-orbit Hamiltonians”)

where

and D± = ±ωref

(

εI − γ {Sx , Sy}
)

/ε̃ . Here, v = c/ε̃ , k = kxx̂ + kyŷ + kz ẑ , S = Sxx̂ + Syŷ + Sz ẑ , Sn ( n = x, y, z ) 
are the spin matrices for spin 1, and {A,B} = AB+ BA is the anticommutator. Note that Eq. (10) is formulated 
as an eigensystem with δω being the eigenvalue. The Hamiltonian H± in Eq. (11) represents the spin-orbit 
coupling k · S with spin 1, which is mathematically equivalent to the Hamiltonian of a magnetic dipole moment 
in the magnetic field58.

Topological invariants.  The topological properties of the spin-orbit Hamiltonians H± can be character-
ized by the topological invariants using the eigenfields. For this purpose, we calculate the Berry flux over a closed 
surface in the wave vector space. The eigensystem for the Hamiltonian H± in Eq. (11):

is solved to give the eigenvalues �σ
±

 and eigenvectors ψσ
±

 ( σ = ±1, 0 ), based on which the Chern numbers are 
calculated to give (see “Topological invariants”)

The nonzero Cσ ( σ = ±1 ) characterize the topological properties of the system, where σ refers to the helicity 
(or handedness) of the pseudospin states. In particular, the surface or edge states at the interface between two 
distinct topological phases are topologically protected, which means that their existence is guaranteed by the 
difference in band topology on two sides of the interface. In this system, the total Chern number C =
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and the spin Chern number Cspin =
∑

σ

σCσ = 4 , which are consistent with the quantum spin Hall effect of 
light50. The spin Chern number indicates that there exist two pairs of QSH edge states which are doubly-degen-
erate with respect to the helicity σ . The existence of surface modes in Maxwell’s equations, however, requires the 
presence of an interface (between two different media) that breaks the duality symmetry of electromagnetic fields 
as in an unbounded region, and therefore only one pair of edge modes survives at the interface50,59. The topologi-
cal invariants remain unchanged under arbitrary continuous deformations of the system. The topological proper-
ties in the isotropic case will be retained when a certain anisotropy is included in the system. For a more general 
anisotropic case, the exact calculation of topological invariants can be obtained by the numerical integration of 
Berry curvatures65.

Pseudo time‑reversal symmetry.  The Hamiltonian for Maxwell’s equations [cf. Eq. (3)] in the pseu-
dochiral medium, which is lossless and reciprocal, is TR invariant under Tb , that is,

where

Tb = σzK  (with T2
b = 1 ) is the bosonic TR operator for photons23, with K being the complex conjuga-

tion, and ⊗ denotes the tensor product. The Hamiltonian Hm , however, is not TR invariant under Tf  , that is, 
(

Tf ⊗ I
)

Hm(k)
(

Tf ⊗ I
)

−1
�= Hm(−k) , where Tf = iσyK  (with T2

f = −1 ) is the fermionic TR operator for 
electrons23. Nevertheless, the combined Hamiltonian formed by two spin-orbit Hamiltonians H± [cf. Eq. (11)] 
is TR invariant under Tp , that is,

where

and Tp is the fermionic-like pseudo TR operator having the same form of Tf  . The pseudo TR operator Tp is 
inspired by noticing that E ↔ H during the TR operation, which is defined as Tp = Tbσx = σzKσx = iσyK with 
T2
p = −134. Here, σx = (0, 1; 1, 0) , σy = (0,−i; i, 0) , and σz = diag(1,−1) are the Pauli matrices. The pseudo TR 

symmetry of the combined Hamiltonian Hc is crucial in determining the topological phases in the photonic 
system of spin 1, which allows for the existence of bidirectional propagating spin-polarized edge states as in 
electronic systems.

