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Summary

Composting is the major technology in the treatment
of animal manure and is a source of nitrous oxide, a
greenhouse gas. Although the microbiological pro-
cesses of both nitrification and denitrification are
involved in composting, the key players in these path-
ways have not been well identified. Recent molecular
microbiological methodologies have revealed the
presence of dominant Bacillus species in the degra-
dation of organic material or betaproteobacterial
ammonia-oxidizing bacteria on nitrification on the
surface, and have also revealed the mechanism of
nitrous oxide emission in this complicated process to
some extent. Some bacteria, archaea or fungi still
would be considered potential key players, and the
contribution of some pathways, such as nitrifier deni-
trification or heterotrophic nitrification, might be
involved in composting. This review article discusses
these potential microbial players in nitrification–
denitrification within the composting pile and high-
lights the relevant unknowns through recent activities
that focus on the nitrogen cycle within the animal
manure composting process.

Introduction

Composting is the simplest traditional animal manure
management technology that depends on the degradation
of organic matter by the microbial community within
manure itself (Bernal et al., 2009). Easily degradable
organic matter would be utilized as the energy source,
and CO2, NH3 and moisture would be emitted and would
generate large amounts of heat; the temperature inside
compost piles is about 70°C. The mass of the pile
decreases significantly, and the process also reduces
odorous compounds and pathogens, while killing weed
seeds. Because the mature product can be reused as
organic fertilizer, composting is a very important technol-
ogy from the viewpoint of the circulation of resources or
environmental protection.

Because the organic or inorganic state of nitrogen con-
tained within the compost is an important nutrient for
crops, the available amount of nitrogen content in com-
posted material is a precious component. Through the
composting process, the organic nitrogen contained
within initial fresh manure is degraded into ammonium by
a wide variety of microorganisms including bacteria and
fungi. Part of this nitrogen is lost as NH3 by volatilization,
or through conversion into gases content such as N2O or
N2 through the nitrification/denitrification process (Fig. 1).
The range of nitrogen loss can vary between 19% and
77%, which mainly occur through NH3 volatilization and N2

emission (Martins and Dewes, 1992; Mahimairaja et al.,
1995; Eghball et al., 1997; Tiquia and Tam, 2000; Tiquia
et al., 2002). In addition, 0.2–9.9% of initial nitrogen
content can be emitted as N2O, the intermediate of deni-
trification or by-products of nitrification (Kuroda et al.,
1996; Hao et al., 2001; 2004; Fukumoto et al., 2003; El
Kader et al., 2007; Szanto et al., 2007) (Table 1). The loss
of nitrogen during animal manure composting processes
is affected by various parameters, such as the animal
species, diet, bulking agents, moisture content, turning
frequency, carbon/nitrogen ratio and initial nitrogen
content.

Nitrous oxide is an important greenhouse gas with
strong global warming potential (300 times as that of CO2

(IPCC, 2001). Moreover, because N2O is greatly respon-
sible for ozone depletion, reduction of its emission would
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be important for environmental protection (Ravishankara
et al., 2009). Therefore, an important issue in the study of
composting is the nitrifier/denitrifier microbial community,
which plays a significant role in nitrogen conversion within
the composting pile. In this review article, we deal with
recent research activities that focus on the nitrifier/
denitrifier microbial community in composting while refer-
ring to similar studies in other environments.

Overall microbial and fungal community in the
composting process

There are many studies about microbial community struc-
tures in the composting process. Most of them focus on
the bacteria mainly responsible for the degradation of
organic matter. In order to identify microbes present in the
compost process, besides the classical isolation tech-
nique, new approaches based on culture-independent
techniques, such as the extraction of DNA from the

compost and amplification of 16S rRNA gene by PCR,
followed by DNA sequencing are commonly used (Muyzer
et al., 1993). The approach based on DNA sequencing
provides relevant information on microbes that are difficult
to culture.

