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Background: Simple Sequence Repeats (SSRs) are short tandem repeats of nucleotide

sequences. It has been shown that SSRs are associated with human diseases and

are of medical relevance. Accordingly, a variety of computational methods have been

proposed to mine SSRs from genomes. Conventional methods rely on a high-quality

complete genome to identify SSRs. However, the sequenced genome often misses

several highly repetitive regions. Moreover, many non-model species have no entire

genomes. With the recent advances of next-generation sequencing (NGS) techniques,

large-scale sequence reads for any species can be rapidly generated using NGS. In this

context, a number of methods have been proposed to identify thousands of SSR loci

within large amounts of reads for non-model species. While the most commonly used

NGS platforms (e.g., Illumina platform) on the market generally provide short paired-end

reads, merging overlapping paired-end reads has become a common way prior to the

identification of SSR loci. This has posed a big data analysis challenge for traditional

stand-alone tools to merge short read pairs and identify SSRs from large-scale data.

Results: In this study, we present a new Hadoop-based software program, termed

BigFiRSt, to address this problem using cutting-edge big data technology. BigFiRSt

consists of two major modules, BigFLASH and BigPERF, implemented based on

two state-of-the-art stand-alone tools, FLASH and PERF, respectively. BigFLASH and

BigPERF address the problem of merging short read pairs and mining SSRs in the

big data manner, respectively. Comprehensive benchmarking experiments show that

BigFiRSt can dramatically reduce the execution times of fast read pairs merging and

SSRs mining from very large-scale DNA sequence data.

Conclusions: The excellent performance of BigFiRSt mainly resorts to the Big Data

Hadoop technology to merge read pairs and mine SSRs in parallel and distributed

computing on clusters. We anticipate BigFiRSt will be a valuable tool in the coming

biological Big Data era.
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INTRODUCTION

Simple Sequence Repeats (SSRs), also known as short tandem
repeats (STRs) or microsatellites (Fan and Chu, 2007; Madesis
et al., 2013), are highly mutable nucleotide sequences (Vargas
Jentzsch et al., 2013). Previous studies have shown that copy
number alterations in tandem repeat DNA are associated with
at least 31 different human diseases (Mitsuhashi et al., 2019).
As a particular type of tandem repeats, SSRs are also related to
many diseases such as colon cancer (Velasco et al., 2019) and
humans’ neurodegenerative disease (Cao et al., 2014), human
triplet-repeat expansion diseases (Caskey et al., 1992; Mitas,
1997). Furthermore, as one of the most popular molecular
markers (Guang et al., 2019), SSRs have been widely applied in
numerous scientific researches including ecological investigation
(Selkoe and Toonen, 2010), human population (Willems et al.,
2014), genome evolution (Cavagnaro et al., 2010), plant genetics
(Zalapa et al., 2012) and forensic analysis (de Knijff, 2018), and
have several biomedical applications (Girgis and Sheetlin, 2013).
Notably, repeats in the genome are species-specific (Girgis, 2015),
SSRs are likely to be unknown for new genomes. Therefore, SSRs
identification in new genomes is fundamentally important for
understanding microsatellite evolution mechanisms (Ellegren,
2004).

Conventional experimental methods for SSR identification,
such as labeled probes, are often labor-intensive and -
expensive (Fernandez-Silva and Toonen, 2013). Computational
SSR identification methods provide a valuable and alternative
strategy for large-scale experimental design efficiently. Given
the importance and value of computational methods for SSR
identification, there has been encouraging progress in the
development of computational methods and tools for SSR
identification. Lim et al. (2013) provided a review of these
methods developed before 2013. Various methods/tools have
been developed in recent years. These tools are broadly classified
into four categories: (i) graphical interface-based methods
including GMATo (Wang et al., 2013) and GMATA (Wang
and Wang, 2016), (ii) web interface-based methods including
ProGeRF (Lopes et al., 2015), QDD (Meglécz et al., 2014), MISA-
web (Beier et al., 2017), (iii) database-based methods including
SSRome (Mokhtar and Atia, 2018) and MSDB (Avvaru et al.,
2017a), and (iv) stand-alone-based methods including SA-SSR
(Pickett et al., 2016), Kmer-SSR (Pickett et al., 2017), PERF
(Avvaru et al., 2017b), Dot2dot (Genovese et al., 2019) and
Look4TRs (Velasco et al., 2019). Most existing methods are
generally designed to identify SSRs for species with the entire
genome sequence available. These methods rely heavily on a
high-quality assembled genome (Guo et al., 2018). However,
many non-model species have no entire genomes. Fortunately,
new NGS technologies can produce large numbers of genomics
data for any species, and this has made it possible to identify SSRs
from the newly assembled genome (Andersen and Mills, 2014).

Abbreviations: SSRs, Simple Sequence Repeats; NGS, next-generation sequencing;

STRs, short tandem repeats; BigFiRSt, Big data-based Flash and peRf algorithm

for mining Ssrs; HDFS, Hadoop Distributed File System; YARN, Yet Another

Resource Negotiator.

