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On topological properties 
of COVID‑19: predicting 
and assessing pandemic risk 
with network statistics
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The spread of coronavirus disease 2019 (COVID-19) has caused more than 80 million confirmed 
infected cases and more than 1.8 million people died as of 31 December 2020. While it is essential 
to quantify risk and characterize transmission dynamics in closed populations using Susceptible-
Infection-Recovered modeling, the investigation of the effect from worldwide pandemic cannot 
be neglected. This study proposes a network analysis to assess global pandemic risk by linking 
164 countries in pandemic networks, where links between countries were specified by the level of 
‘co-movement’ of newly confirmed COVID-19 cases. More countries showing increase in the COVID-
19 cases simultaneously will signal the pandemic prevalent over the world. The network density, 
clustering coefficients, and assortativity in the pandemic networks provide early warning signals of 
the pandemic in late February 2020. We propose a preparedness pandemic risk score for prediction and 
a severity risk score for pandemic control. The preparedness risk score contributed by countries in Asia 
is between 25% and 50% most of the time after February and America contributes around 40% in July 
2020. The high preparedness risk contribution implies the importance of travel restrictions between 
those countries. The severity risk score of America and Europe contribute around 90% in December 
2020, signifying that the control of COVID-19 is still worrying in America and Europe. We can keep 
track of the pandemic situation in each country using an online dashboard to update the pandemic risk 
scores and contributions.

Since the declaration of the coronavirus disease 2019 (COVID-19) as a global pandemic by the World Health 
Organization (WHO) on 11 March 2020, there have been more than 80 million confirmed cases and more than 
1.8 million deaths worldwide as of 31 December 2020. Many countries have imposed preventive measures, such 
as city lockdown, travel restrictions, quarantine, widening social distancing, enhancing personal hygiene, etc, for 
stopping or slowing down further transmission of the disease. While continuing with the pandemic measures, it 
is also important to assess the pandemic risk for setting up preparedness plan and control measures for COVID-
191 especially for those countries with high risk of wide-spread transmission2.

A common pandemic risk assessment approach is by epidemiological modeling, where population is divided 
into at least three groups: susceptible, infected, and recovered3–6. This approach has been successful in under-
standing the disease transmission in a region through mathematical formulation of human interactions which 
may lead to infection, and the rate of recovery from infection. However, the susceptible-infection-recovery 
approach was designed fundamentally for closed populations7 and so restricted to regional studies. To supple-
ment the epidemiological modeling, it is helpful to combine data from different regions or countries to study 
the pandemic situation, i.e. the status of the disease transmission in multiple regions or over the world, and to 
quantify the potential risk involved due to the COVID-19 outbreak. Two issues are of particular interest: predic-
tion and control. Prediction means whether we can learn insights from data to produce early warning signals of 
pandemic and for preparedness8–10. Control refers to assessing the current pandemic risk severity for deciding 
proper measures during global pandemic11,12.

In this paper, we propose network analysis13 to aggregate data information from all over the world to con-
struct dynamic pandemic networks for COVID-19. Network analysis has been applied to analyzing scientific 
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collaborations14, to econometrics for assessing systemic risk and contagion effects in financial markets15,16, to 
medical research in studying gene co-expression, disease co-occurrence and global epidemics17–20, and to ana-
lyzing text21. We extend the network approach in the literature9,22 to study topological properties of COVID-19. 
There are three main features of our proposed network analysis. First, we make use of publicly available data, 
namely daily number of confirmed cases and daily accumulated number of infected people in each country to 
learn topological properties of dynamic pandemic networks and to visualize the propagation of COVID-19 for 
risk prediction and control. Second, we construct two pandemic risk scores and determine risk contributions 
from countries for pandemic prediction and control. The risk contributions of countries are helpful for setting 
preparedness plans and for assessing the severity of COVID-19 outbreak in specific regions. Finally, we compare 
the COVID-19 topological features with an independent network, the Erdos–Renyi model23, to understand 
the current pandemic situation and observe any signal for the COVID-19 outbreak to go away (for restarting 
economic activities).

In the healthcare management consideration, it is important, yet challenging, to assess pandemic risk of 
COVID-19 in the global perspective. In this study, we propose the network analysis and two pandemic risk scores 
using publicly available information on the number of confirmed COVID-19 cases, and the estimated number 
of currently infected people. We provide evidence that network statistics can yield early warning signals of the 
outbreak of COVID-19. The time series of the two pandemic risk scores and the respective risk contributions by 
countries can help to predict or ‘stress test’ the potential risk involved from releasing travel restriction measures 
between countries, and to estimate the severity of the pandemic for epidemic control. Simulations from a network 
assuming independent links between countries suggest that there is no sign for COVID-19 to go away in a few 
months. In summary, Fig. 1 shows the work flow diagram of the pandemic risk assessment system developed in 
this paper. We started from publicly available confirmed cases, recovered cases and the number of deaths due to 
COVID-19, to constructing dynamic pandemic networks and their network statistics, and finally compiling the 
preparedness risk score (PRS), and the severity risk score (SRS) for risk assessment. Details of the work flow are 
given in Fig. 1 and in “Methods”. For tracing the current pandemic risk of 164 countries, we have included the 
most updated risk scores and risk contributions in http://covid​-19-dev.githu​b.io/.