Surface modes.  Let the xy plane be an interface between vacuum ( z > 0 ) and the pseudochiral metamate-
rial ( z < 0 ) characterized by εn = ε , µn = µ ( n = t, z ), and ±γ (cf. “Bulk modes”), at which the surface modes 
may exist. According to Maxwell’s boundary conditions: the continuity of tangential electric and magnetic field 
components at the interface, the characteristic equation of surface modes can be analytically formulated by using 
the eigenfields of bulk modes on two sides of the interface, which is given as (see “Surface wave equation”)

where k(0)z =

√

k20 − k2x − k2y  is the normal wave vector component (to the interface) in vac-

uum,k(1)z = −

√

(

εµ− γ 2
)

k20 − k2x +
2γ
√
εµ

kxky − k2y  and k(2)z = −

√

(

εµ− γ 2
)

k20 − k2x −
2γ
√
εµ

kxky − k2y  are the 
normal wave vector components in the pseudochiral metamaterial, and the superscripts (1) and (2) refer to two 
independent polarizations.

Discussion
Bulk modes.  Figure 1 shows the equifrequency surfaces of bulk modes in the wave vector space for the 
pseudochiral metamaterial based on Eq. (6). Regarding the relative magnitude of chirality parameter (to the 
geometric mean of permittivity and permeability), the bulk modes can be classified into two phases: 

(14)(Tb ⊗ I)Hm(k)(Tb ⊗ I)−1
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(
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(

k(1)z + k(2)z

))

− 2εµ
(

εµ− γ 2
)

k40 − 2iγ εµk30

(
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	 (I)	 For |γ | < √
εµ , the bulk modes are represented by two intersecting ellipsoids in the wave vector space, 

as shown in Fig. 1a. The major and minor axes of the two ellipsoids are mutually perpendicular in the 
xy plane, which make an angle of ±45◦ with respect to the kx or ky axis.

	 (II)	 For |γ | > √
εµ , the bulk modes are represented by a pair of two-sheeted hyperboloids in the wave 

vector space, as shown in Fig. 1b. The major and minor axes of the hyperboloids coincide with those 
of the ellipsoids in phase (I). There exists a gap between the bulk modes, which is the region enclosed 
by four vertices of the hyperboloids in the kx–ky plane: 

(

kx , ky
)

= (±ρk0,±ρk0) and (±ρk0,∓ρk0) , 

where ρ =

√

(

εµ+ γ
√
εµ

)

/2.

Recall that the effective Hamiltonian in the present problem consists of two subsystems of the hybrid modes. 
Each subsystem is described by the spin-orbit Hamiltonian with spin 1 (cf. “Spin-orbit Hamiltonians”) and 
characterized by nonzero topological invariants (cf. “Topological invariants”). In this regard, the pseudochiral 
metamaterial is considered a photonic analogue of the topological phase.

Surface modes.  Figure 2 shows the surface modes at the interface between vacuum ( z > 0 ) and the pseu-
dochiral metamaterial ( z < 0 ) in the kx–ky plane based on Eq. (18). The bulk modes at kz = 0 (cf. Fig. 1) are also 
shown in the plots. Regarding the relative magnitude of chirality parameter (to the geometric mean of permit-
tivity and permeability), there are two situations for the surface modes to be addressed: 

Figure 1.   Equifrequency surfaces of bulk modes in the wave vector space for the pseudochiral metamaterial 
with (a) εn = µn = 2 and γ = ±1 (b) εn = µn = 1.5 and γ = ±2 ( n = t, z ). Black contours are bulk modes at 
kz = 0 (cf. Fig. 2).

Figure 2.   Surface modes at the interface between vacuum and the pseudochiral metamaterial with (a) 
εn = µn = 2 and γ = ±1 (b) εn = µn = 1.5 and γ = ±2 ( n = t, z ). Gray dashed contour is dispersion circle 
of vacuum. Black contours are bulk modes at kz = 0 (cf. Fig. 1). In (b), blue and red dots are chosen points for 
surface wave simulations (cf. Fig. 4).
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	 (i)	 For |γ | < √
εµ , where the bulk modes are in phase (I), the surface modes do not exist, for there is no 

common gap between vacuum and the pseudochiral metamaterial, as shown in Fig. 2a. At kz = 0 , the 
bulk modes are represented by two intersecting ellipses, while the vacuum dispersion is represented by 
a circle.

