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Plasma triacylglycerols are biomarkers of b-cell
function in mice and humans
Ana Rodríguez Sánchez-Archidona 1,2, Céline Cruciani-Guglielmacci 3, Clara Roujeau 1, Leonore Wigger 2,
Justine Lallement 3, Jessica Denom 3, Marko Barovic 4, Nadim Kassis 3, Florence Mehl 2, Jurgen Weitz 5,
Marius Distler 5, Christian Klose 6, Kai Simons 6, Mark Ibberson 2, Michele Solimena 4, Christophe Magnan 3,
Bernard Thorens 1,*
ABSTRACT

Objectives: To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic b-cell deregulations or defects in
the function of insulin target tissues.
Methods: We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under
different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and
tissue gene expression modules.
Results: We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of
glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive
correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene
modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty
acid and carnitine transporters as well as multiple enzymes of the b-oxidation pathway. In humans, plasma TAGs also correlated with the
expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species
comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion.
Conclusion: TAGs emerge as biomarkers of a liver-to-b-cell axis that links hepatic b-oxidation to b-cell functional mass and insulin secretion.
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1. INTRODUCTION

Type 2 diabetes (T2D) is a chronic hyperglycemic condition characterized
by reduced glucose-stimulated insulin secretion (GSIS) and increased
insulin resistance of insulin target tissues [1,2]. Multiple initiating path-
ogenic mechanisms can affect any tissue primarily involved in glucose
homeostasis, including the pancreatic isletb-cells, liver, muscle, adipose
tissue, or the autonomic nervous system [3]. The deregulations in insulin
secretion or in insulin action then lead to defects in inter-organ com-
munications causing imbalanced glucose homeostasis, thus T2D. For
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developing better prevention strategies or treatment options, identifica-
tion of the primary tissue defects that underlie the appearance of T2D in
individual patients will be very useful. The presence of myriads of me-
tabolites in the plasma represents a potential source of information about
the function and deregulation of individual tissues [3,4]. Thus, their
quantitative measurements could, in principle, inform the deregulations
of specific tissue metabolic pathways. In addition, as circulating me-
tabolites can modulate the function of various cell types, their identifi-
cation could help definemodes of interorgan communication that regulate
glucose homeostasis.
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In our previous study, we initiated a search for circulating biomarkers
candidates for the susceptibility to T2D using preclinical models fol-
lowed by replication of the mouse data in two pre-diabetes cohorts [5].
We first analyzed the correlation between plasma lipids and various
glucose homeostasis phenotypes in mice from different genetic
backgrounds and fed regular chow or a high-fat diet (HFD) for different
periods. This analysis led to the identification of dihydroceramides as
candidate biomarkers for T2D development. In human cohorts, we
found that the same plasma dihydroceramides were elevated in the
plasma of individuals who would develop T2D up to nine years later.
Thus, preclinical studies in mice can provide valuable information to
identify novel human T2D prognostic biomarkers.
In the present study, we attempted to further exploit this experimental
mouse paradigm to investigate whether plasma lipid biomarkers could
be identified that predict the function of pancreatic b-cells and whether
we could identify tissue metabolic pathways involved in the regulation
of the plasma concentrations of these lipids. Thus, we performed a
new set of experiments using mice from three different genetic
backgrounds fed for different periods with regular chow (RC) or HFD
and searched for a correlation between plasma lipids and islets and
liver gene co-expression modules. This analysis revealed strong
positive and negative correlations between plasma TAGs and islets
gene modules that comprise major regulators of insulin secretion such
as glucokinase and the KATP channel or mRNAs encoding lipid meta-
bolic enzymes that modulate GSIS. In the liver, we found that plasma
TAGs showed a strong correlation with a gene module enriched in fatty
acid b-oxidation genes. Together our data indicate that plasma TAGs
reflect the activity of a liver-to-b-cell axis that may regulate b-cell
function. Similar observations were made in humans linking plasma
TAGs and islet genes controlling b-cell mass and function.

2. METHODS

2.1. Mouse phenotyping
Eight-week-old male C57Bl/6J, DBA/2J, and BALB/cJ mice were fed
ad libitum with a high fat, high sucrose diet (SAFE 235F, with 46% fat
expressed in Kcal/kg) or a regular diet (SAFE A04). Oral glucose
tolerance tests (OGTT, 2 g/kg from a 30% glucose solution) and insulin
tolerance tests (ITT, Novorapid, 0.5 UI/kg) were performed in five-hour
fasted mice on days 2, 10, and 30, as described by Cruciani-
Guglielmacci et al. [6]. Analysis of the ITTs revealed basal glycemia,
using a glucometer (A. Menarini Diagnostics, France), and insulin
resistance calculated as the area under the curve of glycemia (AUC;
mg/dL*t) measured at 0, 15, 30, 45, 60, 90, and 120 min after insulin
administration. From the OGTTs we also obtained basal insulinemia,
using an Ultra-Sensitive Mouse Insulin ELISA Kit (Crystal Chem Inc.,
#90080); stimulated insulinemia calculated as the AUC of insulinemia
(ng/mL*t) measured at 0, 15, and 90 min after glucose administration,
and glucose intolerance calculated as the AUC of the glycemia (mg/
dL*t) measured at 0, 15, 30, 45, 60, 90, and 120 min after glucose
administration. The number of mice used in these phenotyping ex-
periments ranged between 185 and 195.