Results
Network connectedness.  As described in “Methods”, we followed the literature9,22 to construct time 
series of pandemic networks of 164 countries from February 2020 to December 2020. The countries were linked 
together in a particular day when the correlation of the increase in the number of confirmed cases in the past 14 
days exceeds a certain level. This ‘co-movement’ of newly confirmed COVID-19 cases defines the links between 
countries and forms the pandemic networks. To quantify the network connectedness, we calculated the network 
statistics presented in “Methods”. Figure 2 shows the pandemic networks on 4 February 2020, 11 March 2020, 
and 11 April 2020. From the figure, we can visualize the pandemic networks are getting more dense from Feb-
ruary to April 2020. This visual increase in connectedness was documented as an early warning signal of the 
COVID-19 pandemic in the literature22. The left panel of Fig. 3 presents the number of edges, network density, 
clustering coefficient, and the assortativity coefficient of the COVID-19 pandemic networks from February 2020 
to December 2020. The right panel of Fig. 3 gives the corresponding network statistics for the independent net-
work, the Erdos-Renyi model, which are discussed in the Discussion. From the left panel of the figure, the actual 
number of edges in the pandemic network increases steadily from late February 2020 and rises sharply after the 
WHO’s declaration of the COVID-19 pandemic on 11 March 2020 to the peak on 18 March 2020. The sharp 

Figure 1.   The pandemic risk assessment system work flow diagram.

http://covid-19-dev.github.io/
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Figure 2.   The COVID-19 pandemic networks on 4 February 2020, 11 March 2020, and 11 April 2020.

Figure 3.   The time series plots of the network statistics, including the number of edges, network density, 
clustering coefficient and assortativity coefficient. The left column gives the network statistics for the COVID-19 
pandemic networks, and the right column gives the corresponding statistics from an independent network, the 
Erdos–Renyi model (simulated networks).
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increase of the number of edges in the week of 12–18 March 2020 is partly attributed to having more countries 
reporting their confirmed COVID-19 cases, and partly due to more edges being formed because of the ‘com-
mon trend’ in the confirmed cases in more countries. The pattern of the number of edges in this particular week 
evidently confirms the pandemic announced by the WHO. The downward trend in the number of edges after 18 
March 2020 signifies the time period of epidemic control of the further spreading for COVID-19 by countries 
which implemented various measures, like quarantine rules, travel restrictions, and enlarging social distanc-
ing. The downward trend also reveals the effect of those measures on the pandemic control and thus seeing less 
coherence in the occurrence of confirmed cases in the countries. The number of edges has been stable in April 
to June 2020, but there is a rising pattern in July to December 2020.

The research in the literature9 proposed that we can use the network density, Dt in Fig. 3, to generate early 
warning signals of the COVID-19 pandemic. We observe in the left panel of Fig. 3 that Dt shows the first peak 
on 26 or 27 February 2020 which is analogous to ‘pre-earthquake phenomena’ as an alarm to a big earthquake 
some days later. The first peak of the network density, induced by the high connectedness of changes in confirmed 
COVID-19 cases from countries in late February, probably tells us that the pandemic was happening. There has 
been stronger evidence of co-occurrence of more confirmed cases in the countries, leading to a sharp increase 
in the network density in just two to three days in late February. There is another peak in the network density in 
mid March after the WHO’s declaration of the COVID-19 pandemic on 11 March 2020. Similar to the number of 
edges, the network density is quite stable in April to June and has an increasing trend in July to December 2020.

The clustering coefficient at time t is a measure of how close the pandemic network at time t to a perfectly-
linked network where all countries are linked together. In the extreme case (of the perfectly-linked network) 
where all countries’ confirmed cases increase simultaneously in the past 14 days, the countries will be well con-
nected and can be viewed as one big pandemic region. Therefore, when the clustering coefficient is higher, the 
pandemic network will be more similar to the perfectly-linked situation, indicating stronger evidence of the 
global pandemic. From the clustering time series in the third row of the left panel in Fig. 3, we observe that the 
highest value occurs on 26 February 2020, when we also observe the first peak in the network density. The clus-
tering coefficients also present an early warning signal of the global COVID-19 pandemic. Unlike the network 
density, the clustering coefficients do not show another obvious peak in mid March. Although we still observe 
substantial confirmed COVID-19 cases in various countries, the clustering coefficients on around 18 March 
(when we see another peak in the network density) is smaller than that on 26 February 2020, implying that the 
pandemic network is less similar to the perfectly-linked network than what we see on 26 February 2020. The 
downward trend in the clustering coefficient probably implies that the global outbreak of COVID-19 was gradu-
ally controlled since early March, though it takes time for the actual confirmed cases to go down substantially. 
The clustering coefficient lies between 0.25 to 0.50 in April to September 2020 and exhibits an increasing trend 
after June 2020. It exceeds 0.5 for a few weeks in late October to early November 2020.