	 (ii)	 For |γ | > √
εµ , where the bulk modes are in phase (II), the surface modes are represented by two pairs 

of crossing line segments, with the reflection symmetry about the kx ( ky ) axis for γ > 0 ( γ < 0 ), as shown 
in Fig. 2b. Note that the crossing point for each pair of line segments is close to the vacuum dispersion 
circle. The surface modes for γ > 0 (green solid lines) and γ < 0 (green dashed lines) are further sym-
metric with respect to the major or minor axes of the hyperbolas (the bulk modes at kz = 0 ). These axes 
are in fact the bulk modes at the critical condition |γ | = √

εµ (cf. “Bulk modes”), which are represented 
by two straight lines: kx±ky = 0 at kz = 0 plane [cf. Eq. (7)].

In the present configuration, the bulk modes for opposite sign of the chirality parameter are identical because 
of the symmetry about γ [cf. Eqs. (5) or (6)]. The surface modes are located in the common gap of the bulk modes 
in the wave vector space, that is, outside the bulk modes of vacuum and the pseudochiral metamaterial. All the 
surface modes are tangent to the bulk modes19,20, including the the vacuum dispersion circle: k2x + k2y = k20 [cf. 
gray dashed contours in Fig. 2b] and the pseudochiral metamaterial [cf. black solid contours in Fig. 2b]. This 
feature follows from the fact that the surface modes must convert seamlessly into the bulk modes as they approach 
their termination points66. The evanescent depth of the surface mode grows until at the point where the surface 
mode merges with the bulk mode19. The bulk modes on the vacuum side are topologically trivial, while on the 
pseudochiral medium side they are topologically nontrivial with nonzero topological invariants (cf. “Topological 
invariants”). The surface modes correspond to the topological phase transition between two distinct topologi-
cal phases in the momentum space52,67, their existence being guaranteed by the bulk-edge correspondence. In 
particular, the Hamiltonian of the photonic system respects the pseudo TR symmetry (cf. “Pseudo time-reversal 
symmetry”), leading to the topological protection of photonic surface or edge states.

Photonic Weyl system.  Let the frequency dependence of the pseudochiral medium be characterized by 
the Lorentz dispersion models: ε = ε∞ − ω2

p/
(

ω2
− ω2

0

)

 and µ = µ∞ −�µω
2/
(

ω2
− ω2

0

)

 , which are usually 
employed in the study of metamaterials68. Here, ω0 is the the resonance frequency and ωp is the effective plasma 
frequency of the medium. The chirality parameter is given by γ = �γωωp/

(

ω2
− ω2

0

)

 , where �2
γ = �µ

69,70. This 
model guarantees that the energy density in the underlying medium is positive definite (see “Electromagnetic 
energy density”).

Figure 3a shows the dispersion of bulk modes for the pseudochiral metamaterial in the frequency-wave vector 
space with kz = 0 . The bulk modes consist of two pairs of tilted conic surfaces symmetrically displaced in the kx
–ky plane. Each branch of the conic surface contains an elliptic surface in phase (I) and a hyperbolic surface in 
phase (II) (cf. “Bulk modes”). In the present configuration, the material parameters are arranged such that 
ε = µ = γ =

ε∞µ∞

ε∞+µ∞
 at the frequency ω1 =

√

ω2
0 + (ε∞ + µ∞)ω2

p/ε
2
∞

 , where the bulk modes are reduced to 
two straight lines: kx±ky = 0 at kz = 0 [cf. Eq. (7)]. This is the condition that fulfills both the ‘spin’-degenerate 
condition (cf. “Spin-orbit Hamiltonians”) and the critical condition (cf. “Bulk modes”) in the present medium, 
which also forms the point-like degeneracy in the bulk modes. Here, ω1 is the transition frequency between phase 
(I) and phase (II), at which |γ | = √