It has been reported that some Bacillus species are
important in the composting pile in the thermophilic stage,
when active degradation of organic compounds occurs
(Blanc et al., 1997; 1999; Ishii et al., 2000; Peters et al.,
2000; Dees and Ghiorse, 2001; Zhang et al., 2002; Ishii
and Takii, 2003; Schloss et al., 2003; Iida et al., 2005; Kim
et al., 2006; Wang et al., 2007; Yamamoto et al., 2009).
These Bacillus can grow and degrade organic com-
pounds under thermophilic conditions up to 65°C, and
Thermus species are dominant instead of Bacillus
species above 70°C (Beffa et al., 1996). While this is
relevant, it should be noted that the bacterial community
structure changes dramatically even in the maturing
phase, when active degradation of organic compounds
has almost ended. In the maturing phase, mesophilic
Proteobacteria or Actinobacteria are known to be domi-
nant (Danon et al., 2008), and these bacterial groups are
considered responsible for the maturation process.

In the composting process, the temperature in the core
zone of the pile reaches 60–70°C, and there are tempera-
ture gradient effects within the pile (Fernandes et al.,
1994). In addition, there is an oxygen gradient and anoxic
conditions deep inside the piles (Hao et al., 2001), espe-
cially in passively aerated composting systems. In these
various complicated environments, bacterial communities
differ significantly between the surface and the core zone
(Maeda et al., 2010a). In the dairy cattle manure com-
posting process, nitrite and nitrate accumulate on the
surface layer of the pile even in the initial stage of the
process, when there are still easily degradable organic
compounds (Maeda et al., 2010b). In the surface layer,
16S rRNA-dependent bacterial community analysis sug-
gests that some Proteobacteria or Bacteroidetes are
dominant, which is significantly different from the case in

Fig. 1. Nitrogen conversion and emission during the composting
process.

Table 1. Nitrous oxide emission from manure composting process.

Animal Process type Unit Reference

Dairy 0.582 g-N2O per kg DM Pattey et al. (2005)
Beef 0.162 g-N2O per kg DM
Pig Forced aeration 1.9–71.9 g-N2O-N per m3 Osada and Fukumoto (2001)
Cattle Static 1.1 kg-N per Mg manure Hao et al. (2001)
Cattle Turned 1.9 kg-N per Mg manure
Cattle Woodchip 0.39 %N Hao et al. (2004)
Cattle Straw 0.68 %N
Dairy Static 1.2 %N El Kader et al. (2007)
Dairy Turned 1.9 %N
Turkey 0.2–0.4 %N
Pig Turned 3.7–4.6 %N Fukumoto et al. (2003)
Pig turned 2.5 %N Szanto et al. (2007)
Pig static 9.9 %N
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thermophilic core zones. Some part of these bacterial
species are thought to contribute to the nitrification or
denitrification that actively occurs in the surface layer.

Although Dees and Ghiorse (2001) reported that they
failed to detect archaea in the compost piles, while they
found many fungal species in the compost samples
whose temperatures did not exceed 50°C. In this regard,
Anastasi and colleagues (2005) reported the isolation of
194 fungal species, the Acremonium, Aspergillus, Cla-
dosporium, Malbranchea, Penicillium, Pseudallescheria
and Thermomyces species from compost. In another
study, Hultman and colleagues (2009) reported that fungal
biomass can represent between 6.3% and 38.5% of total
biomass in municipal waste compost based on phospho-
lipid fatty acid analysis. They also found that the fungal
community suffers dramatic changes during the compost-
ing process, as does the bacterial community, and that a
fungal community succession differed between a full-
scale composting facility and a laboratory-scale small
reactor. Studies are needed on the function of the fungal
community in the degradation of organic matter in the
huminification process, or potential interaction with the
bacterial community and its contribution to the nitrification/
denitrification pathway.