The assortativity coefficient, ASt in Eq. (5), is to assess the assortative mixing of the vertices or countries in the 
pandemic networks. The last row in Fig. 3 (in the left panel) presents ASt from February 2020 to December 2020, 
where we see the value of ASt to jump up to around 0.5 in late February. The substantial increase in ASt in Febru-
ary implies that countries with a large number of connections tend to link with high-connection countries. This 
pattern of association of ‘similar’ countries (in terms of the degree kit in Eq. (3)) can indicate possible inflection 
risk in social networks24. In the current COVID-19 pandemic situation, we can view this high ASt as an indication 
of the disease outbreak since it is likely when a global pandemic occurs, high-connection countries tend to be 
linked together because they may have a simultaneous increase in the number of confirmed COVID-19 cases in 
a short period of time. It is not surprising to see that the time series pattern of ASt is similar to that of Ct in the 
third row of Fig. 3. The assortativity coefficient exhibits a decreasing trend from early March to early May 2020, 
and lies between 0.25 and 0.5 most of the time in May to September 2020. It stays at above 0.5 in November and 
early December 2020, indicating quite high assortative mixing in these two months.

Pandemic risk sores.  The preparedness risk score (PRS), S1t and the severity risk score (SRS), S2t are com-
puted for t from 4 February 2020 to 29 December 2020. Both ωt and nt are measured in millions of people. We 
plot the standardized S1t , in which S1t is divided by the total number of possible interactions (when all countries 
are directly linked and ωt taken as the population sizes) in Fig. 4 (left top panel). The first peak appears on 2 
March 2020 when the standardized S1t increases sharply from around zero to close to 0.1 in just a few days. 
Using 0.05 as a reference, i.e. 5% of the total interactions between people in the 164 countries, this sharp increase 
marks the first time when the risk score exceeds this reference, and can be regarded as an early warning signal 
of the COVID-19 pandemic. The second peak is found on 18 March 2020, a week after WHO’s declaration of 
COVID-19 as a global pandemic on 11 March 2020. This spike reaches a point close to 0.4, accounting for more 
than one-third of the total interactions between people in the 164 countries. After that, probably due to strin-
gent measures imposed by various countries, including travel restrictions, community lockdown and enhanc-
ing social distancing, the standardized S1t drops but quite slowly in mid April and May. The time series of the 
PRS stays mostly above 0.05 till mid June, indicating that the pandemic risk is still substantial even after three 
months of the WHO’s declaration with tremendous measures and efforts from various countries in preventing 
the transmission of COVID-19. An increasing trend appears in the standardized PRS in June to November 2020, 
when we see a local maximum of above 0.2. What worries us is whether this standardized S1t will go up again 
after December 2020 if some countries release travel restriction measures later.

Figure 4 (left bottom panel) displays the time series of the standardized S2t , in which S2t is divided by the total 
number of possible interactions (which all countries are directly linked, with ωt taken as the population sizes and 
nt taken as 0.1% of the population sizes). The construction of S2t is more sensitive to the confirmed COVID-19 
cases and thus S2t can serve as a measure of the COVID-19 outbreak severity. The first peak of S2t , signifying 
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the first wave of the pandemic, is on 12–13 April 2020, roughly a month after the WHO’s declaration on 11 
March 2020. There is improvement in reducing the number of confirmed cases and possibly also the pandemic 
network connectedness that we observe obvious drop in S2t in late April and early May. However, another local 
peak is observed on 30 May 2020, which likely indicates the second wave of the outbreak in the second half of 
May. The recent increasing trend of S2t appeared in late June to December 2020 probably implies that the third 
wave of the outbreak of COVID-19 has come. The situation may get worse later if there is no preventive measure 
for further stopping the transmission of the disease in local community or if travel restrictions are going to be 
suspended or stopped.

Risk contributions from countries.  Figure  4 (right top panel) gives the risk contributions of Africa, 
America, Asia, Eastern Mediterranean and Europe by grouping the fit , the risk contribution based on the first 
pandemic risk score S1t in Eq. (8), in the five regions. We observe that Asia contributes most of the pandemic risk 
associated with S1t in February 2020 and the Asia’s contribution stayed mostly between 0.25 and 0.5 after Febru-
ary. In the predictive perspective, reducing the mobility of the Asia’s population can be a reasonable preventive 
measure during the pandemic. There is an upward pattern in the America’s contribution to close to 0.5 in mid 
June to July 2020 and in the Europe’s contribution to above 0.25 in late August and December 2020, indicating 
relatively higher risk contribution of transmission of the disease due to possible interaction between susceptible 
populations.