2.2. Quantitative lipidomics analysis
Plasma lipid concentrations were measured by mass spectrometry at
the Lipotype shotgun lipidomics platform. Samples processing, lipid
extraction, spectra acquisition, data processing, and normalization
were as described in Surma et al., 2015 [7]. A principal component
analysis (PCA) was performed using the ’prcomp’ function in R
package.
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2.3. RNA-Seq and bioinformatics analysis
Complementary DNA (cDNA) libraries were prepared from RNA isolated
from mice tissues using the Illumina TruSeq protocol. RNA-Seq was
performed on the Illumina HiSeq platform to generatew40Mio 125 nt
single-end reads per sample. Reads were mapped and quantified with
STAR-2.5.3a software [8] using M.musculus-mm10 as reference
genome and GRCm38.83 from ENSEMBL as the reference annotation
index. For each sample, quality control included verification of the total
number of reads, percent of uniquely mapped reads, number of
detected expressed genes, gene body coverage, and cumulative gene
diversity. The resulting counts per gene from different samples were
integrated to construct a single count matrix for each tissue that was
filtered, excluding those genes with <1 count per million with ’edgeR’
[9]. We excluded three clear outliers identified by PCA and hierarchical
clustering in the islets data set. The count matrix was normalized using
the trimmed mean (TMM) normalization method. Differentially
expressed genes (DEGs) comparing HF and RC, and the different
strains were detected using the Limma package in R [10]. P-values
were adjusted for multiple comparisons with the Benjamini-Hochberg
procedure, and those genes with adjusted p-value of �0.05 were
considered as differentially expressed.
Weighted gene correlation network analysis (WGCNA) was performed
on the RNA-Seq dataset from all time points, mouse strains, and diets
to generate modules of co-expressed genes. Co-expression networks
for each tissue were constructed by calculating signed adjacency
matrices using a soft-thresholding power of six and a pair-wise
Pearson correlation among all genes. A signed topological overlap
matrix (TOM) was then calculated from each adjacency matrix, con-
verted to distances, and clustered by hierarchical clustering using
average linkage clustering. Modules were identified in the resulting
dendrogram by the Dynamic Hybrid tree cut with a cut height of 0.995
and a minimum module size of 20 genes. The correlation between the
resulting modules and plasma lipids was calculated in two steps for
the liver data set, and the three steps for the islets data set are as
follows: first, a PCA was calculated for each module in each data set
using only module constituent genes. Second, the Spearman corre-
lation coefficient was calculated between the summarized values of
expression of each module (the first principal component or eigen-
value) and plasma lipids. In the islets data set, an intermediate step
was added because plasma lipidomics and islet transcriptomics data
were derived from different mouse individuals and direct correlation
was not possible. Thus, 18 mouse groups were defined by the three
strains, two diets, and three-time points of harvesting. Module ei-
genvalues and plasma lipid concentrations were summarized per
mouse group using the mean, which yielded 18 pairs of values to be
considered per lipid and module. Student asymptotic p-values were
calculated for the given correlations and were adjusted for multiple
comparisons using the Benjamini-Hochberg procedure [11].
The functional enrichment analysis was performed using the R library
“clusterProfiler” [12]. Pathways from KEGG and GO databases were
searched using a hypergeometric test to examine the over-
representation of the terms within the functional annotation and to
determine the p-values using the hypergeometric distribution. P-values
were adjusted for multiple comparisons by the Benjamini-Hochberg
procedure. Terms with an adjusted p-value �0.05 were considered
as overrepresented.

2.4. Correlation analysis in partially pancreatectomised patients
The correlation analysis was performed with 60 samples that included
T2D, impaired glucose tolerance (IGT), pancreatogenic diabetes
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(T3cD), and control patients (18, 21, 16, and 4 cases respectively).
Pairwise correlations between the pancreatic islets transcriptome and
TAGs plasmatic concentrations were performed with Spearman cor-
relation coefficients. For the correlations, Student asymptotic p-values
were calculated.

2.5. Cell culture
EndoC-bH1 cells [13] were cultured in 5.6 mM glucose Dulbecco’s
Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific), supple-
mented with 2% BSA fraction V (Roche-Diagnostics), 50 mM b-mer-
captoethanol (SigmaeAldrich), 5.5 mg/mL transferrin (Sigmae
Aldrich), 6.7 ng/mL sodium selenite (SigmaeAldrich), 10 mM nico-
tinamide (Calbiochem), 100 mg/mL streptomycin and 100 U/mL
penicillin (Thermo Fisher Scientific). Cells were seeded on plates
coated with 1.2% Matrigel/3 mg/mL fibronectin (SigmaeAldrich), and
cultured at 37 �C and in 5% CO2.
MIN6B1 cells [14] were cultured in 25 mM glucose DMEM (Thermo
Fisher Scientific), supplemented with 15% heat-inactivated fetal
bovine serum (SigmaeAldrich), 71 mM b-mercaptoethanol, and
maintained at 37 �C and 5% CO2 (24).

2.6. Small interfering RNA transfection of EndoC-bH1 cells
EndoC-bH1 cells were seeded on 12-well plates and transfected with
siRNA using Lipofectamine RNAiMAX (Thermo Fisher Scientific) 24 h
later. The PITPNC1 specific siRNA (siPITPNC1 #1 and #2) sequences
were CCACAGACGCACCCGAAUU and CGAUGAAAUUCCAGAGCGC
(Microsynth), respectively. Briefly, siPITPNC1 or siCTRL (negative
control siRNA, Microysnth) were diluted in OptiMEM (Thermo Fisher
Scientific); then Lipofectamine RNAiMAX was added. After 10 min of
incubation, the lipid-siRNA complex was added to cells to obtain a final
siRNA concentration of 80 nM. The medium was changed 4 h later for
fresh culture medium. Cells were used for GSIS experiments 72 h post-
transfection.

2.7. RNA isolation and qRT-PCR
Total RNA was extracted from EndoC-bH1 cells and MIN6B1 cells
using RNeasy Plus Micro kit (Qiagen) and RNeasy Mini kit (Qiagen),
respectively. cDNAs were synthesized using SuperScript II Reverse
Transcriptase (Invitrogen), according to the manufacturer’s in-
structions. Expression of target genes was measured by real-time
quantitative PCR (qRT-PCR) using the 7500 Fast Real-Time PCR Sys-
tem (Applied Biosystems). qRT-PCR was run in a final volume of 10 mL
containing 2 mL of cDNA and 8 mL of Power SYBR Green PCR mix
(Applied Biosystems), in the presence of forward and reverse primers
(sequences in Key resources table). GusB transcript levels were used
to normalize each sample. All the primers were obtained from
Microsynth.