Microorganisms relevant to the nitrogen cycle
in composting

Nitrifiers

Nitrification is known to be carried out by bacteria,
archaea and fungi (De Boer and Kowalchuk, 2001; Lein-
inger et al., 2006; Laughlin et al., 2008). In the bacterial
process, nitrification consists of two steps, ammonia oxi-
dation and nitrite oxidation, and each of these reactions is
performed by an individual microbial group: ammonia-
oxidizing bacteria (AOB) (Kowalchuk and Stephen, 2001)
and nitrite-oxidizing bacteria (NOB) respectively. Nitrous
oxide is known to be produced as a by-product of
hydroxylamine oxidation. betaproteobacterial AOB or
Thaumarchaeota ammonia-oxidizing archaea (AOA) are
considered important in ammonia oxidation (Brochier-
Armanet et al., 2008), and the major NOB in the environ-
ment are alphaproteobacterial Nitrobacter or Nitrospira.
Nitrifiers grow slowly under laboratory conditions, and
their cultivation or isolation is very time-consuming. In
order to speed the tracking of these microbes, a molecular
biology approach using primers specific to the 16S rRNA
genes and the ammonia monooxygenase gene of betap-
roteobacterial AOB have been developed and used to
track nitrifiers in the environment (Innerebner et al., 2006;
Junier et al., 2010).

In the composting process, temporal nitrite accumula-
tion in the middle stage and high accumulation of nitrate in
the mature phase were observed (He et al., 2000; 2001;

Fukumoto et al., 2006; Fukumoto and Inubushi, 2009;
Maeda et al., 2010c), and it is evident that nitrification
occurs in the compost pile. However, it remains unclear
which microbes are responsible for this process. Some
studies have detected sequences similar to known AOB
species Nitrosomonas europaea-eutropha or Nitrosospira
in the composting process (Kowalchuk et al., 1999; Jarvis
et al., 2009; Maeda et al., 2010b). Jarvis and colleagues
(2009) also detected Nitrosomonas in the theromophilic
stage and Nitrosospira in the maturation phase of house-
hold waste composting, while Maeda and colleagues
(2010b) detected Nitrosomonas throughout the process,
especially from the surface layer of a cattle manure com-
posting pile. Some previous studies also detected
Nitrosomonas from landfill cover, an organic-rich environ-
ment similar to the composting process (Mertoglu et al.,
2006; Zhu et al., 2007). Betaproteobacterial AOB are
chemoautotrophic and generate energy from the hydroxy-
lamine oxidation step, the ATP produced is used to fix CO2

as a carbon source. Therefore, the presence of these
AOB indicates that these bacteria oxidize ammonia in the
composting process. However, the extent of the contribu-
tion to net nitrification is yet unknown.

To clarify the contribution of AOB to ammonia oxidation
in composting, the contribution of AOA must be studied.
Although AOA is known to be responsible to some extent
for nitrification in environments containing less organic
matter, such as soil, ocean or river sediment (Leininger
et al., 2006; Santoro et al., 2010), there are some reports
that AOB’s contribution is much more important than
AOA’s for actual nitrification in organic-rich environments
such as wastewater from treatment plants (Park et al.,
2006; Wells et al., 2009). Another report shows that
ammonia oxidation in zinc-contaminated soil is restored
not by AOA but by AOB (Mertens et al., 2009). Many
heavy metals are included in livestock manure, especially
in swine manure (Nicholson et al., 1999; Ko et al., 2008).
AOB might be more important than AOA under these
conditions. Although a previous report failed to detect the
AOA in compost piles (Maeda et al., 2010b), Yamamoto
et al. (2010) reported the existence of AOA from cattle
manure compost in the later stage of the process. The
relative contribution of AOB and AOA on actual nitrification
needs to be clarified.

Heterotrophic nitrification is a reaction in which het-
erotrophic bacteria oxidize ammonia or degrade organic
matter to nitrate directly (Papen and Von Berg, 1998).
Many bacterial species are known to undergo this reac-
tion, and species such as Paracoccus denitrificans or
Pseudomonas putida are known to possess amoA
sequences distinct from those of autotrophic nitrifiers
(Moir et al., 1996; Daum et al., 1998). Although these
bacteria have potential to contribute net nitrification in the
compost, its actual contribution is not known at all. This
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reaction by heterotrophs has not been considered in
depth because these species do not generate energy
from this process, nor do they accumulate high concen-
trations of nitrite; however, this futile reaction may be of
relevance in an environmental setting. These het-
erotrophic nitrifiers assimilate more ammonium than
chemoautotrophic AOB, which leads to higher biomass,
and they have been considered not useful for wastewater
treatment systems (Podmirseg et al., 2010). Efforts to
unveil nitrification process include the development of
new culture media for thermophilic nitrifiers in compost
under heterotrophic conditions is ongoing (Shimaya and
Hashimoto, 2008). In summary, it can be said that to
understand the nitrogen cycle in the composting process,
we need to learn more about the role of the heterotrophic
nitrifiers in the process.