However, it is the biggest challenge to assemble a genome using
short reads (Magoc and Salzberg, 2011). Moreover, it presents a
significant obstacle to aligning reads within the repeat regions
to the reference genome (Nashta-ali et al., 2017). As a result,
the assembled genome often misses highly repetitive regions
(Chu et al., 2016); even good-quality human reference genomes
often contain missing bases in repeat regions (Chu et al., 2016).
Thus, it is difficult to assemble a high-quality genome (Gnerre
et al., 2011; Pickett et al., 2016). In scenarios where the target
patterns are very sparse in the genomes, such as clustered repeats
like CRISPR region, it is basically wasteful to find the repetitive
sequences by assembling all sequencing reads into the genomes
(Chen et al., 2019). To address this, in recent years various
methods (Castoe et al., 2012; Gymrek et al., 2012; Miller et al.,
2013; Fungtammasan et al., 2015; Tang and Nzabarushimana,
2017) have been proposed to identify SSRs from raw sequence
data generated by NGS. After identifying SSRs in reads, the non-
repetitive flanking sequence of SSR-containing reads can be used
to map to the reference for increasing the alignment specificity
(Gymrek et al., 2012). Furthermore, analyses of SSRs based on
NGS have been used in a range of applications, including forensic
analysis (Van Neste et al., 2014; Børsting and Morling, 2015;
Parson et al., 2016; van der Gaag et al., 2016; Hoogenboom et al.,
2017; de Knijff, 2018; Ganschow et al., 2018), SSRs genotyping
(Bornman et al., 2012; Kistler et al., 2017; Budiš et al., 2018),
stutter analysis (Vilsen et al., 2018), population genetic (Wirtz
et al., 2016) and SSR Markers in Plants (Taheri et al., 2018).

Generally, a typical SSR locus is represented in the repeat
modules surrounded by both flanking regions (Budiš et al., 2018).
An example of SSR allele is “ACGATGATCGATAGATAGA
TAGATAGATAGATAGATAGATAGTCAGAGCACC”, which
means that the sequences “ACGATGATC” and “GTCAGAGC
ACC” represent the upstream and downstream region around
the motif GATA with eight repeats, respectively. Certain NGS
technologies such as Roche 454 could provide reads that fully
contain SSRs along with suitable flanking sequences (Perry
and Rowe, 2011). In recent years, emerging NGS technologies
such as PacBio and Nanopore can produce long reads (Mardis,
2017). However, the most commonly used NGS platforms (e.g.,
Illumina) on the market often provide short paired-end reads
(Escalona et al., 2016; Wang, 2016). In most cases, short reads
do not contain full SSR allele regions (Budiš et al., 2018). Thus,
constructing longer reads by merging paired-end reads has been
used as a common strategy prior to identifying SSR motifs (van
der Gaag et al., 2016; Hoogenboom et al., 2017; Ganschow et al.,
2018). Several paired-end read merging algorithms have been
proposed in recent years, which include FLASH (Magoc and
Salzberg, 2011), leeHom (Renaud et al., 2014), PEAR (Zhang
et al., 2013), BBMerge (Bushnell et al., 2017) and Konnector
(Vandervalk et al., 2014), OverlapPER (Oliveira et al., 2018),
Cope (Liu et al., 2012), and XORRO (Dickson and Gloor, 2013).
There also exist approaches and tools such as SSRs-pipeline
(Miller et al., 2013) and RAD-seq-Assembly-Microsatellite (Xue
et al., 2017), which integrate paired-end reads merging and SSRs
mining into a single pipeline.

These computational methods and tools have been used for
merging paired-end reads and identifying novel SSRs. Other
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analysis tools such as iLearn (Chen et al., 2020, 2021), BioSeq-
Analysis (Liu, 2019; Liu et al., 2019) and BioSeq-BLM (Li et al.,
2021) were recently developed to handle with the avalanche of
biological sequences. However, with the continued development
of NGS technologies, there is a strong need to develop new
paired-end read merging and SSRs mining methods that better
meet the “Big Data” analysis (Wordsworth et al., 2018). As
NGS technology can often generate hundreds of gigabytes (GB)
sequence data in compressed FASTQ format in every single run
(Wang, 2016), it is becoming more and more difficult and time-
consuming to use these stand-alone methods and tools to merge
paired-end reads and identify SSR loci from such large-scale
datasets. To the best of our knowledge, there are currently no
methods and tools to date that are developed based on Big Data
techniques for merging paired-end reads and mining SSRs. Thus,
it would be highly desirable and valuable to significantly enhance
the performance of paired-end reads merging and SSRs mining
tools by combining the cutting-edge Big Data techniques. In this
way, the computational SSRs mining approaches could keep up
with the pace of data explosion and efficiently deal with the
growth of such large-scale data.

Traditional parallel computing technique based on message
passing interface (Gropp et al., 1999) is more effective for
moderately sized data and computational-intensive problem
(Kang et al., 2015). It is not the best choice to deal with the
vast amount of data (Samadi et al., 2018). Hadoop (White, 2009)
and Spark (Zaharia et al., 2010) have become two standard
big data technologies to handle huge the size of data (Samadi
et al., 2018). They have been widely used in the bioinformatics
area to deal with the rapid growth and accumulation of
biomedical Big Data. Table 1 summarizes the bioinformatics
tools developed based on Big Data technologies for handling
large-scale sequence data. These methods are involved in many
different tasks, including alignment and mapping, sequence
analysis, genome analysis, sequence assembly, error correction,
duplicate DNA reads and clustering analysis. However, there
is no bioinformatics method based on Big Data techniques
for merging paired-end reads and mining SSRs from large-
scale NGS sequence data, highlighting the critical needs and
value of developing and deploying such strategies to bridge the
knowledge gap.