2.8. Glucose-stimulated insulin secretion
Forty eight hours after siRNA transfection, EndoC-bH1 cells were
starved in 0.5 mM glucose DMEM, supplemented with 2% BSA fraction
V, 50 mM b-mercaptoethanol, 5.5 mg/mL transferrin, 6.7 ng/mL so-
dium selenite, 10 mM nicotinamide, 100 mg/mL streptomycin, and 100
U/mL penicillin. After 24-h of starvation, cells were washed and pre-
incubated in KrebseRinger bicarbonate HEPES buffer (KRBH1) con-
taining 0.2% BSA fraction V and 0 mM glucose for 1 h. Insulin secretion
was measured following a 4-h incubation with KRBH containing 0.2%
BSA fraction V and 0.5 mM or 20 mM glucose, in the presence or
absence of 45 mM 3-isobutyl-1-methylxanthine (IBMX, Sigmae
Aldrich). At the end of the incubation, supernatants were collected;
cells lysed for 1 h on ice in TETG buffer: 20 mM Tris HCl pH 8, 1%
MOLECULAR METABOLISM 54 (2021) 101355 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
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Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EGTA; supplemented
with protease inhibitor cocktail (complete Tablets Mini EDTA-free,
Roche). Insulin secretion and cellular insulin content were measured
by ELISA according to the manufacturer’s protocols using the Human
Insulin kit (Mercodia).

2.9. Glucose-stimulated insulin secretion statistics
Data were analyzed using R software (v. 3.6.1) and are presented as
the means � S.E.M. from three independent experiments. Compari-
sons were performed using two-sample unpaired t-tests, and the p-
values adjusted for multiple comparisons. Statistically significant dif-
ferences are indicated with asterisks (*p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001).

3. RESULTS

3.1. Metabolic, lipidomic, and transcriptomic phenotyping

3.1.1. Metabolic phenotyping
To search for potential correlations between plasma lipids and islet
genes controlling b-cell function, we exploited the natural diversity of
mice with different genetic backgrounds. In a previous study of the
differential metabolic adaptation of six different strains of mice [6], we
found that different genetic backgrounds directed various insulin
secretion capacities and sensitivities to insulin of target tissues, and to
different metabolic adaptations to HFD. Here, we decided to work with
C57Bl/6J, BALB/cJ, and DBA/2J mice because of their distinct meta-
bolic characteristics [6]. Groups of 8-week-old mice were fed with an
RC or an HFD and phenotyped at 2, 10, and 30 days. They were then
sacrificed at respectively, 5, 13, and 33 days, for transcriptomic and
plasma lipidomic analysis (Figure 1A). These short periods of feeding
were selected because we previously showed that important changes
in gene expression that predict the long-term (>3 months) estab-
lishment of different obesity/diabetes phenotypes occur early after the
initiation of the HFD [6,15,16]. In addition, time-series analysis pro-
vides additional power to establish meaningful correlations between
physiological and omics data.
Mouse phenotyping included the assessment at days 2, 10, and 30 of
body weight, five hours fasted glycemia and insulinemia, stimulated
insulinemia (AUC of insulinemia measured during an OGTT), glucose
intolerance, and insulin resistance (n ¼ 185e195 mice, Figure S1).
PCA of the physiological data revealed clear separation of mice by
strain (Figure 1B) and a weak effect of diet, as indicated by the shift in
the average position of each strain of mice, represented by large tri-
angles and circles in the biplot of Figure 1B. This biplot also indicates
that “glucose intolerance” was the main driver separating BALB/cJ
mice and that “basal insulinemia” and “basal glycemia” drove the
separation of DBA/2J mice.

3.1.2. Lipidomic analysis
Four mice from each group were sacrificed in the random fed state at
days 5, 13, and 33 of RC or HFD feeding. Their quantitative lipidomic
measurements were obtained for 71 out of 72 plasma samples. The
total amount of lipids extracted from each plasma sample was in the
optimal range for lipidomic measurements (5200e12900 pmol;
Figure S2A and Suppl. Table 1) [7]. We identified w130 lipid mole-
cules from 11 classes of lipids (Table 1). The percentage of total lipids
accounted for by each class of lipids (Figure S2B) showed that the
major classes were cholesteryl esters (CEs), phosphatidylcholines
(PCs), cholesterols (Chol), triacylglycerols (TAGs), lysophosphati-
dylcholines (LPCs), and phosphatidylinositols (PIs). The other lipid
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 1: Metabolic, lipidomic, and transcriptomic phenotyping. A. Experimental scheme. B. Biplot of the principal component analysis (PCA) of the physiological data and of
the phenotypic traits from each mouse used in the study. Large circles and triangles represent the centroids of each group. (n ¼ 185 mice). C. Principal component analysis of the
lipidomics data. Each symbol represents data from one mouse; n ¼ 71 mice. D. Heatmap of the plasma concentrations of each lipid species in each mouse. E. Principal component
analysis of the islets transcriptomic data; n ¼ 69 mice.

Table 1 e Lipid abbreviation.