On the other hand, there have not been many molecular
ecological studies on NOB. Because NOB has a diverse
taxonomy, including Nitrobacter (a-Proteobacteria),
Nitrosococcus mobilis (g-Proteobacteria), Nitrospina graci-
lis (d-Proteobacteria) and Nitrospira (Nitrospira), it is diffi-
cult to detect all these strains by methods such as FISH
(fluorescent in situ hybridization) or PCR, which depend on
16S rRNA sequences. Few studies have focused on func-
tioning gene sequences of nitrite oxidoreductase of Nitro-
bacter (Poly et al., 2008; Wertz et al., 2008). Even though
these methods may be effective for understanding nitrifi-
cation in the composting process, they have not been used
for studies of nitrite oxidation yet, and NOB in the compost-
ing process has not been characterized well.

Denitrifiers

Nitrite or nitrate generated by nitrifiers would usually be
reduced by heterotrophic denitrifiers and emitted into the
atmosphere as N2O or N2. Denitrification by bacteria has
been well studied and the details of its molecular mecha-
nisms have been characterized. The reaction consists of
four reduction steps, namely, NO3 → NO2 → NO → N2O
→ N2. The genes nar, nir, nor and nos are coding the
catalysing enzymes (Rudolf and Kroneck, 2005; Tavares
et al., 2006). Denitrifying bacteria are known to be phylo-
genetically diverse, with at least 50 genera (Zumft, 1997).
Therefore, the study of denitrifiers that depend on 16S
rRNA gene sequences is very difficult, and functioning
genes that code each enzyme catalysing each denitrifica-
tion step are frequently used for studies of environmental
denitrifiers (Sharma et al., 2005; Wertz et al., 2009).
Because of the relative abundance of information in public
databases, nitrite reductase (nirS and nirK) or nitrous
oxide reductase (nosZ) have been used frequently.

There are two types of nitrite reductase: nirS, cyto-
chrome c nitrite reductase, which has haem iron in its
active centre (Einsle et al., 1999; 2000), and nirK, a

copper-containing nitrite reductase (Murphy et al., 1997;
Antonyuk et al., 2005). It is possible to distinguish these
nitrite reductases in denitrifiers by using diethyldithiocar-
bamate (DDTC), which chelates copper of the nirK deni-
trifier and prevents the process. DGGE primers targeting
nitrite reductase gene sequences have been developed
(Throback et al., 2004) and used to study denitrifiers in
various environments. It is frequently discussed which
types of nitrite reducers would be dominant in the envi-
ronment. For example, one report shows that nirS deni-
trifiers are dominant in subtropical macrotidal estuaries
(Abell et al., 2009). Because the horizonal transfer of
denitrifying genes may occur within the environment, the
incidence of nirK or nirS does not always agrees with the
16S rRNA gene phylogenetic sequences. Heylen and col-
leagues (2006a) concluded that nir genes may not be
suitable to evaluate microbial diversity of denitrifiers in the
environment. Thus, interpretation of biodiversity based on
nir sequence analysis need to be interpreted with care.

Nitric oxide reductase (NOR) catalyses the reduction of
NO to N2O. Nitric oxide, produced by the reduction of
nitrite, is known to be toxic to microorganisms, and they
need to metabolize it to protect themselves. Three kinds
of NOR have been reported, namely cNOR, qNOR
and qCuNOR (Tavares et al., 2006). The cytochrome
c-dependent nitric oxide reductase (cNOR) of P. denitrifi-
cans has been studied well. It is a component of cyto-
chrome bc complex with two non-haem irons in its active
centre. Braker and Tiedje (2003) were the first to study
denitrifying communities using norB as a functional
marker, and others have used it for studies on environ-
mental samples (Dandie et al., 2007) or isolates (Heylen
et al., 2006b), but not yet for compost samples.