Both Hadoop and Spark can deal with the above problems.
Generally, Spark has better performances for iterative algorithms
than Hadoop (Samadi et al., 2018). However, Spark is in-memory
computing, and it becomes slower than Hadoop when the cluster
has not enough memory. Thus, Hadoop is a better choice for
the system without sufficient memory (Samadi et al., 2018).
For merging paired-end reads and mining SSRs, we do not
need to perform operations over the same data recursively and
only need to choose Hadoop to address these two problems. In
this work, we propose BigFiRSt (Big data-based Flash and peRf
algorithm for mining Ssrs), a novel Hadoop-based program suite
and is specifically designed to integrate paired-end reads merging
and SSRs search into an effective computational pipeline. There
are two fundamental modules in BigFiRSt: BigFLASH and
BigPERF. They represent two implementations of the well-
known stand-alone algorithms FLASH (Magoc and Salzberg,

2011) and PERF (Avvaru et al., 2017b) based on Hadoop
techniques. Due to the advantages of the Hadoop big data
technology, BigFLASH and BigPERF have significantly improved
the computational efficiency compared with the baseline FLASH
and PERF, respectively. Moreover, BigFiRSt allows users to apply
BigFLASH and BigPERF separately and provides a pipeline
functionality to enable users to run them consecutively. It allows
the program to take short read pairs as the input and return the
mined SSRs. These outputs can be used for genotyping analysis
and other custom analyses (Budiš et al., 2018) to better suit users’
specific needs.

Intuitively, it is more convenient for biologists to process and
analyse large-scale sequences by a user-friendly web interface.
However, in practice, it remains a challenging problem for users
to upload large scale datasets from their local machines to the
online web interface (Zou et al., 2014). To facilitate users to
merge read pairs and subsequently identify SSRs in relatively
small datasets, we provide a publicly available web interface of
BigFiRSt, which is available at http://bigdata.biocie.cn/BigFiRSt/.
There is no other such web interface integrating these two
processes currently available in the research community to the
best of our knowledge. On the other hand, for handling massive
datasets and facilitating the data process using local computers,
we also provide the source codes of BigFiRSt for download
https://github.com/JinxiangChenHome/BigFiRSt such that users
can configure and execute the BigFiRSt program on a cluster
supported by the Hadoop.

DESIGN AND IMPLEMENTATION

Apache Hadoop
BigFiRSt was developed based on the Big Data Hadoop
technology (White, 2009). Hadoop has been regarded as a
milestone of big data processing (Petrillo et al., 2019). It
is an open-source framework that can be installed on a
Linux cluster for distributed processing of large-scale data sets
using the MapReduce model (Dean and Ghemawat, 2008).
MapReduce is a computation mode that allows users to specify
a map and a reduce operation for parallelising the extensive
computation. Generally, a Hadoop MapReduce job requires
three core modules, namely, Hadoop Distributed File System
(HDFS) (Shvachko et al., 2010), Hadoop MapReduce and Yet
Another Resource Negotiator (YARN) (Vavilapalli et al., 2013).
The input large-scale data sets are split into independent blocks
and stored in HDFS across all Hadoop cluster computing
nodes. Independent data blocks are processed by map tasks
in a completely parallel manner. Reduce tasks fetch the
corresponding partitioned data from the output of map tasks.
YARN is responsible for resource management of the cluster and
job scheduling/monitoring. Altogether, HDFS and YARN are able
to provide the fault tolerance and data locality of Hadoop clusters
(Taylor, 2010; Alnasir and Shanahan, 2018).

Overview of the BigFiRSt Methodology
The overall framework of the BigFiRSt methodology is illustrated
in Figure 1. BigFiRSt contains two modules: BigFLASH
(Figure 1A) and BigPERF (Figure 1B). BigFLASH is used
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TABLE 1 | Bioinformatics tools developed based on Big Data technologies for handling large-scale sequence datasets.

Big Data technologies Tool Year Function Software

availability

Web server

availability

Hadoop BigBWA (Abuín et al., 2015) 2015 Alignment Yes No

Spark SparkBWA (Abuín et al., 2016) 2016 Yes No

Spark SparkSW (Zhao et al., 2015) 2015 Yes No

Hadoop Hadoop-BAM (Niemenmaa et al., 2012) 2012 Yes No

Spark DSA (Bo et al., 2017b) 2017 Yes No

Spark CloudSW (Bo et al., 2017a) 2017 Yes No

Spark SparkBLAST (Castro et al., 2017) 2017 Yes No

Hadoop Cloudblast (Matsunaga et al., 2009) 2008 Yes No

Hadoop HAlign (Zou et al., 2015) 2015 Yes No

Hadoop HSRA (Expósito et al., 2018) 2018 Yes No

Spark PASTASpark (Abuín et al., 2017) 2017 Yes No

Hadoop CloudAligner (Nguyen et al., 2011) 2011 Yes Yes

Hadoop CloudBurst (Schatz, 2009) 2009 Yes No

Hadoop BioPig (Nordberg et al., 2013) 2013 Sequence analysis Yes No

Hadoop Halvade (Decap et al., 2015) 2015 Yes No

Hadoop Halvade-RNA (Decap et al., 2017) 2017 Yes No

Spark HiGene (Deng et al., 2016) 2016 Genome analysis No No

Spark GATK-Spark (Li et al., 2017) 2016 No No

Spark SparkSeq (Wiewiórka et al., 2014) 2014 Yes No

Hadoop GATK (Mckenna et al., 2010) 2010 Yes No

Spark MEC (Zhao et al., 2017) 2017 Error correction Yes No

Hadoop MarDRe (Expósito et al., 2017) 2017 Removal of duplicate DNA reads Yes No

Spark MetaSpark(Zhou et al., 2017) 2017 Metagenomic read recruitment Yes No

Spark Spaler (Abu-Doleh and Catalyurek, 2015) 2015 De novo genome assembly No No

Hadoop &Spark SA-BR-MR and SA-BR-Spark (Dong et al., 2017) 2017 Sequence assembly No No