Abbreviation Lipid

CE Cholesteryl Esters
CeRC Ceramides
CHFol Cholesterol
LPC Lysophosphatidylcholines
PC Phosphatidylcholine
PCO Ether-linked/plasmalogen lysophosphatidylcholines
PE Phosphatidylethanolamine
PEO Ether-linked/plasmalogen phosphatidylethanolamines
PI Phosphatidylinositol
SM Sphingomyelins

Note: Lipid species are annotated according to their molecular composition as an
abbreviation, sum of the carbon atoms in the hydrocarbon moiety, the sum of the
double bonds in the hydrocarbon moiety, and the sum of hydroxyl groups. For
example, SM 34:1:2 denotes a sphingomyelin species with a total of 34 carbon atoms,
1 double bond, and 2 hydroxyl groups in the ceramide backbone. In the case of
cholesteryl esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and tri-
acylglycerols there are no hydroxyl groups. Phosphatidylcholines, phosphatidyletha-
nolamines, and phosphatidylinositols annotation contain information on the exact
identity of their fatty acids. For example, PI18:1-16:0 denotes phosphatidylinositol with
C18:1 (oleic) and C16:0 (palmitic) fatty acids. The exact position of fatty acids in
relation to a glycerol backbone (sn1 or sn2) cannot be determined.

Original Article
classes formed only small proportions of the total plasma lipids. The
percentage of plasma lipids contributed by TAGs showed significant
variation across different mouse strains and feeding conditions
whereas the contribution of the other lipid class was relatively
constant.
PCA showed that plasma lipidomics was influenced by both strains and
feeding conditions (Figure 1C). A detailed description of the relative
concentration of each lipid species in all the plasma samples analyzed
is presented in the heat map of Figure 1D. This illustrates that the
4 MOLECULAR METABOLISM 54 (2021) 101355 � 2021 The Authors. Published by Elsevier GmbH. T
concentrations of individual lipids were strain- and diet-dependent. In
addition, feeding the HFD, which comprises mostly C16:0, C: 18:0,
C18:1 and C18:2 fatty acids [17] led to a general tendency to increase
the concentrations of lipids containing these fatty acyl side chains (see
examples: open arrows in Figure 1D). Nevertheless, several lipid
species were also increased that contained one of these C16eC18
fatty acyl side chains and one longer, and more unsaturated fatty acyl
side chain (C20:2eC20:4; double arrow in Figure 1D), suggesting that
increased activity of various elongases and desaturases also contribute
to the changes in lipid species induced by HFD feeding [18]. Figure 1D
shows that the plasma concentrations of TAGs were reduced by HFD
feeding in the three strains of mice. This observation can be explained
by the coordinated induction by HFD feeding of several hepatic b-
oxidation genes (See Suppl. Table 2 and further results below).

3.1.3. Islet transcriptomic analysis
Islet transcriptomic data were obtained from islets isolated from 3 to 6
randomly fed mice for each of the 18 experimental groups. A total of 69
islet transcriptomic data sets were used for the subsequent analysis as
three samples were rejected after quality control.
PCA showed that the islets transcriptomic was influenced mostly by
the mouse genetic backgrounds and to a lower extent by the feeding
conditions (Figure 1E). The Venn diagrams of Figure S3A show that
differential gene expression between islets from RC- and HFD-fed mice
was dependent on strains and period of HFD feeding (Suppl. Table 3).
The highest number of differentially regulated genes was found at day
5 of HFD feeding. Islets from C57Bl/6J mice displayed the highest
number of differentially expressed genes (354 vs. 113 for DBA/2J mice
and 43 for BALB/cJ mice). Analysis of islet genes differentially
expressed (adj. p< 0.05) between strains, and considering all feeding
conditions, revealed that of the 13,780 genes considered, 9,104 genes
were differentially expressed between DBA/2J and C57Bl/6J islets,
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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8,941 when comparing BALB/cJ with C57Bl/6J islets, and 6,268 when
comparing BALB/cJ with DBA/2J islets (Figure S2B and
Suppl. Table 4).
Together the above multiomics data sets form the basis for the sub-
sequent, unbiased search for salient correlations between plasma
lipids and islet gene expression.

3.2. Correlation between islet gene expression modules and
plasma lipids
Islet transcriptomic data were subjected to weighted gene co-
expression network analysis (WGCNA) [19] to identify groups of
genes that were co-regulated across all mouse strains and feeding
conditions (gene modules). The Spearman correlation between the
summarized value of the expression (eigenvalue) for each of these
modules and the concentration of individual lipids was then calculated
as described in the Materials and Methods section. These results are
presented as a heat map in Figure 2A and the Suppl. Table 5. This
shows that some lipid classes correlated homogenously, positively or
negatively, with gene modules identified by a color code. For instance,
triacylglycerols (TAGs) were negatively correlated (|rho|�0.4), with the
light green, turquoise, dark turquoise, and green modules and posi-
tively with the blue, cyan, and black modules (Figure 2A). Sphingo-
myelins, as a class, also correlated with unique modules (magenta,
salmon, red, and brown) and the modules also correlated with TAGs
(turquoise, blue, and cyan). In other classes of lipids, only a small
Figure 2: TAGs and SMs correlation with gene modules and islet functional pathway
is indicated on the right of the Figure. The color scale on the right indicates the value of Sp
plasma TAGs and SMs are highlighted with black lines. Dashed black lines indicate the
correlation between lipid classes, islet gene modules, and the functional terms enriched in
Green lines: positive correlations; violet lines: anti-correlations. C. Heatmap of the corr
correlated modules. D. Heatmap of the correlation between plasma SMs and the pathwa
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number of individual species correlated with gene modules. This was
the case for PCs, where only the indicated molecules (dashed lines in
Figure 2A) showed correlations (|rho|�0.2) with some gene modules.
Several of these modules were shared with the TAGs (light green,
turquoise, dark turquoise, and cyan modules) or SMs (red module).
Because TAGs and SMs correlated as classes with islet gene modules,
we focused our further analysis on these lipids.