Nitrous oxide reductase is the terminal oxidoreductase
of denitrification that transforms N2O to N2 (Brown et al.,
2000). Because this multi-copper-containing enzyme pre-
vents the accumulation of a potent greenhouse gas, it
plays an important role in the nitrogen cycle (Zumft,
2005). Nitrous oxide reductase is most sensitive to
molecular oxygen among the enzymes involved in deni-
trification, and its function is inhibited under aerobic con-
ditions. This enzyme can also be inhibited by C2H2 easily
(Yoshinari and Knowles, 1976) and is frequently used for
the study of the denitrification potential of environmental
samples (Teissier and Torre, 2002). Moreover, the nosZ
gene that codes this enzyme is used as a biomarker in
molecular ecological studies (Scala and Kerkhof, 1999;
Stres et al., 2004).

Some bacterial denitrifiers and fungi are known not to
possess nitrous oxide reductase (Takaya, 2009). Although
N2O reduction is thermodynamically favourable and N2O
is suitable for an electron acceptor, some denitrifiers
produce N2O as the final product of the denitrification
process. This might be explained by the fact that nitrous
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oxide is not toxic to microorganisms, whereas NO is toxic
to bacterial cells. The lack of N2O reduction makes ~20%
difference to the bioenergetics of the bacterium (Richard-
son et al., 2009).

Diversity of denitrifiers in the environments

A study about denitrifier communities in the composting
process revealed an initial variation of nirK diversity and
stability after that (Maeda et al., 2010a). Hallin and col-
leagues (2006) also reported that the addition of methanol
or ethanol to activated sludge significantly affected the
diversity of nirS but not that of nirK. On the other hand, the
addition of mature compost that contains NO2 or NO3-N
did not affect nirK diversity but significantly affected nosZ
diversity, suggesting that denitrifiers possessing the nosZ
gene in the compost would be more sensitive to environ-
mental conditions. It is necessary to isolate the major
denitrifier revealed by molecular methods in order to
understand the actual denitrification occurring in the envi-
ronment. In a denitrifier community study of rice paddy
soil, Ashida and colleagues (2010) successfully isolated a
major denitrifier through the enhancement of denitrifica-
tion activity with succinate amendment and molecular
methods such as the 16S rRNA gene clone library
approach (Ishii et al., 2009) or the stable isotope probing
approach (Saito et al., 2008). Moreover, Ishii and col-
leagues (2011) proved that denitrifiers with different 16S
rRNA gene phylogeny possess same nirS or nirK gene in
the same environment (Fig. 2). Their data show previ-
ously unknown complex relationship between 16S rRNA
gene and functional gene possession. To understand the
denitrifier community completely, it is necessary to
combine independent approaches such as molecular and
conventional cultivation approaches. The molecular
methods used to characterize the unknown and unculti-
vated denitrifier communities, and the subsequent single-
cell isolation strategy would be effective for the denitrifiers
that are truly functioning for actual denitrification in the
environment (Ishii et al., 2010).

The relationship between denitrifying gene diversity or
abundance and potential denitrification activity in soil has
been well studied. Potential denitrification activity, N2O/
(N2O + N2) and the denitrifier community would be
affected by pH (Palmer et al., 2010). Cuhel and col-
leagues (2010) reported that nirS diversity correlates with
soil pH. On the other hand, Hallin and colleagues (2009)
reported that denitrification activity did not correlate with
denitrifier gene composition, but did correlate with the size
of the total bacterial community or nosZ abundance.
Another study reports that the nosZ ratio to total bacterial
community is much more important than denitrifying gene
abundance for potential N2O production (Philippot et al.,
2009). Although much effort has been made in these

environmental studies, it is still difficult to explain denitri-
fication and nitrous oxide production by denitrifying gene
abundance or diversity. Moreover, a previous paper
reported that AOA possesses a novel nirK sequence (Bar-
tossek et al., 2010), which had not been covered by pre-
vious denitrifier studies, and much effort should be made
to learn about this unknown archaean denitrification.