Hadoop &Spark Falco (Yang et al., 2016) 2017 RNA-seq processing Yes No

Spark SpaRC (Shi et al., 2018) 2019 Clustering analysis Yes No

Hadoop &Spark GMQL (Masseroli et al., 2018) 2019 NGS tertiary data analysis Yes Yes

Hadoop SeqPig (Schumacher et al., 2014) 2014 Sequence processing Yes No

to merge short read pairs and output long consensus reads,
while BigPERF extracts SSRs from large-scale reads. These
modules can be further integrated into a pipeline that takes
the output of BigFLASH as the input to BigPERF. The red line
in Figure 1 highlights the pipeline that connects BigFLASH
with BigPERF.

BigFiRSt
The Hadoop MapReduce module provides the Mapper interface
with the Map method and the Reducer interface with the
reduce method, respectively. A Hadoop application generally
implements these two interfaces to create the map and reduce
tasks. The number of map tasks depends on the number of
InputSplits, which is a logical split of input files. InputSplits are
created from data blocks, which exist physically on disk across
Datanodes of clusters. In BigFiRSt, the size of InputSplit is the
same as the block size, by default. The Hadoop MapReduce
framework creates one map task to process each InputSplit in a
completely parallel manner. Each InputSplit is generated by the
InputFormat. In the Hadoop framework, FileInputFormat is the
base class of all file-based InputFormat. The default InputFormat

is TextInputFormat (a subclass of FileInputFormat), which
breaks file into lines. The text of each line as value is processed
by the map task. For BigFiRSt, the input data with the FASTQ
format denotes a read for every four lines. The first line is
the sequence title/identifier, which starts with a character “@.”
The second line represents the nucleotide sequence of this read.
The nucleotides in the sequence are usually presented in the
upper case. The third line starts with “+” and contains a full
repeat of the title line (the first line). The fourth line denotes
the quality string of the sequence. Its length was equal to
the sequence string (the second line). Hadoop cannot directly
handle sequences with FASTQ format. We used a subclass of
FileInputFormat written in (Ferraro Petrillo et al., 2017) to
convert each InputSplit to a format that Hadoop can handle.

BigFLASH
BigFLASH implements the FLASH (Magoc and Salzberg, 2011)
algorithm based on the Hadoop technology. FLASH has been
extensively used for pre-processing large-scale NGS sequence
data and facilitating the downstream analysis. Generally, it works
by first merging read pairs into a consensus read preceding the
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FIGURE 1 | The overall framework of the BigFiRSt methodology. BigFiRSt contains two modules. (A) BigFLASH is used to merge short read pairs. (B) BigPERF is

used to mine SSRs contained in reads.

analysis of SSR profiles based on NGS (van der Gaag et al., 2016;
Hoogenboom et al., 2017; Ganschow et al., 2018). If cases where
read pairs end within an SSR sequence, then the SSR sequence
can be truncated after the read pairs are merged by FLASH.
Accordingly, we used a Modified Version (1.2.11) of FLASH
(2015) to implement BigFLASH.

The original FLASH algorithmwas written in C programming
language. However, Hadoop was programmed using the Java
language and as such, it provides many useful Java APIs for
Hadoop based application development. In general, Hadoop-
based applications are implemented in Java in order to enable
better interactions with Hadoop. Therefore, in BigFLASH, we
used the Java Native Interface (JNI) (Liang, 1999) to integrate
Java programming codes with the FLASH C code and effectively
enable such interactions. This renders rewriting the source codes
of FLASH unnecessary and ensures that no further modification
of the original algorithm is required. We only used the FLASH
source codes to build an additional shared library file named
“libflash.so.” BigFLASH is able to parse the input parameters
and then pass them on to the main method of FLASH by
loading “libflash.so.”

The BigFLASH process comprises of three major steps,
which are illustrated in Figure 1A. The detailed workflow of
BigFLASH is shown in Figure 2A. As can be seen, the first
step is data pre-processing. The read pairs are stored in two
separate FASTQ files. Considering that there is no API available

in Hadoop for handling read pairs storing in two separate
FASTQ files, we compiled a Python script (downloadable from
the BigFiRSt web site) that can conveniently convert the two
input FASTQ files into one single FASTQ file. The pseudo-code
of the Python script is provided in the Supplementary Material.
At the second step, the pre-processed data is uploaded to the
HDFS, where large-scale data files are divided into fixed-size
blocks. The third step is theMapReduce phase. BigFLASH applies
the FASTAInputFileFormat/FASTQInputFileFormat function of
FASTdoop (Ferraro Petrillo et al., 2017) to convert each data
block to the Hadoop-acceptable format. Each block is processed
by a Mapper. Each Mapper calls FLASH to merge the read
pairs located in processed blocks, and all Mappers are executed
in parallel. Lastly, the Reduce phase generates files of the
merged reads by collecting the output of each Mapper. The key
feature of BigFLASH is its Mappers, whose detailed procedures
of implementation are described as follows: First, BigFLASH
overrides the “setup” method from parent Class Mapper to
parse the input parameters. The “setup” method will be invoked
automatically, to initialize input parameters required by FLASH.
Second, the “map” method from parent Class Mapper is
overridden, to parse each InputSplits into two FASTQ files, which
will be handled by FLASH. And finally, BigFLASH overrides
the method “cleanup,” which passes the input parameters
to the main method of FLASH by calling the declared
native method.
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FIGURE 2 | The detailed workflow of (A) BigFLASH and (B) BigPERF.