3.3. Correlation of TAGs and SMs with islet gene modules and
functional pathways
We performed KEGG and Gene Ontology (GO) analysis of the genes
included in the islet modules, thus showing the strongest correlations
with plasma TAGs and SMs. The results of this analysis are presented
in Figure S4 (for TAGs) and S5 (for SMs). The modules that negatively
correlated with TAGs were enriched in “insulin secretion” genes (green
module), “insulin signaling pathway” genes (turquoise module), and
“histone modification” genes (dark turquoise module). The positively
correlated modules were enriched for “phospholipid metabolic pro-
cess” genes (black module) and “oxidative phosphorylation” genes
(blue and cyan modules). No overrepresented terms were found
among the light green module genes.
The modules that negatively correlated with SMs included not only the
same “insulin signaling pathway” genes (turquoise module) but also
“mRNA processing/histone modification” (magenta module). The
positively correlated modules were enriched in “vesicular ER/Golgi
s. A. Heatmap of the lipid-gene module correlations. The color code for the lipid classes
earman’s rank correlation coefficient. The seven modules that are most correlated with
individual PCs correlated with the indicated gene modules. B. Hiveplot displaying the
each module. The size of the circles indicates the relative strength of the correlations.
elations between individual plasma TAGs and the pathways over-represented in the
ys over-represented in the correlated modules.
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transport” genes (salmon module), “histone modification/autophagy”
genes (brown module), and “response to wounding” genes (red
module).
The relationship between lipidomic data, islet gene modules, and
functional pathways is represented in the hive plot of Figure 2B. This
shows that the lipid classes with the highest correlations to gene
expression modules were TAGs and SMs and that these correlated
with essential b-cell functional pathways, such as insulin secretion,
oxidative phosphorylation, phospholipid metabolic processes, and in-
sulin signaling. The heat maps of Figure 2C,D shows the correlation of
individual TAGs and SMs with the most important b-cell functional
pathways identified. Most individual species showed identical corre-
lations with the islet gene modules.
Collectively, the above data showed that the plasma concentrations of
TAGs and SMs, showed a significant correlation with islet gene
pathways controlling key b-cell functions. Because of the variability of
plasma TAGs concentrations across mouse strains and feeding con-
ditions we next focused on the genes characterizing the functional
terms correlated with TAGs.

3.3.1. Islet modules negatively correlates with TAGs
Analysis of the “insulin secretion” term showed that it included a large
number of mRNAs encoding key regulators of GSIS (Figure 3A). The
Figure 3: Plasma TAGs anti-correlated with islet insulin secretion and insulin signal
the “insulin secretion” term present in the islet green module. B. Spearman correlation co
Scheme of the insulin signaling pathway with, in blue, the genes of the “insulin signaling
between the expression of the “insulin signaling pathway” genes and plasma TAGs.
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highest correlation with plasma TAGs was found for the Gck mRNA
(r ¼ �0.70; p ¼ 6.52E-09), which encodes the rate-controlling
enzyme in GSIS [20] (Figure 3B). Other highly correlated mRNAs
encoded the subunits of the KATP channel (Abcc8 and KcnJ11), the
alpha subunit of the Naþ/Kþ ATPase (Atp1a1), the voltage-gated Caþþ

channel subunit alpha-1 (Cacna1d). They also included regulators of
the gluco-incretin signaling pathway, which depends on cyclic aden-
osine monophosphate (cAMP) production (Adcy6, Adcy8, Prkca,
Creb3l2, Pclo) and other regulators of insulin granule exocytosis
(Camk2b, Snap25).
The top correlated “signaling” terms (turquoise module, Figure S4B)
included “MAPK signaling”, “mTOR signaling”, and “Foxo signaling”.
The complete list of genes forming these terms and their correlation
with TAGs are presented in Suppl. Table 6. The mRNAs most highly
correlated to plasma TAGs encoded most of the components of the
insulin receptor signaling pathway, Insr, Irs1, Pi3kca, Pik3r1, Pten,
Pdpk1, Akt3, Foxo1, Foxo3, Mapk1, Mapk9, Sos2, Braf, Nras, and Kras
(Figure 3C). The correlation of each of these genes with TAGs is
presented in Figure 3D.
The dark turquoise module contained only 29 genes; a significant
association of these genes with the “histone modification” term was
identified and eight mRNAs supported this association (Suppl. Table 7).
These were the acetylated epigenetic mark readers (Brd1, Brd3); a
ing pathways. A. Scheme of the insulin secretion pathway with, in green, the genes of
efficients between the expression of the “insulin secretion” genes and plasma TAGs. C.
pathway” term present in the turquoise module. D. Spearman correlation coefficients
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component of a histone acetyltransferase complex (Ep400); a histone
methyltransferase (Setd1b) and demethylase (Phf2), and Hcfc1 and
Arid1a, which are part of chromatin remodeling complexes.