Figure 5 presents the heatmap of fit . Based on the construction of S1t using mainly the interactions between 
two susceptible populations, this risk contribution is more on preventive preparation if there is chance for people 

Figure 4.   Plot of the standardized S1t with the standardization done by all possible interactions between people 
in the 164 countries, and the standardized S2t with the standardization done by all possible interactions between 
people in the 164 countries divided by 0.1%.
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from the two countries to interact. So the risk contribution fit is like doing ‘stress testing’ of the pandemic risk. 
In early February, the risk score is mainly contributed by Asia, where the risk contributions from India and 
Philippines are around 0.3. From late February to early March, the risk score from non-Asian region, e.g. United 
States from America, Iran and Pakistan from Eastern Mediterranean, and Italy, Germany and France from Europe 
started showing significant contributions to the risk score. In particular, fit of the United States has been quite 
high since mid February, signifying the early stage of the pandemic in the country. In late May and June, Ethiopia, 
Nigera from Africa, and Brazil from America also showed around 0.1 contribution that should be alerted. The 
risk contribution fit of the India, Indonesia, Japan in Asia, Brazil and the United States in America, and France, 
Italy and Russia in Europe are quite relatively high in July to November 2020. 

Figure 5.   The heatmap of the risk contribution fit based on the preparedness risk score S1t for the 164 countries 
from February to December 2020.
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Figure 4 (right bottom pannel) gives the risk contributions of Africa, America, Asia, Eastern Mediterranean 
and Europe by grouping the git , the risk contribution based on the second pandemic risk score S2t in Eq. (9). Since 
S2t is deduced from the number of possible interactions between people of a susceptible population and people 
of an infected population, the number of confirmed cases will play an important role in determining the risk 
contribution git . From Fig. 4, the pandemic risk based on S2t was contributed mostly by Asia in February 2020, 
and mostly by Europe and America in March and April 2020. After April, the risk contribution from America 
climbed up to about 0.5, and exceeded 0.75 in July 2020. In September and October 2020, the risk contribution is 
dominated by Asia. The risk contribution of America and Europe are at high levels in November and December 
2020, when the winter comes. Figure 6 presents the heatmap of git . This risk contribution reflects the severity of 
the COVID-19 pandemic risk from each country and thus is a viable measure for guiding us on the pandemic 

Figure 6.   The heatmap of the risk contribution git based on the severity risk score S2t for the 164 countries from 
February to December 2020.
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control of further transmission of the disease. In early February, the risk contributions of Japan, Philippines, 
Korea, Singapore and Thailand are quite high. The risk contributions are then dominated by Korea, Iran and 
Italy in early March, and followed by United States and Spain in late March. We can see that fit of United States 
appears to be high in late February, earlier than seeing large value in git , probably indicating that there was 
chance for United States to set up stringent control measures in late February before the widespread of the dis-
ease reflected in git afterward. On the contrary, India decided the national lockdown policy on 24 March 202025. 
The lockdown policy may account for the fact that even though its fit showing quite high value in February, its 
risk contribution indicated by git is very low in March and April. The cases of United States and India probably 
indicates the possible use of fit as a measure for setting up timely stringent measures. In April to June, the risk 
contribution git is dominated by Brazil, Peru and United States in America, and Italy, Russia and Spain in Europe. 
India and South Africa’s risk contributions have increased in July and August, respectively. The risk contribution 
of European countries are quite high in December 2020. The severity of the COVID-19 pandemic risk in those 
countries with relatively high git cannot be ignored.

Discussion
To assess the current pandemic status of COVID-19, we simulate networks from the Erdos-Renyi model23. 
Specifically, at each time t, we generate 10,000 networks with edges independent of each other. To maintain the 
same level of network density, two vertices in a simulated network are linked together with the probability Dt . 
The right panel of Fig. 3 displays the time series of the average of the network statistics from the 10,000 simulated 
networks. The outbreak of a disease likely makes the pandemic network to follow some structures which deviate 
from the Erdos-Renyi model. For example, in the COVID-19 pandemic, the common trend in the confirmed 
COVID-19 cases observed between countries i and j and countries j and k may imply a relatively higher chance 
to observe a common trend on the COVID-19 confirmed cases in countries i and k as well (this is the transitivity 
property in social networks). Therefore, by comparing the discrepancy between the time series patterns of Ct 
and ASt between the COVID-19 pandemic networks and the Erdos–Renyi model, we can find hints as to when 
the global COVID-19 pandemic will go away. From Fig. 3, the clustering coefficients of the pandemic networks 
are well above that of the Erdos–Renyi model with the same network density Dt . Although there is sign for 
the assortativity coefficients of the pandemic networks to approach zero, the assortativitiy coefficient of the 
Erdos–Renyi model, in June and July, it goes up again after July 2020 and reaches a local maximum in Novem-
ber 2020. Comparing Dt , Ct and At of the pandemic networks and the same network statistics simulated from 
the Erdos–Renyi model, there is no strong evidence that COVID-19 will go away shortly after December 2020.