BigPERF
As aforementioned, the original PERF program was written in
Python (Avvaru et al., 2017b) and in this study, we rewrote
it in Java to develop and implement BigPERF. The overall
framework of BigPERF is shown in Figure 1B. The detailed
workflow of BigFLASH is shown in Figure 2B. There exist
three steps involved in the development of BigPERF. The first
step is to upload the user input files in the FASTA/FASTQ
format to HDFS. Similar to the second step in BigFLASH,
the input data files are divided into fixed-size blocks and
the FASTAInputFileFormat/FASTQInputFileFormat function is
used to convert each block to a Hadoop-acceptable format.
BigPERF first overrides the “setup” method from the parent Class
Mapper to parse the input parameters and build a repeat set,
which is then used for lookup during repeat identification. Then,
the map method from the parent Class Mapper is overridden to
mine all SSRs by extending the substrings appearing in the repeat
set in a completely parallel manner. At this phase, each mapper
generates a result file. The third step is the Reduce phase, where

BigPERF collects the results from the map phase to generate the
final results.

Reduce Operation
In the Reduce phase, BigFLASH and BigPERF only collect
results from the output result files generated by each mapper.
A complete Reduce task contains three primary phases: shuffle,
sort and reduce. The Hadoop framework sorts the outputs of the
mappers by keys simultaneously, and the shuffle phase fetches
the relevant partitioned output of all mappers. Finally, the reduce
phase calls the reduce method for each <key, (list of values)>
pair in the grouped inputs.

Users can use the method “setNumReduceTasks” to set the
number of reduce-tasks. A combined result output would be
generated when the number of Reducers is set 1.The number
of the result files depends on the predefined reducer number.
Users are allowed to set the number of reduce-tasks to zero if no
reduction is desirable. If the number of reduce-tasks is set to zero,
the output of all the mappers is the result.
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In BigFLASH and BigPERF, users have the option to select
to use the “reduce” phase. In cases where such option is
selected, according to the Hadoop MapReduce tutorial, the right
number for “reduces” seems to be 0.95 or 1.75 multiplied by
(<no. of nodes> ∗

<no. of maximum containers per node>).
The detailed information refers to the Hadoop tutorial on the
official website.

Web Server
We have implemented and deployed an online web server of
BigFiRSt in order to facilitate users to merge read pairs and/or
mine SSRs in small-scale datasets (up to 30MB). The web
server of BigFiRSt is freely accessible at http://bigdata.biocie.cn/
BigFiRSt/. The two algorithms FLASH and PERF, as well as the
computational pipeline have also been made available at this
web server.

The BigFiRSt web server is managed by Tomcat 7 and hosted
on a Linux server, equipped with a 1-core CPU, 40 GB hard disk
and 2 GB memory. Using the web server, users can upload files,
select desired parameters and obtain the result files.

FLASH
Users can merge paired-end reads by the FLASH algorithm via
the web interface of BigFiRSt. This module works as follows:
First, users need to upload both FASTQ format data files that
respectively store the forward and reverse reads. Alternatively,
users can also input the sequences in the FASTQ format in the
text area. Second, users can update default parameter values of
the FLASH algorithm using the web interface. Thirdly, users
click to submit the job. Alternatively, users can also provide
their email addresses in order to receive a notification Email
after the submitted job is finished. Finally, when the submitted
job is completed successfully, users can view the job details and

download the generated results. In this case, users should have
received such notification email and can check to review the job
details by clicking a hyperlink in the email.

PERF
This module uses the PERF algorithm to mine SSRs from DNA
sequences in FASTA format. Similar to using FLASH, users
need to first upload sequence data and update default parameter
values, and then submit this job. After the submitted job is
completed, the user can view the detailed results of mined SSRs in
a table. Moreover, users can input a preferred SSR and retrieve all
reads containing this SSR from the result table. In addition, users
can also export the mined results in the CSV/Excel format for the
follow-up analysis in local computers.

Pipeline
The function of this module is to integrate FLASH with PERF
into a pipeline. The pipeline first calls FLASH to merge read pairs
of the input data, and then calls PERF to mine SSRs from the
output of FLASH. Users only need to upload two FASTQ files
containing pair-end reads or paste the data to this module, then
update the default parameter value and submit the job, and finally
obtain the result.

Other Functions
The web interface of BigFiRSt also provides other auxiliary
functions including source code download, search for submitted
jobs, view of all submitted jobs, and contact information, etc.

RESULTS

Environment Setup
The experimental environment of BigFiRSt includes
HDFS (version 2.7.3), YARN (version 2.7.3), MapReduce2

FIGURE 3 | The overall architecture of the Hadoop cluster in the experiment.
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TABLE 2 | Configurations for each machine used in the experiment.

Components Configuration

Each node in

cluster

Stand-alone

node

CPU in each node Intel Core

Processor

(Skylake, IBRS)

Intel Core

Processor

(Skylake, IBRS)

The number of

cores in each node

8 32

RAM Memory in

each node

32 GB 128 GB

Disk in each node 650 GB SDD

General Purpose

disk

5 TB SDD General

Purpose disk

(version 2.7.3), Java (version 1.8), and Python
(version 2.7.3).