εµ . For ω > ω1 , the bulk modes are composed of ellipses, while for ω < ω1 , 
the bulk modes are composed of hyperbolas. The former and the latter touch at four saddle points: 
(

kx , ky
)

= (±ρ1,±ρ1) and (±ρ1,∓ρ1) , where ρ1 = µ∞

c(ε∞+µ∞)

√

ε2
∞
ω2
0 + (ε∞ + µ∞)ω2

p  . In this situation, the 

Figure 3.   Dispersion of (a) bulk modes and (b) surface modes in the frequency-wave vector space for the 
pseudochiral metamaterial with ε∞ = 4 , µ∞ = 3 , �µ = 0.522 , �γ = ±0.723 and ω0/ωp = 0.8 . Wave vector 
components are scaled by kp = ωp/c . In (a), dark gray lines are bulk modes at the Weyl frequency. In (b), bulk 
modes at constant frequencies are outlined in gray mesh. Yellow cylinder is the dispersion surface of vacuum. 
Blue and red dots are the Weyl points with opposite chirality. Black lines are the Fermi arcs.
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dispersion of bulk modes resembles the linear crossing of valence and conduction bands in the Weyl semimetal71, 
with the crossing points known as the Weyl points and the associated frequency ω1 as the Weyl frequency. In the 
present configuration, the Weyl points all exist at the same frequency72, which are known as the ideal Weyl 
points44,46,73–76. At the Weyl frequency, the bulk modes are reduced to straight lines, which are similar to the 
boundaries between electrons and hole pockets19. In this regard, the underling medium is considered a photonic 
analogue of the type-II Weyl semimetal77.

Note that in the absence of chirality ( γ = 0 ), the bulk modes are featured with the Dirac cone with fourfold 
degeneracy at the Dirac point: (kx , ky ,ω) = (0, 0,ω1) at the center of the wave vector space [cf. Eq. (8)]. The 
present medium in the situation, however, is not a Dirac semimetal since this degeneracy is not topologically 
protected19. In the presence of chirality ( γ  = 0 ), the inversion symmetry is broken (cf. “Bulk modes”) and the 
fourfold degeneracy is lifted. As a result, the bulk modes are featured with two pairs of Weyl cones with twofold 
degeneracy at four Weyl points [cf. Eq. (6)]. For a TR symmetric system, the total number of Weyl points must 
be a multiple of four19, since under the time reversal a Weyl point at k0 is converted to a Weyl point at −k0 with 
the same chirality. As the net chirality should vanish, there must be another pair of Weyl points with the opposite 
chirality. A similar feature of four Weyl points has also been observed in electronic78 and photonic44 systems. The 
topological charges carried by the Weyl points are consistent with the nonzero topological invariants C± = ±2 
in the present system (cf. “Topological invariants”). Here, the topological charges ±2 are associated with the 
unconventional spin-1 Weyl points with threefold linear degeneracy46,79–81. The net chirality vanishes in the 
Weyl semimetal, which agrees with the fact that the total Chern number is zero (cf. “Topological invariants”).

Figure 3b shows the dispersion of surface modes at the interface between vacuum and the pseudochiral 
metamaterial in the frequency-wave vector space. For comparison, the bulk modes (with kz = 0 ) at constant 
frequencies are outlined in gray mesh. Different from the surface modes in topological insulators that exist in 
the frequency (energy) band gap, the surface modes in gapless topological semimetals are defined in the region 
free of bulk modes at the same frequency (energy)19. Recall that the surface modes exist only in phase (II), where 
|γ | >

√
εµ (cf. “Surface modes”). The surface modes are therefore located below ω1 , at which |γ | = √

εµ . Because 
of the frequency dependence of material parameters, the dispersion of surface modes is shown to be bended. The 
surface modes form two pairs of bended surface sheets tangent to both and the Weyl cones and the vacuum light 
cone in the frequency-wave vector space. At the Weyl frequency, the edge states that connect the Weyl points 
form the so-called Fermi arcs. In the present configuration, two pairs of Fermi arc-like states are represented 
by four line segments, each of which connects the Weyl point on one end and the vacuum dispersion surface 
on the other [cf. black line in Fig. 3b]. A similar feature of two pairs of Fermi arcs has also been observed in the 
photonic Dirac semimetal68,82.