The preparedness risk score S1t accounts for the possible interactions between susceptible population of 
countries being linked together in the pandemic networks, and can be used to quantify the risk of transmission 
of the COVID-19 between countries. The possible transmission risk is attributed to substantial percentages of 
asymptomatic transmission or presymptomatic transmission26. Therefore, this S1t score is a kind of ‘stress test-
ing’ measure27 which evaluates the potential transmission risk involved if travel restriction policies are canceled 
or become less strict. From the time series plot of the standardized S1t in Fig. 4, the transmission risk, or S1t , 
increases sharply on 2 March 2020 to 0.08, and 18 March 2020 to 0.36, implying more than 1/3 of all possible 
interaction between susceptible populations of the 164 countries. The first peak on 2 March 2020 (well before 
the WHO’s declaration on 11 March 2020) can be regarded as an early warning signal of the COVID-19 global 
pandemic. The second peak on 18 March 2020 marks the rapid spreading of the disease in March and early April, 
when the number of cases of Italy, Spain, France and other European countries increase substantially3,28,29. After 
reaching the peak on 18 March 2020, the transmission risk went down in April and May, probably because of a 
series of travel restrictions and other lockdown measures which significantly stopped the mobility of suscepti-
ble population between countries to almost completely disappeared. However, S1t didn’t go down further and 
stayed at around 0.05 in April and May, implying that the transmission risk had not been reduced to a level that 
would enable the release of travel restriction measures. Even worse is that the increase in the transmission risk 
is reignited in late June and July and continues to be quite severe till December 2020.

The risk contribution fit in Eq. (8) based on S1t quantifies the relative impact of country i at time t in trans-
mitting COVID-19 through interaction between susceptible populations. The higher the value of fit , the higher 
is the potential impact from country i at time t with respect to the transmission risk. The risk contribution fit 
can be interpreted as a relative transmission risk measure which can be considered by governments to set up 
preventive measures by revisiting their epidemic control policies applied to different regions from time to time. 
For example, we observe that fit of Nigeria and South Africa (of Africa), Brazil, Mexico and United States (of 
America), India and Indonesia (of Asia), Pakistan (of Eastern Mediterranean) and Russia and Spain (of Europe) 
are relatively high in June and July. Governments are recommended to be more alerted when revisiting any 
preventive measure with those countries whose fit ’s are high.

The severity risk score S2t calculates the possible interactions between susceptible populations and the cur-
rently infected population of countries being linked together in the pandemic networks. The score reflects the 
current severity of the COVID-19 outbreak due to the transmission of disease from infected people who may 
have symptoms or due to presymptomatic transmission. The evolution of pandemic risk severity reflected by the 
time series pattern of S2t provides a reference for governments to revisit their current epidemic control measures 
to see if it is necessary to revise or to strengthen the current measures for preventing their medical systems from 
overloading too much or breaking down. In Fig. 4, we observe from S2t the first wave of COVID-19 outbreak in 
early to mid April when there is substantial increase in the confirmed COVID-19 cases in Europe28. There is an 
obvious drop in S2t in late April till mid May, probably due to the lockdown control in European countries30. The 
second wave of the COVID-19 outbreak fell in late May when there were graduate economic reactivation activi-
ties implemented. Another sharp increase in the risk score started in late June and the increasing trend continued 
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in July to December 2020, signifying the third wave of the outbreak. The high value in S2t can give an alerting 
signal to governments about the need to slow down the recovering of social activities or the revival of economy.

Although git refers to the risk contribution due to interactions between infected people and susceptible 
population of countries, high git also implies high risk of ‘domestic transmission’ if people from different regions 
of a country can have physical contact, for example, through school resumption, social, or religious activities. 
Before and during the first wave of COVID-19 outbreak in March and April, we see relatively high git in Fig. 6 in 
France, Germany, Italy, Spain, United Kingdom and United States. After imposing strict countrywise lockdown 
policies, the risk contributions of many European countries, except Russia, went down in May. In terms of git , 
the pandemic risk severity of United States does not significantly lower in May. We also see the transmission 
of the disease to South America where the risk contribution of Peru is quite high in May. In July, the total risk 
contribution in Brazil and United States accounts for around 80% of the overall S2t and we also see substantial 
increase in risk contribution in South Africa. The risk contribution of India is the highest in September and 
October 2020. The git heated up again in the United States and European countries in November and December 
2020. Governments and healthcare specialists may not ignore relatively high git which may indicate the relative 
severity of COVID-19 pandemic risk in countries, especially if those countries are financial, economic or even 
travel hubs in the region.

For tracing the latest COVID-19 pandemic status, we have included the most updated risk scores and risk 
contributions in http://covid​-19-dev.githu​b.io/.

Methods
As presented in Fig. 1, the first step of the proposed pandemic risk assessment system is to construct dynamic 
pandemic networks using publicly available confirmed COVID-19 cases.