We evaluated the performance of BigFiRSt using a five-
node Hadoop cluster on the Research Cloud server of Monash
University. The structure of this five-node Hadoop cluster with
detailed hardware configurations is illustrated in Figure 3. One
node of this cluster is a master node while the other four are
computing nodes.

The master node is used for launching and managing
the computational tasks, while four computing nodes are
responsible for the Map/Reduce tasks. Table 2 provides the
detailed information of the configuration of each machine used
in the experiment. Each node had eight cores and 32 GB RAM
memory. We configured the Hadoop “yarn-site.xml” file to
allocate 4 GB memory for each of the eight cores for each node.
Among these, seven cores were allocated to computational tasks
and one core to the operating system. Accordingly, each node can
run up to seven Map/Reduce tasks at the same time. That is, a
total of 28 Map/Reduce tasks are allocated for four computing
nodes. This arrangement also means that when we performed
a 32-core experiment in a Hadoop cluster, we needed to set the
master node as a compute node as well (i.e., using 4/8 cores of the
master node for computing). The block size was set to 128M by
the Hadoop configure file.

For the performance comparison of BigFLASH, we conducted
a comparative experiment in which the numbers of FLASH
threads andHadoop cluster cores were set as the same. Therefore,
we added a 32-core stand-alone machine with the same hardware
configurations as any of the machines in the cluster for
experimentation (refer to Table 2 for more detail).

Datasets
We employed three experimental datasets from The 1000
Genomes Project Consortium (2010) to examine the
performance of BigFiRSt. A statistical summary of the three
datasets used is provided in Table 3.

Read Pair Merging
The main characteristics of the datasets used for the read
pair merging phase is shown in Table 3. We compared the

TABLE 3 | Main characteristics of the input datasets for read pairs merging.

Tag Name Total pairs Read length (bp) Size (GB)

D1 SRR642648 99356100 100 52.2

D2 SRR642751 179922078 100 99.2

D3 SRR622459 1222689201 100 584.8

execution time between BigFLASH and FLASH for this process
and obtained the performance results by averaging the execution
time over the five experiments for each method. We ran FLASH
five times on a 32-core stand-alone machine with the same
hardware configurations as any of the machines in the cluster.
All parameters used in the test were set as the default. The
experimental results are shown in Table 4.

Here the number of reduce-tasks was set to zero when running
the BigFLASH. The average execution time for merging read
pairs is shown in Table 5. We controlled the total number of
cores in the cluster by modifying the mapred-site.xml and yarn-
site.xml configuration files in Hadoop. The experimental results
show that, for any one of the experimental datasets and as the
number of cores in the cluster increases, the shorter the cluster
execution time, in a roughly similar scale (as the number of splits
in the dataset in Hadoop is greater than the number of cluster
cores). As shown in Tables 4, 5, when employed 8 CPU cores
cluster for BigFLASH, speedup ratios reach 2.630, 1.670, 1.832
on D1, D2, and D3, respectively. In comparison, when applied 32
CPU cores cluster, speedup ratios are improved to 5.950, 5.623,
and 5.432 on D1, D2, and D3, respectively. In general, more CPU
cores achieved more speedup ratios.

On the other hand, we can also measure the performance of
BigFLASH in terms of the number of read pairs processed per
second in the Map phase. The sum of the execution time of all
map tasks for each experiment is shown in Table 6. As can be
seen, when using more cores in the cluster, the total running
time of all Mappers would be more than those of all Mappers
when less cores are used in the cluster. When more Mappers
in each node would be running at the same time, each Mapper
would be cost more times. However, more Mappers could be
running at the same time when more cores are available in the
cluster, thus it would cost less time to finish the map tasks (refer
to Table 5).

Table 7 shows the average number of read pairs processed per
second, which can be calculated as follows:

avePairsPerSec =
totalReadsNum

aveExecutionTime
×

(

numOfCores− 1
)

,

where avePairsPerSec denotes the average number of read pairs
processed per second, totalReadsNum is the total number of
read pairs of the processed dataset, aveExecutionTime means
the average execution time shown, while numOfCores denotes
the number of cluster cores. numOfCores − 1 indicates that
YARN’s ApplicationMaster process occupied a single core
for resource management and task monitoring and did not
participate in calculations. From Table 7 we can find that
BigFLASH can handle more pairs each second than FLASH
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TABLE 4 | Experimental results for merging read pairs by the original FLASH algorithm.

Dataset Average execution time (seconds) Average number of pairs processed/second Combined percent

Number of threads Number of threads

8 16 24 32 8 16 24 32

D1 1141.159 1036.956 1238.376 985.176 87,066 95,815 80,231 1,00,851 72.03%

D2 1579.457 1371.293 1431.130 1594.532 1,13,914 1,31,206 1,25,720 1,12,837 29.33%

D3 9821.888 9258.983 8867.265 9260.385 1,24,486 1,32,054 1,37,888 1,32,034 12.7%

TABLE 5 | Average execution time for merging read pairs by BigFLASH in the cluster.

Dataset Average execution time (seconds) Speedup

Number of cores Number of cores

8 16 24 32 8 16 24 32

D1 433.835 293.052 200.535 165.563 2.630 3.538 6.175 5.950

D2 946.030 482.686 335.814 283.556 1.670 2.840 4.262 5.623

D3 5360.550 3162.039 2354.566 1704.687 1.832 2.928 3.766 5.432

TABLE 6 | Execution time of all map tasks of BigFLASH in five experiments.