3.3.2. Islet modules positively correlated with TAGs
The GO analysis of the positively correlated black module showed
enrichment in “phospholipid metabolic process” and other lipid
metabolism-related terms (Figure S4D). These included genes con-
trolling the metabolism of phospholipids (Plppr4, Pla2g12a, Mboat1,
Agpat5, Agpat4), of phosphatidyl-inositols (Pitpnc1, Pip4p2, Pip4kc2,
Ttc7b, Gpld1), and of sphingolipids (Cln3, Galc, Cerk, Degs2, St3gal1,
Neu3, HexA), with each lipid class playing a modulatory role in insulin
secretion [21e24] (Figure 4A). The highest positive correlation was
with Abhd6 (r ¼ 0.72, and p ¼ 8.49E-10), encoding monoacylglycerol
lipase alpha/beta hydrolase Domain 6, an endocannabinoid degrading
enzyme that negatively controls insulin secretion [25].
The blue and cyan modules were enriched in terms (“Thermogenesis”,
“Huntington”, “Alzheimer”, “Parkinson”, and “Oxidative phosphory-
lation”), which primarily comprised oxidative phosphorylation mRNAs
(Figures S4E,F). The scheme of Figure 4B shows that most of these
genes belong to the OXPHOS chain up to the ATP synthase step and
Figure 4C shows the correlation of individual mRNAs with plasma
TAGs.
Overall, the above data show that plasma TAGs were negatively
correlated with the GSIS pathway and with the insulin signaling
pathway, which controls b-cell proliferation and functional mass [26].
Contrastively, plasma TAGs were positively correlated with lipid
signaling pathways, notably with Abhd6, a negative regulator of insulin
secretion.
Figure 4: Plasma TAGs correlate with islet lipid signaling and oxidative phosphoryl
Spearman correlation coefficients with plasma TAGs (shown only for correlations with adjus
phospholipids (blue), phosphatidylinositol (green), and sphingolipids (orange) metabolic pa
genes of the “oxidative phosphorylation” term of the blue and cyan modules. C. Spearman c
plasma TAGs.
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3.4. Plasma TAGs correlate with the liver b-oxidation pathway
The liver is the major tissue involved in the biosynthesis and secretion
of TAGs. In addition, a liver-to-b-cell axis, which controls b-cell insulin
secretion capacity, has previously been reported to involve various
liver-derived signals [27e29]. We, therefore, investigated whether a
hepatic metabolic pathway could be identified that could link plasma
TAGs and b-cell function. We, thus, obtained RNA-Seq data from 72
mouse livers (Figure 1A). The scatter plot of Figure S6A shows the
separation of the transcriptomic profiles by strain and, in part, by diet,
particularly in BALB/cJ mice. These data were then used for WGCN
analysis and for identification of gene co-expression modules.
The heat map of Figure S6B shows a correlation between the plasma
lipids and liver gene modules. Four modules showed strong negative
correlations with plasma TAGs and were enriched in specific GO terms:
“fatty acid degradation” (cyan), “Golgi vesicle transport” (bisque4),
“response to endoplasmic stress” (light yellow); no pathway enrich-
ments were found in the saddle brown module.
Four modules, enriched in specific GO terms showed a positive cor-
relation with TAGs: “sterol biosynthesis process” (dark orange), “cell
cycle phase transition” (red), “lipid transport” (brown 4), and “regu-
lation of sterol biosynthetic process” (black). The correlation between
individual TAGs and these GO terms is presented in Figure S6C.
Among the negatively correlated modules, only the “fatty acid
degradation” cyan module contained metabolism-related genes. These
included a large number of b-oxidation mRNAs (Acadl, Acadvl, Eci1,
Eci2, Hadha, Hadhb and Acad11) and two mRNAs encoding a plasma
membrane (Slc22a5) and a mitochondrial (Slc25a20) carnitine trans-
porter. The position of the encoded proteins in the overall fatty acid
uptake and catabolism pathway is described in the scheme of
ation pathways. A. Genes of the “lipid signaling” term of the black module and their
ted p-values <0.05 and |rho|�0.4). These genes encoded enzymes contributing to the
thways. B. Scheme of the oxidative phosphorylation pathway with, in blue boxes, the
orrelation coefficients between expression of the “oxidative phosphorylation” genes and
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Figure 5A. The individual correlations between these mRNAs with
plasma TAGs are listed in Figure 5B. The expression of these mRNAs
was increased by HFD in the livers of the three mouse strains, as
mentioned above (Suppl. Table 2).
Figure 5: Plasma TAGs anti-correlate with the liver ß-oxidation pathway. A. Scheme
genes present in the liver “fatty acid degradation term” of the cyan module. B. Spearman
plasma TAGs. C. Plasma TAGs link liver b-oxidation to b-cell pathways controlling insulin
those in red are positively correlated with TAGs.

Figure 6: Plasma TAGs also correlate with key ß-cell transcripts in humans. Heatm
mRNAs. The human islet mRNAs analyzed were homologous of the mRNAs showing the
transcriptomic and plasma lipidomic analysis generated from biosamples obtained from p
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Among the positively correlated modules, the dark orange module was
enriched with mRNAs encoding enzymes involved in cholesterol
biosynthesis (Figure S7). The brown4 module included 4 mRNAs in the
GO term “lipid transport” (Aqp8, Lipc, Cyp2j5, Atp8b4). The red module
of the liver fatty acid and carnitine uptake and b-oxidation pathways with, in blue, the
correlations between expression of the fatty acid metabolism-related genes of (A) and
secretion and functional mass. Pathways in blue are anti-correlated with plasma TAGs,

ap of the Spearman correlation coefficients between individual TAGs and human islet
highest correlation with plasma TAGs in mice. The human data were from paired islet
artially pancreatectomized patients.
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was enriched in biological processes related to cell cycle regulation
(Suppl. Table 8). The black module also contained five mRNAs involved
in cholesterol biosynthesis (Srebpf1, Abcg1, Erlin1, Erlin2, Scp2).
Together, the above data showed a striking inverse correlation be-
tween liver b-oxidation and plasma TAGs concentrations, which
conforms with the established relationship between these two pa-
rameters [30]. It further suggests a link between hepatic b-oxidation,
plasma TAGs, and b-cell function (Figure 5C).

3.5. Correlation between plasma TAGs and islet transcripts in
humans
We next assessed whether similar correlations between plasma TAGs
and key functional b-cell genes could be observed in humans. To this
end, we analyzed RNA-Seq data generated from laser capture micro-
dissected islets and quantitative plasma lipidomic data obtained from a
cohort of 60 partially pancreatectomized patients [31].
For correlation analysis, we selected the aforementioned human
orthologues of the mouse islet mRNAs that encode components of the
GSIS pathway, lipid metabolic enzymes, and proteins of the insulin
signaling pathway. Out of the 86 considered mouse genes, 85 had
human orthologs that were expressed in the human islets data set.
Figure 6 shows the heatmap of the correlation between plasma TAGs
and 44 of the most highly correlated human islet mRNAs. Strikingly, as
in mice, the top negative correlation was found for GCK. The correlation
was also found with CREBP and KCNB1, important regulators of the
insulin signaling pathway. Strong correlations were also found for
several of the lipid metabolic enzymes. The strongest correlations were
found for PITPNC1 (Pitpnc1 was the gene with the second highest
correlation to TAGs in the list of Figure 4A, related to lipid signaling), for
Figure 7: PITPNC1 as a novel regulator of insulin secretion. Analysis of a regulatory ro
alternative splicing variants. Variant 2 includes exon 9, which leads to the presence of an in
by arrows. B. EndoC-bH1 cells express both PTPNC1 variants (left) at a relatively high leve
efficacy of PITPNC1 silencing in EndoC-bH1 cells transfected with a CTRL or two different
exposed 48 h later to 0.5 or 20 mM glucose for 4 h, in the presence or absence of
means � S.E.M. from three independent experiments. Statistically significant differences
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ABHD6, and for HSD17B11. Key elements of the insulin signaling
pathway showed significant correlation with TAGs: IRS2, PI3KR1,
AKT3, FOXO1, FOXO3 (see Figure 6B).