Network statistics.  Let Xi,t be the number of confirmed COVID-19 cases of country i in day t. Following 
the literature9,22, we obtain the daily changes for each country as Yi,t =

√
Xi,t −

√
Xi,t−1 . To construct dynamic 

pandemic networks, we calculate ρij,t , the correlation between country i and country j’s daily changes in day t 
using the observations (Yi,t−k ,Yj,t−k) , for k = 0, ..., 13. After that, we construct the pandemic network at time t 
by defining Aij,t , which is the (i, j)th element of an adjacency matrix of the pandemic network at time t:

In other words, an edge/link between country i and country j is formed in the pandemic network at time t if 
ρij,t > r . Since the earliest report of the number of confirmed cases by the WHO in late January 2020, we have 
more countries in giving us the data of Xi,t . To study the statistical properties of the pandemic network from 
February to December 2020, we start from recording the number of countries having confirmed cases records 
at time t, denoted by Vt , which is less than or equal to 164 (country names listed in Figs. 5 and 6). Statistically, 
Vt is the number of vertices of the pandemic network at time t. When a country has zero Yi,s in 14 consecutive 
days ( s = t − 13, . . . , t ), it will be excluded from Vt . Figure 2 shows the pandemic networks at t = 1 (4 February 
2020), t = 36 (11 March 2020) and t = 67 (11 April 2020), from which we observe increasing level of connected-
ness in the pandemic networks from early February to early April22. To quantify the network connectedness and 
to summarize other network properties, we consider four network statistics at time t, Et (the number of edges), 
Dt (the edge density), Ct (global clustering coefficient), and ASt (assortativity). Since we define the edge of the 
pandemic network by the event that the correlation ρij,t exceeds the threshold r, the number of edges, Et , gives the 
number of pairs of countries showing a ‘common trend’ in terms of the confirmed COVID-19 cases in the past 14 
days, including time t. In this paper, we follow the literature9 to set r = 0.5 . The network density, Dt , defined by

is to understand how dense the pandemic network is at time t. The literature9 presents visual evidence on using 
Et to give an early warning signal of the COVID-19 pandemic.

To capture how strong vertices tend to be linked together, we calculate a clustering coefficient of the pandemic 
network at time t. For vertex i, define its local clustering coefficient at time t as

where eit is the number of connected pairs among the neighbors of vertex i at time t, and kit is the number of 
neighbors (or degree) of vertex i at time t. The numerator in Eq. (3), eit , also counts the number of triangles 
formed by vertex i in the pandemic network at time t, and 

(kit
2

)

 is the number of connected triples (a subgraph of 
three vertices connected by two edges) at time t connecting vertex i. The cit measures the tendency for vertex i 
to form triangles with its neighbors. The clustering coefficient, denoted by Ct , is a weighted average:

The clustering coefficient Ct measures how strong vertices/countries in the pandemic network at time t are 
bounded together in clusters. In the extreme case where Ct = 1, all pairs vertices/countries are connected by 

(1)Aij,t =
{

1 if ρij,t > r,
0 otherwise .

(2)Dt =
2Et

Vt(Vt − 1)
,

(3)cit =
eit
(kit
2

)
,

(4)Ct =
∑Vt

i=1

(kit
2

)

cit
∑Vt

i=1

(kit
2

)
.
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edges in the pandemic network at time t. In other words, the higher the Ct , the stronger the evidence of global 
pandemic is revealed in the pandemic network.

In addition to the network density and the clustering, we also consider the assortativity of networks31, which 
is used to describe assortative mixing properties in networks. Specifically, we evaluate the tendency for countries 
with similar degrees to link together in the pandemic networks. The degree of country i is defined as the num-
ber of countries connecting that country at time t and is given by kit . Using the network terminology, kit is the 
number of edges incident to vertex/country i. In epidemiological perspectives, the risk of individuals’ infection 
may be related to the assortativity (high degree vertices tend to link with other vertices with high degrees) in 
social networks24. In this paper, we apply this assortative mixing concept to the pandemic networks constructed 
to understand how the assortative mixing properties change over time during the COVID-19 pandemic. Sta-
tistically speaking, we calculate an assortativity coefficient which measures the correlation of the degress of the 
vertices in the pandemic networks. At time t, the assortativity coefficient is defined by Eq. (5) where I(E) is an 
indicator function whose value is equal to one if the event E is true and zero otherwise. We attempt to learn any 
insight from this assortativity coefficient on possible early warning signals of a global pandemic like COVID-19.