Dataset Number of cores Execution time (seconds) of each experiment

1st 2nd 3rd 4th 5th

D1 8 2857.762 2722.378 2644.078 2677.849 2626.778

16 3808.937 3912.256 4098.451 3800.208 3839.815

24 4254.219 3953.122 3927.272 3840.440 3914.564

32 4347.978 4218.607 4292.595 4350.655 4452.450

D2 8 5894.834 6289.555 6053.989 6255.050 6087.408

16 6625.868 6716.897 6722.830 6382.543 6497.228

24 7225.822 6868.207 6736.306 6786.839 6720.426

32 7775.674 7731.089 7676.768 7913.205 7626.669

D3 8 34644.069 33557.823 34702.026 36898.111 35523.228

16 35653.879 45796.694 45262.908 44955.438 43740.268

24 43463.962 42863.979 45251.582 57696.282 65181.182

32 49702.159 49089.883 49223.694 48896.363 48600.491

TABLE 7 | Amount of data processed in the Map phase of BigFLASH.

Dataset Average number of pairs processed/second Speedup

Number of cores Number of cores

8 16 24 32 8 16 24 32

D1 2,57,041 3,82,931 5,74,468 7,10,922 2.952 3.997 7.160 7.049

D2 2,05,922 4,09,591 6,02,577 7,20,183 1.808 3.122 4.793 6.383

D3 2,44,084 4,25,709 5,52,586 7,71,923 1.961 3.224 4.007 5.846

and achieve the highest speed up rate 7.16. Taken together, we
conclude that the performance of BigFLASH was considerably
better than the original serial algorithm, greatly shortening the
execution time of the original program and reducing the user
waiting time.

SSR Mining
The three datasets used for BigPERF and PERF performance
evaluations in terms of SSRs mining are shown in Table 8. Note
that these datasets were derived from the merged results of
BigFLASH for the three datasets in Table 3.
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We compared the execution time between PERF and BigPERF
for the SSRs mining process. The resultant execution time
on each dataset was obtained by averaging the time of the
five randomized experiments. We randomly used one node
of the cluster to run the original PERF algorithm five times
on each dataset. The parameters used in the comparison
experiments and the averaged running time (seconds) are shown
in Table 9.

Here the number of reduce-tasks was set to zero when
running the BigPERF. The execution time results are shown
in Table 10. The sum of the execution time of all map tasks
for each experiment is shown in Table 11, and the amounts
of data processed by BigPERF in the Map phase are shown in
Table 12, respectively. Similar to the experimental results for
merging read pairs, the experimental results of SSR mining
also exhibited consistent results. That is, the Hadoop-based
algorithms (i.e., BigFLASH and BigPERF) are much more
efficient compared with their original counterparts. Remarkably,
we found that the performance improvement of BigPERF was
extremely pronounced. For example, in terms of the execution
time, BigPERF was at least 21 times faster (in the case of the D2‘
data set and the 8-core cluster) and at most 68 times (in the case
of the D3‘ data set and the 32-core cluster) faster than that of
PERF. In terms of the number of reads processed per second in
the map phase, BigPERF runs at least 22 times faster (in the case
of the D2‘ data set and the 8-core cluster) and at most 76 times

TABLE 8 | Input datasets for mining SSRs.

Tag Name Total reads Read length (bp) Size (GB)

D1‘ MSRR642648 71568961 100–200 14.4

D2‘ MSRR642751 52777550 12.1

D3‘ MSRR622459 155236691 30.4

faster (in the case of the D3‘ data set and the 32-core cluster)
than PERF.

DISCUSSION

SSRs-pipeline (Miller et al., 2013) is a stand-alone tool that
integrates read pairs merging and SSRs mining into a single
pipeline. SSRs-pipeline first uses FLASH as a pre-processing
algorithm of merging short read pairs from Illumina high-
throughput DNA sequencing data and then employs a regular
expression-based method to mine SSRs from merged read
sequences. FLASH has been extensively used for pre-processing
large-scale NGS sequence data and facilitating the downstream
analysis (van der Gaag et al., 2016; Hoogenboom et al., 2017;
Ganschow et al., 2018). Comprehensive experiments in Avvaru
et al. (2017b) have shown that PERF is an extremely fast
algorithm for mining SSRs. Moreover, PERF does not need to
construct an extra complicated data structure for each read
sequence. Thus, in this work, we selected FLASH and PERF
to implement BigFiRSt using Big Data Technology. Obviously,
there are many other well-known methods for mining SSRs and
merging read pairs (review in the introduction section). The idea
proposed in this paper can also be applied to implement other
methods based on Big Data technologies.

Currently, no published parallel methods for merging read
pairs and mining SSRs are available. Thus, we only compared
the performance of BigFLASH with FLASH, and that of BigPERF
with PERF. Figure 4 illustrates the runtime performance
comparison results between BigFLASH and FLASH. Although
the original FLASH algorithm was a multithreaded algorithm
with up to five threads, the execution time by FLASH was
not apparently reduced as the number of the used cores
increased. The reason is that only up to five threads could
be used in FLASH. Thus, a supercomputer or cluster cannot
further improve the performance of FLASH by simply adding

TABLE 9 | Running information of PERF original algorithm.

Dataset Average execution

time (seconds)

Average number of reads

processed/second

Parameters

Cutoff Min-motif-size Parameters

max-motif-size

Min-seq-length Max-seq-length

D1‘ 16311.800 4,388 6 3 5 0 500

D2‘ 12418.600 4,250

D3‘ 44976.800 3,451

TABLE 10 | Execution time of BigPERF for searching SSRs.