3.6. PITPNC1 as a novel regulator of insulin secretion
Because islet PITPNC1, which codes for a phosphatidyl-inositol
transfer protein [32], showed a strong correlation with TAGs both in
mice and humans, we performed preliminary experiments to assess
whether this gene could be a so-far uncharacterized regulator of in-
sulin secretion. We first measured its expression in the mouse MIN6B1
and the human EndoC-bH1 insulin cell lines. MIN6B1 cells have an
almost undetectable level of the Pitpnc1 mRNA (Ct w30). In contrast,
the two splice variants of PITPNC1 [32] were robustly expressed in
EndoC-bH1 cells (Ct w25; Figure 7A,B). We, therefore, investigated
whether silencing PITPNC1 in EndoC-bH1 would impact GSIS.
Figure 7C shows that transfecting the cells with two distinct siRNAs,
which target both splice variants, reduced PITPNC1 expression by
w60e70%. This led to a significant reduction in insulin secretion in
basal conditions as well as in the presence of 20 mM glucose or of
20 mM glucose and IBMX, a phosphodiesterase inhibitor (Figure 7D).

4. DISCUSSION

In the present study, we aimed to determine whether plasma lipids
could be the indicators of b-cell function and whether the tissues and
pathways controlling the production of these lipids could be identified.
We found that plasma TAGs, as a class, correlate strongly with islet
gene co-expression modules. The most correlated modules are
enriched in mRNAs encoding regulators of GSIS, enzymes producing
le of PITPNC1 in glucose-stimulated insulin secretion. A. PITPNC1 is expressed as two
-frame stop codon at the indicated position. The location of the PCR primers is indicated
l as compared to the expression of Pitpnc1 mRNA in MIN6B1 cells (right). C. Shows the
PITPNC1 siRNAs. D. EndoC-bH1 cells were transfected with the indicated siRNAs and
IBMX. Insulin secretion is expressed as a percent of total insulin. The data are the
are indicated with asterisks (*p < 0.05; **p < 0.01; ***p < 0.001).
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various lipids that modulate insulin secretion, and transducers of the
insulin signaling pathway. In the liver, the highest correlation was with
the b-oxidation pathway. In humans, analysis of paired plasma lipid
and islet transcriptomic data revealed a similar pattern of correlation
between plasma TAGs and key regulators of insulin secretion as found
in mice. This cross-species correlation analysis led to the identification
of PITPNC1 as a new candidate regulator of insulin secretion. Thus,
plasma TAGs emerge as biomarkers of b-cell function both in mice and
humans and as potential effectors of a liver-b-cell axis.
It is usually considered that T2D appears when pancreatic b-cells can
no longer compensate for the insulin resistance of the liver, adipose
tissue, and muscle [1,33]. However, whether the primary defects lie in
insulin secretion or in insulin action may vary among patients.
Assessing insulin sensitivity and appearance of insulin resistance or
determining the insulin secretion capacity of an individual during the
progression of pre-diabetes or T2D is a complex process that relies on
glucose or insulin tolerance tests or on insulinemic/glycemic clamp
techniques. Therefore, finding prognostic plasma biomarkers for T2D,
which could also give information about primary defects in pancreatic
b-cells and/or in insulin target tissues would pave the way for
improved preventive or therapeutic options adapted to individual
patients.
Several previous studies led to the identification of prognostic bio-
markers for T2D or which can help T2D patients’ stratification [34] and
to the identification of islet gene modules characteristic of diabetic b-
cell deregulations [31,35e37]. Plasma metabolomic biomarkers
include various classes of hydrophilic and lipophilic molecules
[34,38e45]. In a previous study, we identified dihydroceramide as
prognostic biomarker candidates for T2D in mice and humans [5].
Plasma TAGs showed a correlation in mice in our previous study with
fasting insulinemia and glucose intolerance. Here, we exploited the
vast diversity of metabolic traits of mice with different genetic back-
grounds to search, in an unbiased manner, for salient correlations
between plasma lipids and tissue gene expression modules.
We found that plasma TAGs and SMs displayed high correlations with
islet gene modules that regulate critical b-cell physiological functions.
The highest correlations with plasma TAGs were found for mRNAs that
encoded key regulators of insulin secretion. These included the
negative correlations with Gck and the subunits of the KATP channel,
Abcc8, and Kcnj11, and the positive correlation with Abhd6, a negative
regulator of insulin secretion [25]. Thus, during the initial period of HFD
feeding, when plasma TAGs are reduced, increased expression of the
Gck gene and the KATP channel and lower levels of Abhd6 represent a
mechanism for b-cell compensation and insulin hypersecretion.
A negative correlation between plasma TAGs and a large number of
genes involved in the insulin signaling pathway was also documented.
The insulin/IGF1R signaling pathway in b-cells participates in the
control of b-cell proliferation, differentiation, and protection against
apoptosis [26,46e50]. Thus, we suggest a strong association between
the activity of this signaling pathway and GSIS in our studied mouse
models. Contrastively, no correlation between plasma TAGs and
transducers or modulators of the insulin/IGF1R signaling pathway was
established in the liver. This suggests that the insulin signaling
pathway may be differentially regulated in b-cells and the liver.
Transcriptional control of the expression of the various signaling
components may predominate in the pancreas whereas phosphory-
lation events play a major role in modulating the insulin signaling
cascade in the liver [51].
Correlation between SMs and islet gene modules overlapped, in part,
with that between gene modules and plasma TAGs but also included