Pandemic risk scores.  In this paper, we propose two pandemic risk scores defined by the dynamic pan-
demic networks represented by Aij,t in Eq. (1), the adjacency matrix at time t. Specifically, we aggregate the link 
information in Aij,t , susceptible population sizes (or population at risk) of each country, and the number of con-
firmed cases, Xi,t , to construct two scores which help us to assess the potential transmission risk across countries, 
and the severity of the global pandemic risk due to COVID-19. Define the first risk score as the preparedness 
risk score (PRS)

where ωt is the vector of population size of each country (based on the World Bank population figures in 
2018) subtracted by the total number of confirmed cases in each country up to time t. In other words, the 
ith element of ωt , denoted by ωit , represents the population of country i at risk or susceptible at time t. Since 
S1t =

∑Vt
i=1

∑Vt
j=1 ωitAij,tωjt , S1t in Eq. (6) counts the total number of possible interactions of susceptible popula-

tion contributed from all pairs of countries which are linked together at time t. This PRS accounts for the risk of 
asymptomatic transmission or presymptomatic transmission32 due to possible interaction between people in the 
two countries. These two kinds of transmission are usually hidden in the population and is useful to quantify the 
pandemic risk especially when the transmission between two countries cannot be completely stopped by travel 
restrictions or other infection prevention policies. Therefore, the risk score, S1t , can help us to project the sever-
ity of the COVID-19 outbreak for preparedness if existing travel restrictions or lockdown schemes are released.

We define the second risk score as the severity risk score (SRS)

where nt is the vector of the total number of currently infected people at time t. In other words, the ith element 
of nt , denoted by nit is calculated as nit =

∑t
s=1 Xi,s − ARi,t − ADi,t , where ARi,t and ADi,t are the accumulated 

number of recovered cases and accumulated number of deaths due to COVID-19 in country i at time t. It is easy 
to see that S2t =

∑Vt
i=1

∑Vt
j=1 ωitAij,tnjt . The rationale behind S2t is to count the number of possible interactions 

between currently infected cases of one country and all people at risk in another country, if the two countries 
are linked together. The product of ωitnjt is similar to the classical SIR model7, where the number of susceptible 
people at time t multiplied with the number of infected people at time t is used to determine the rate of change 
of the number of susceptible people. This SRS accounts for presymptomatic transmission due to possible inter-
action between susceptible population in one country and currently infected cases in another country before 
the confirmed cases are identified and forced-isolated or quarantined. The SRS, S2t , can help assess the severity 
of the COVID-19 due to the current level of infections and plan for outbreak control measures. We present this 
step in computing the PRS and SRS in the work flow diagram in Fig. 1.

As in the literature33, we can define the risk contribution by country i on the PRS as

where 1i is a column vector with the i-th entry equal to 1 and 0 otherwise. Using the Euler rule, we can show 
that 

∑

i fit = 1 . From Eq. (8), fit is approximately equal to the ratio of the percentage change in 
√
S1t  over the 

percentage change in ωit . If a particular country i has high fit , reducing the mobility of the people (at risk) in 
that country may lead to substantial reduction in S1t , thereby lowering the global pandemic risk. Similarly, we 
can define the risk contribution by country i on the SRS as

(5)ASt =
V−1
t

∑Vt
i=1

∑Vt
j=1 kitkjt I(Aij,t = 1)−

[

V−1
t

∑Vt
i=1

∑Vt
j=1

1
2
(kit + kjt)I(Aij,t = 1)

]2

V−1
t

∑Vt
i=1

∑Vt
j=1

1
2
(k2it + k2jt)I(Aij,t = 1)−

[

V−1
t

∑Vt
i=1

∑Vt
j=1

1
2
(kit + kjt)I(Aij,t = 1)

]2
,

(6)S1t = ω⊤
t Atωt ,

(7)S2t = ω⊤
t Atnt ,

(8)fit =
ωit

∂
√
S1t

∂ωit√
S1t

=
ω⊤
t At1i1

⊤
i ωt

ω⊤
t Atωt

,

(9)
nit

∂S2t
∂nit

S2t
≈

nit
∑Vt

j=1 ωjAjl

S2t
= git .
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Again, we can show that 
∑

i git = 1 . Equation (9) implies that git is approximately equal to the ratio of the 
percentage change in S2t over the percentage change in nit . If a particular country i has high git , quarantining 
currently infected cases and enhancing social distancing measures as best as we can help ‘block’ the interaction 
of infected people with people at risk, and may lead to substantial reduction in S2t , thereby achieving better 
control on the global pandemic. In summary, for outbreak prediction or prevention, S1t is recommended for 
policymakers to make reference to. For outbreak control, S2t is more meaningful.

The risk contributions fit and git with respect to the PRS and SRS can be computed on the global, regional, 
and country levels (see Fig. 1). For active pandemic risk monitoring, the most updated PRS, SRS, fit , and git can 
be accessed in http://covid​-19-dev.githu​b.io/.