Finally, the topological features of the pseudochiral metamaterial are illustrated with the propagation of 
surface waves at an irregular boundary51–54,59,65,83,84. For this purpose, a dipole source is placed at the interface 
between vacuum and the pseudochiral metamaterial to excite the surface modes in the their common band gap 
(outside the bulk modes in the wave vector space), so that the waves are evanescent away from the interface 
on both sides. In Fig. 4, a pair of surface modes are excited at ky/k0 = 1.28 [cf. blue and red dots in Fig. 2(b)] 
with right- or left-handed circular polarizations (see “Simulation”), which correspond to the opposite helicity 
of topological edge states. The surface waves propagate unidirectionally to the right or left along an irregular 
boundary with sharp corners. In particular, the surface waves counterpropagate at the boundary for different 
handednesses of circular polarization. This feature is consistent with the characteristic of surface modes in the 
present configuration [cf. Fig. 2b], in which there exist a positive kz (blue dot) and a negative kz (red dot) for a 
fixed kx . The surface waves are able to bend around sharp corners without backscattering, which demonstrates 
that the edge states are topologically protected.

In conclusion, we have investigated the photonic topological phases in pseudochiral metamaterials character-
ized by the magnetoelectric tensors with symmetric off-diagonal chirality components. The photonic system is 

Figure 4.   Surface wave propagation at the interface between vacuum and the pseudochiral metamaterial with 
ε = µ = 1.5 , γ = 2 , and ky/k0 = 1.28 for (a) right-handed and (b) left-handed circular polarization, which 
correspond to the red and blue dots, respectively, in Fig. 2b. Green dot is the position of dipole source. Circular 
arrow denotes the handedness of circular polarization. Red and blue colors correspond to positive and negative 
values of Re[Ey ], respectively, and x and z coordinates are scaled by l0 ≈ 12.43�0 , with �0 = 2π/k0.
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described by a pair of spin-orbit Hamiltonians with spin 1 in terms of the pseudospin states, and the topological 
properties are determined by the nonzero spin Chern numbers. Surface modes exist at the interface between 
vacuum and the pseudochiral metamaterial, which depict the typical features of topological edge states between 
two distinct topological phases. The underlying medium is regarded as a photonic analogue of the type-II Weyl 
semimetal featured with two pairs of Weyl cones and the associated Fermi arc-like states. Topological features 
of the pseudochiral metamaterials are illustrated with the robust transport of surface modes at an irregular 
boundary.

Methods
Spin‑orbit Hamiltonians.  The wave equation for the hybrid modes F± = E±iH′ in Eq. (9) can be rewrit-
ten as

where

and ψ̃± =

(

−
F±x ∓iF±y

√
2

, Fz ,
F±x ±iF±y

√
2

)T

 are the pseudospin states that include ±π/2 phase difference between the 

transverse hybrid field components (with respect to the optical axis of the medium)58. In the neighborhood of a 
reference frequency ωref , εn ( n = t, z ) can be approximated as εn ≈ εn0 +

dεn
dω

∣

∣

∣

ω=ωref

(ω − ωref) ≡ εn0 + ε̃nδω/ωref , 

where ε̃n is positive definite58. Taking into account of the frequency dispersion of the medium near the reference 
frequency, Eq. (19) is rearranged as a pair of eigensystems:

where

and ψ± = U−1ψ̃± with U = diag
(

√

ε̃z/ε̃t , 1,
√

ε̃z/ε̃t

)

 . In the isotropic case, where εt0 = εz0 ≡ ε and 
ε̃t = ε̃z ≡ ε̃ , Eq. (21) is simplified to

where

and D± = ±ωref

(

εI − γ {Sx , Sy}
)

/ε̃ . Here, v = c/ε̃ , k = kxx̂ + kyŷ + kz ẑ , S = Sxx̂ + Syŷ + Sz ẑ,

are the spin matrices for spin 1, and {A,B} = AB+ BA is the anticommutator.