other modules, characterized by “vesicular ER/Golgi transport”,
10 MOLECULAR METABOLISM 54 (2021) 101355 � 2021 The Authors. Published by Elsevier GmbH. T
“histone modification/autophagy” or “response to wounding” genes.
These were less directly related to the processes of acute GSIS and
control of b-cell mass and function; therefore, we focused on the
modules correlated with plasma TAGs.
High levels of plasma TAGs can result from increased liver de novo
lipogenesis, increased hepatic uptake of fatty acids originating from
the adipose tissue or the ingested food, or reduced hepatic b-oxidation
[30]. Additionally, we found that plasma TAGs displayed a strong in-
verse correlation only with a liver gene module enriched in b-oxidation
genes (Acadl, Acadvl, Eci1, Eci2, Hadha, Hadhb, and Acad11). This
suggests that in our experimental model increased hepatic fatty acid
catabolism is the main regulator of plasma TAGs concentrations. This
is consistent, for instance, with the observation that fenofibrate-
induced hepatic b-oxidation reduces hypertriglyceridemia [30,52].
The same gene co-expression module also included genes for the
plasma membrane (Slc22a5) and mitochondrial membrane (Slc25a20)
carnitine transporters. Carnitine is required for transporting fatty acids
into mitochondria by carnitine palmitoyl-transferase for their subse-
quent b-oxidation. The appearance of two carnitine transporters in our
correlation analysis indicates that they regulate the availability of
carnitine for free fatty acid degradation. Carnitine nutritional supple-
mentation can reduce plasma TAGs levels in rodents and humans
[53e55].
Together, our lipidomicetranscriptomic correlation analysis suggests
the existence of a liver-to-b-cell axis whereby hepatic b-oxidation, by
regulating plasma TAGs levels, may influence the expression of key
regulators of GSIS. Although the mechanistic link between TAGs and b-
cell insulin secretion capacity remains poorly understood, it is well
known that exposure of islets to high glucose, high free fatty acids, or a
combination of both lead to increased basal insulin secretion [56e58]
and defects in b-cell function. b-cells express the enzyme lipoprotein
lipase, which releases free fatty acids from circulating TAGs for cellular
uptake [59,60]. Free fatty acids are required to maintain insulin
secretion capacity in the fasted state [61]. However, in the long term,
elevated concentrations of free fatty acids increase basal- and reduce
glucose-stimulated insulin secretion [62e64]. We found that the li-
poprotein lipase (Lpl) mRNA, which is expressed in b-cells and is
required for normal GSIS [59], is expressed at a similar level in all islet
preparations (not shown). Thus, differential free fatty acid uptake may
primarily be determined by the circulating levels of TAGs. The
mentioned detrimental effects of free fatty acids on b-cell function may
explain why elevated plasma TAGs can be causal biomarkers of b-cell
dysfunction and T2D susceptibility [65,66]. An alternative or comple-
mentary explanation is that plasma TAGs are secreted by the liver as
part of lipoprotein particles; studies have shown that low-density li-
poproteins (LDL) have a detrimental effect on GSIS, whereas high-
density lipoproteins (HDL) protect the b-cell functional mass [67].
The fact that higher circulating LDL/HDL ratios may increase diabetes
susceptibility is in agreement with the observation that single nucle-
otide polymorphisms leading to reduced expression of LPL in humans
are associated with an increased risk of T2D development [68].
Our study further unveiled similar correlations between plasma TAGs
and islet genes involved in glucose and lipid regulation of insulin
secretion and insulin signaling in mice and humans. This is the case for
ABHD6, a negative regulator of insulin secretion [25], or the vitamin D
receptor (VDR), which has also been suggested to control the glucose
competence of b-cells [69,70]. But this cross-species analysis also
identified several highly correlated genes whose function in regulating
insulin secretion remains undefined. Examples include PITPNC1, the
mRNA that showed the second highest correlation with TAGs in mice
and the highest correlation in humans. PITPNC1 encodes a
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phosphatidyl-inositol transfer protein, which associates with the Golgi
complex through its binding to resident PI4P and which recruits Rab1b
to enhance protein secretion [71,72]. Single nucleotide polymorphism
in PITPNC1 has also been linked to an increased risk of T2D [73]. Other
potentially interesting mRNAs are HSD17D11 and HSD17B12 genes,
which encode, respectively, a short-chain fatty acid dehydrogenase/
reductase and an enzyme that converts estrone into estradiol and
which also has a fatty acid elongase activity. Further work is, however,
needed to determine the exact mechanism underlying the regulation of
insulin secretion by PITPNC1.
Collectively, our data show that plasma TAGs display high correlations
with islet gene co-expression modules encoding key regulators of b-
cell function and strong correlation, in the liver, with a module that
contains mRNAs encoding fatty acid transporters, carnitine trans-
porters, and b-oxidation genes. These correlations indicate that lower
hepatic b-oxidation activity leads to increased plasma TAGs, which
then may negatively impact the expression of genes controlling GSIS.
Therefore, TAGs can be considered not only as biomarkers of type 2
diabetes [74] but also as indicators of the correlation that exists be-
tween liver fatty acid degradation and b-cell pathways that control
these cells’ integrity and secretion capacity. Finally, this research
provides a rationale for reducing plasma TAGs, for instance through
carnitine supplementation or by fenofibrate-like molecule treatments,
to prevent type 2 diabetes development.
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