Sensitivity analysis
The construction of the dynamic pandemic network in Eq. (1) requires the specification of the threshold value r. 
To perform sensitivity analysis on the choice of r, we study the pandemic network properties for r = 0.4, 0.5 and 
0.6. Figure 7 shows the PRS, SRS, network density, clustering coefficient and assortativity based on the pandemic 
networks constructed using r = 0.4, 0.5 and 0.6. When r is smaller, we expect to see more connections and so the 
three network density time series in Fig. 7 differ with the highest one appears at r = 0.4 . Although the three net-
work time series have different levels, they exhibit very similar trends. In addition, both the clustering coefficient 
and assortativity are insensitive to the choice of r, implying that major network properties regarding pandemic 
network connectedness are not sensitive to the choice of the threshold r if it falls in 0.4 to 0.6. A reviewer sug-
gests that the adjacency matrix can be weighted to reflect the different level of connection between countries. 
Based on this suggestion, we also compare the PRS and SRS with the adjacency matrix defined by Aij,t = ρij,t if 
ρij,t > 0 and Aij,t = 0 otherwise. We can see from Fig. 7 that all four PRS and SRS show similar temporal pat-
terns, indicating that the At defined by different r and the At defined by the weight ρij,t give consistent pandemic 
risk assessment based on the PRS and SRS. The above sensitivity analysis demonstrates the robustness of our 
proposed pandemic network methodology, which enables users to pick their own thresholds without changing 
major conclusions for pandemic risk prediction and assessment of COVID-19.

There is also a comment that the SRS is better calculated with the use of the number of local COVID-19 cases 
rather than the total confirmed cases. This is a good point. However, most countries do not provide local case 
information. Since the percentage of imported cases is relatively small after extensive travel restrictions after 
March 202034, the imported cases should contribute very little in the susceptible population and so the general 
trend of the SRS will likely be the same even though we replace the number of confirmed cases by the number of 
the local cases. Therefore, we keep the definition of the SRS in Eq. (7) in our application to the COVID-19 pan-
demic. Another related issue in the calculation of the SRS is the availability of the number of recovered cases. As 
WHO only contains official information of the number of COVID-19 confirmed cases and the number of death 

Figure 7.   The left panel shows the PRS and SRS, and the right panel shows the network density, clustering 
coefficient and assortativity for r = 0.4, 0.5 and 0.6.

http://covid-19-dev.github.io/
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due to COVID-19, the number of recovered cases can be missing or under-reported in some countries35–37. To 
deal with incomplete recovered case information, we perform additional analysis to extract possible tendency of 
the world COVID-19 recovery rate over time. We first set a threshold rR which classifies whether the number of 
recovered cases is under-reported or missing. Define R(R)

i,t  as the reported recovery rate of country i at time t, i.e. 
the total reported number of recovered cases up to time t divided by the total number of confirmed cases up to 
time t. We estimate the world recovery rate by filtering out those countries which have R(R)

i,t < rR , and calculate

where AR(R)
i,t  is the accumulated number of recovered cases of country i reported up time t. Therefore, Rw,t is 

an estimated world recovery rate at time t based on those countries whose recovery rate at time t exceeds rR . 
Figure 8 presents the estimated world recovery rate based on Eq. (10) with rR = 0.5 to 0.8. The four plots in the 
figure show an increasing trend in the recovery rate from May 2020 to December 2020. In mid December 2020, 
the four estimated recovery rates based on different rR are consistent that they seem to converge to around 0.9, 
which is in line with some published recovery rates38–40.

For countries whose R(R)
i,t < rR , we regard their number of recovered cases either under-reported or miss-

ing. Then, we do imputation for the countries with R(R)
i,t < rR by taking ARi,t = Rw,t ×

∑t
s=1 Xi,s . That is, we 

substitute the under-reported or missing recovery rates at time t by Rw,t . For countries whose R(R)
i,t ≥ rR , we take 

ARi,t = AR
(R)
i,t  , that is, we regard the accumulated number of recovered cases reported as official valid values to 

be adopted in the SRS calculation. The bottom panel of Fig. 8 gives the SRS based on the four rR . Again, the four 
SRS time series pick up a similar trend that we are able to identify local peaks in early October, late October, 
late November and mid December 2020. We adopt rR = 0.7 in Figs. 4 and 6 as the time series of Rw,t is relatively 
more stable when rR = 0.7 . Given that the SRS is to capture the relative severity of the pandemic risk for now-
casting the COVID-19 pandemic, the robustness in SRS to the choice of rR gives us flexibility in adjusting rR in 
real applications.

Data availibility
The authors confirm that the real data sets used in this study are freely available to public at the time of writing 
by accessing https​://githu​b.com/CSSEG​ISand​Data/COVID​-19 and https​://www.who.int/emerg​encie​s/disea​ses/
novel​-coron​aviru​s-2019/situa​tion-repor​ts (accessed on 31 December 2020).

Code availability
All data and codes are available in the Zenodo webpage: http://doi.org/10.5281/zenod​o.44087​4641.

(10)Rw,t =

∑

i:R(R)i,t ≥rR
AR

(R)
i,t

∑

i:R(R)i,t ≥rR

∑t
s=1 Xi,s

,

Figure 8.   The top panel shows the estimated world recovery rate based on rR = 0.5 to 0.8. The bottom panel 
shows the SRS based on the imputed number of recovered cases with rR = 0.5 to 0.8.

https://github.com/CSSEGISandData/COVID-19
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
http://doi.org/10.5281/zenodo.4408746
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