Topological invariants.  The Hamiltonian H± [cf. Eq. (24)] on the sphere S: |k| = k0 is rewritten in spheri-
cal coordinates as

where θ and φ are the polar and azimuthal angles, respectively. The eigensystem for the Hamiltonian H±:

is solved to give the eigenvalues �σ
±
= σvk0 ( σ = ±1, 0 ) and the normalized eigenvectors as

(19)H̃±ψ̃± = D̃±ψ̃±,

(20)H̃± = ±c
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(23)H±ψ± −D±ψ± = ±δωψ±,

(24)H+ = vk · S, H− = −vk · S
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Based on Eqs. (28) and (29), the Berry connections Aσ
±
= −i

〈

ψσ
±

∣

∣∇ψσ
±

〉

 are obtained as

The Berry curvatures Fσ = ∇ × A
σ
±

 are then given by

Integrating over the unit sphere S, the Chern numbers Cσ =
1
2π

∫

S Fσ · ds are calculated to give

Surface wave equation.  According to Maxwell’s equations, the eigenfields on either side of the interface 
( z = 0 ) are given by the nontrivial solutions of E and H [cf. Eq. (3)] or the null space of Hm [cf. Eq. (15)]. On the 
vacuum side ( z > 0 ), we have

where k(0)z =

√

k20 − k2x − k2y  is the normal wave vector component (to the interface) in vacuum. On the pseu-
dochiral medium side ( z < 0 ), the eigenfields are given by

w h e r e  α± =
√
εµkx±γ ky   ,  β± =

√
εµky±γ kx   ,  δ± =

√
εµk2x±2γ kxky +

√
εµk2y   , 

k
(1)
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√

(

εµ− γ 2
)
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2γ
√
εµ

kxky − k2y  and k(2)z = −

√

(

εµ− γ 2
)

k20 − k2x −
2γ
√
εµ

kxky − k2y  are the nor-
mal wave vector components in the pseudochiral medium, and the superscripts (1) and (2) refer to two inde-
pendent polarizations. Note that the eigenfields in Eqs. (34)–(39) share the common tangential wave vector 
components kx and ky across the interface, as a direct consequence of the phase matching of electromagnetic 
fields. For the surface waves to exist on the vacuum side ( z > 0) , k(0)z  should be purely imaginary with a positive 
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value, so that the waves decay exponentially away from the interface. On the pseudochiral medium side ( z < 0 ), 
k
(1)
z  and k(2)z  should be purely imaginary with a negative value for a similar reason.

The tangential electric and magnetic field components are continuous at the interface:

where n = x, y and C1 , C2 , C3 , C4 are constants. The existence of a nontrivial solution of these constants requires 
that the determinant of the 4 × 4 matrix obtained from Eqs. (40) and (41) be zero, which gives the characteristic 
equation of the surface mode as

Electromagnetic energy density.  The time-averaged energy density in a lossless medium is given by85

where

and V =
(

ε0Ex , ε0Ey , ε0Ez ,µ0Hx ,µ0Hy ,µ0Hz

)T , with V† being the Hermitian conjugate of V. The energy density 
must be positive definite, which implies that both the trace and the determinant of M are positive:

Based on the Lorentz dispersion models used in the present medium (cf. “Photonic Weyl system”), these 
quantities become

and

both of which are positive in the present study.

Simulation.  Let the xz plane be the simulation domain with ky being the out-of-plane wave vector compo-
nent, which is kept fixed in the simulation so that the eigenwaves possess the same ky51. In this manner, the simu-
lation domain is considered a section plane (normal to the interface) of the 3D space. The surface wave is excited 
at a certain point on the boundary between vacuum and the pseudochiral medium, which can be implemented 
experimentally by a dipole antenna27,86. For the dipole to serve as the source of circularly polarized waves, two 
in-plane components with ±π/2 phase difference are included to excite the right-handed or left-handed wave87.

Data availability
No datasets were generated or analysed during the current study.
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