It is also known that some autotrophic nitrifiers have the
ability to denitrify (Wrage et al., 2001; Wrage et al., 2004;
Shaw et al., 2006). These autotrophic nitrifiers possess
nirK-type nitrite reductase with distinct DNA sequences
from those of heterotrophic denitrifiers. It is not well under-
stood yet how these autotrophic nitrifiers acquired the nirK
gene, which might have occurred by horizontal gene
transfer; and how they became tolerant to nitrite produced
by themselves (Casciotti and Ward, 2001). Because nitri-
fiers produce nitrite, they have many advantages for the
utilization of nitrite as the substrate for denitrification.
Therefore, nitrifier denitrification may contribute much
more than heterotrophic denitrifiers, but it is difficult
to distinguish these pathways with the current analytic
techniques.

Who is responsible for nitrous oxide emission?

It is hard to understand how to share NO in nitrification
and denitrification procedures. As stated above, nitrifica-
tion would be performed by AOB, AOA, heterotrophic
nitrifiers or fungi, whereas denitrification would be per-
formed by heterotrophic denitrifiers, denitrifying fungi and
autotrophic/heterotrophic nitrifiers. However, the relative
contribution to net nitrification or denitrification of each
group is not yet clear. Studies that focus on nitrifying
genes are only about AOB or AOA, and those for denitri-
fying gene analysis are only about bacteria. The develop-
ment of a tool for such study will be needed.

Stable isotope analysis of N2O is an alternative
approach to studying its production processes because
the relative abundance of stable isotopes is a function of
their abundance in source materials and the isotope frac-
tionation factor of each physical/chemical process. In par-
ticular, intramolecular 15N distribution within the N2O
molecule (site preference, SP) has been found to depend
only on enzymatic reaction processes and not on sub-
strates (Toyoda and Yoshida, 1999; Yoshida and Toyoda,
2000; Toyoda et al., 2005; Sutka et al., 2006). Nitrous
oxide, which originates from bacterial nitrification
(hydroxylamine oxidation) and denitrification (nitrite
reduction), can be distinguished by using SP. However,
SP cannot distinguish between nitrifier denitrification and
heterotrophic denitrification, and a recent study showed
that fungal denitrification produces N2O with SP similar to
that of bacterial nitrification (Sutka et al., 2008). In addi-
tion, isotope abundance is affected by nitrous oxide
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reduction (Ostrom et al., 2007; Jinuntuya-Nortman et al.,
2008). Although this analytical technique has some limi-
tations as stated above, it would be a powerful tool by
using all available isotopic data (N and O isotope ratios
and SP) in a complementary style (e.g. Koba et al., 2009)
or by combining other analytical approaches, such as a
wide range of molecular methods. Isotopomer analysis of
N2O directly collected from a composting pile by the
dynamic chamber method (Osada and Fukumoto, 2001)
revealed that bacterial denitrification is the most important
and responsible nitrous oxide production pathway (Maeda
et al., 2010b). This study relied on the isotopic character-
istics of N2O produced by isolates not from compost but
from other environments (such as soil). Therefore, in
future studies, we need to isolate the major nitrifier,
denitrifier, denitrifying fungi and isotope signature of their
producing N2O.

Future perspective

Because of the ease with which it is managed, composting
will continue to be a major technology for treating animal
manure. However, analysing the techniques developed
previously cannot explain the nitrogen cycle and nitrous
oxide emission yet. In the future, combining distinct
approaches such as molecular methods, stable isotope
analysis and classical isolation techniques will help us to
understand the nitrogen cycle during the composting
process in detail. The results should lead to the develop-
ment of relevant mitigation strategies, which will include:
identification of the main players in the nitrification–
denitrification process in the composting piles; isolation of
these key players; and analysis of their physiological,
biochemical and ecological properties. It would be also of
interest to identify the nitrous oxide reducers and to study
their function in the composting piles.
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