Dataset Execution time (seconds) Speedup

Number of cores Number of cores

8 16 24 32 8 16 24 32

D1‘ 718.982 437.236 319.176 273.860 22.687 37.307 51.106 59.562

D2‘ 576.286 364.331 260.621 227.397 21.549 34.086 47.650 54.611

D3‘ 1633.061 893.130 706.073 658.399 27.541 50.359 63.700 68.312
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TABLE 11 | Execution times of all map tasks of BigPERF in five experiments.

Dataset Number of cores Execution time (seconds) of each experiment

1st 2nd 3rd 4th 5th

D1‘ 8 4714.821 4748.217 4734.551 4719.849 4705.533

16 5695.032 6065.955 6049.859 6015.885 6108.858

24 6568.444 6510.503 6434.264 6381.585 6398.347

32 7350.969 7285.193 7149.244 7183.113 7102.169

D2‘ 8 3823.328 3795.953 3752.347 3776.384 3752.877

16 4816.881 4883.854 4815.179 4839.188 4855.779

24 5351.771 5187.211 5184.548 5221.581 5214.872

32 6055.070 5837.347 5917.858 5793.088 5863.227

D3‘ 8 11080.473 11080.752 11109.434 11066.792 11126.353

16 12746.333 12839.853 12649.824 12608.740 12767.178

24 15301.268 15432.642 15299.017 15233.146 15261.768

32 20687.485 19501.560 19232.093 17596.133 17472.989

TABLE 12 | Amount of data processed by BigPERF in the Map phase.

Dataset Reads processed/second Speedup

Number of cores Number of cores

8 16 24 32 8 16 24 32

D1‘ 1,06,037 1,79,307 2,54,866 3,07,540 24.165 40.863 58.082 70.087

D2‘ 97,732 1,63,493 2,32,012 2,77,620 22.996 38.469 54.591 65.322

D3‘ 1,11,955 1,95,230 2,43,420 2,62,862 32.441 56.572 70.536 76.170

more cores or more nodes. Compared with FLASH, BigFLASH
significantly reduced the execution time for merging read pairs.
For instance, FLASH had a running time of more than 2.46 h
on the D3 dataset, which was more than 580 GB large. In
contrast, BigFLASH (with 32 cores) only consumed 0.47 h to
process the entire dataset. In addition, we can also see that
the execution time was gradually reduced as the number of
used cores increased, for each experimental dataset (across
D1 to D3). Please refer to read pair merging for more
detailed discussions.

Figure 5 shows the performance comparison results between
BigPERF and PERF. PERF required more than 12.49 h to process
the D3’ dataset using one node of our cluster, while it only took
BigPERF (with 32 cores) 0.18 h to process the dataset on the same
cluster. Similar to BigFLASH, the execution time of BigPERF
could be gradually reduced for each experimental dataset with
the increasing number of cores added. Please refer to SSR mining
for more detailed discussions on this aspect.

Limitations
Despite BigFiRSt improves the performance of the computational
efficiency of read pair merging and SSR mining, it has the
following limitations. It is great challenges for biologists to
deploy a big data-based running environment. Although some
commercial cloud-based big data platforms are available to run
big data technique-based software, it remains a challenging
problem for users to upload large scale datasets from their
local machines to cloud platform. In addition, many large-scale

datasets generated by NGS are costly, even some datasets may
be private. Once datasets are uploaded to cloud platform, these
datasets would be divulged. BigFiRSt have the above limitations.
Thus, it is very interesting work to address the above issues for
handling large scale sequences generated by NGS.

CONCLUSION

There are two different types of de novo methods of SSRs
identification, which mine SSRs from the entire genome and
read sequences (Guo et al., 2018), respectively. The former
heavily relies on high-quality entire genomes. It is practically very
difficult to obtain a sufficiently good reference genome. Even for
the human reference genome, several repeats may still be missing
(Chu et al., 2016). In this scenario, it is beneficial for the latter to
directly mine SSRs from large-scale sequencing reads generated
by NGS techniques. While sequence reads generated by NGS are
representative big data, conventional stand-alone methods often
suffer from computational bottlenecks.

Thus, in this work, we have developed a program suite
termed BigFiRSt based on the Big Data Hadoop technology to
address the critical need of efficiently mining SSRs from large-
scale NGS sequence datasets. For long enough reads produced
by third-generation sequencing (e.g., Nanopore, PacBio), we
need only use BigPERF (one module of BigFiRSt) to search
SSRs contained in reads. For the short length of paired-end
reads generated by second-generation sequencing (e.g., Illumina,
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FIGURE 4 | Runtime performance comparison between BigFLASH and FLASH for merging read pairs.

FIGURE 5 | Runtime performance comparison between BigPERF and PERF for mining SSRs.
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SOLiD, IonTorrent), we can use the pipeline of BigFiRSt
to first merge overlapping read pairs and then mine SSRs
contained in merged read sequences. Alternatively, we used
BigFLASH (another module of BigFiRSt) as pre-processing to
merge read pairs into consensus sequences for other downstream
analyses. Extensive benchmarking tests have shown that BigFiRSt
has significantly improved the computational efficiency when
merging read pairs and mining SSRs from the large-scale
datasets. In the future era of big data, especially given the
development of new sequencing techniques and rapid generation
of sequence data, we anticipate that BigFiRSt will prove to be a
valuable tool.
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