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Abstract

Various definitions of fitness are essentially based on the number of descendants of an

allele or a phenotype after a sufficiently long time. However, these different definitions do

not explicate the continuous evolution of life histories. Herein, we focus on the eigenfunction

of an age-structured population model as fitness. The function generates an equation, called

the Hamilton–Jacobi–Bellman equation, that achieves adaptive control of life history in

terms of both the presence and absence of the density effect. Further, we introduce a pertur-

bation method that applies the solution of this equation to the long-term logarithmic growth

rate of a stochastic structured population model. We adopt this method to realize the adap-

tive control of heterogeneity for an optimal foraging problem in a variable environment as

the analyzable example. The result indicates that the eigenfunction is involved in adaptive

strategies under all the environments listed herein. Thus, we aim to systematize adaptive

life histories in the presence of density effects and variable environments using the pro-

posed objective function as a universal fitness candidate.

Introduction

Since the publication of The Origin of Species by Charles Darwin, many biologists have

believed that evolution is promoted by mutation and adaptation. Mutation is a well-known

phenomenon that has been extensively studied at the molecular level. Similarly, adaptation is a

widely accepted idea, and its degree is estimated by an index called “fitness,” which has been

defined in several ways essentially based on the number of descendants of an allele or a pheno-

type after a sufficiently long time. If an allele or an individual with a mutation has greater fit-

ness than other alleles/individuals without a mutation, the mutation will eventually dominate

the population. However, fitness is not observed easily in nature; therefore, we must rely on

indirect indices to analyze evolution.

Because it cannot be easily observed in nature, fitness does not have a unique and quanti-

tative definition. An adaptive gene must meet several requirements to thrive in a population.

The indicator must be a measure by which adaptive genes dominate the population, regard-

less of population dynamics, including saturated growth, exponential growth, or stochastic

growth.
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Biologists use population growth rates, basic reproductive numbers, and abstract payoff

functions instead of substantial fitness and often call them “fitness.” These indices can repre-

sent fitness in restricted environments; e.g., (1) absence of intraspecific and interspecific com-

petition, (2) population dynamics limited to one generation, and (3) negligible population

dynamics. However, these conditions are unusual in the natural world. Therefore, the environ-

ments surrounding organisms are believed to comprise combinations of these conditions.

For example, for the combination of (1) and (2), we can determine the fitness associated

with the life schedules of individuals and the population dynamics. A study addressing this

problem linked age-structured models to control theory [1]. The researchers used the charac-

teristic function of the Euler–Lotka equation as the fitness metric. Although this model was

constructed to maximize the characteristic function with the adaptive life schedule, it maxi-

mized the population growth rate. The maximization of the characteristic function is equiva-

lent to the maximization of population growth. Further, the model provided a framework for

the analysis of the adaptive control of life history to natural selection.

The systematization of mathematical models related to the evolution of life histories has

been promoted by linking the behavior of individuals to their population dynamics. One of

the most challenging aspects of finding a general definition of fitness is that general population

dynamics contain intra- and inter-specific competition, which complicates the dynamics and

makes it challenging to identify what the species optimizes. The r/K selection theory argues

that the adaptive life history in a stationary population maximizes the carrying capacity [2].

Although this argument has long been controversial, it has not revealed a satisfactory strategy

through which the life schedule maximizes the carrying capacity.

A recent report proposed that species maximize the common objective function in both r-
selection and K-selection [3]. This function provides the characteristic function of the Euler–

Lotka equation—the same as in general studies [1, 4]—but it does not incorporate a parameter

such as the carrying capacity. Instead, the function contains a density effect that represents the

intra-specific competition from each age and state. If the density effect generates a stationary

population, it indicates the carrying capacity and provides an optimal life history in K-selec-

tion. According to this model, density effects evolve various life histories not only with precoc-

ity and prolificacy but also by maximizing the population growth. This phenomenon has been

observed in another study [5].

An adaptive condition for species requires not only the maximization of the population

growth rate but also an evolutionarily stable strategy (ESS): no mutants can invade the popula-

tion or the genetic pool. In previous research [4], the carrying capacity was considered a con-

straint because the objective function was assumed to monotonically decrease in terms of the

density effect.

Those studies unified the population growth rate and the basic reproduction number via a

characteristic function. The former is not thought to be appropriate for fitness under a satu-

rated population. Conversely, the latter does not always become a larger population than the

species maximizing the former because it does not consider the generation time. Maximizing

the characteristic function maximizes the population growth rate in r–selection and maximizes

the basic reproduction number in K–selection. In other words, these parameters as fitness are

a result of maximizing the characteristic function and not a direct indicator of evolution. The

applicability of this framework in a variable environment remains to be determined.

Evolution in a variable environment was established via sensitivity analysis [6] and Tulja-

purkar’s approximation [7]. These methods have been systematized for general transition-

matrix models. Recent studies focused on the effects of these structures on population dynam-

ics in variable environments [8–11]. Each life history changes with age and has individual dif-

ferences; however, it is not always reasonable to observe the growth of the physiological state
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with age in the field research because it is difficult to divide heterogeneity into each age struc-

ture in many cases. Therefore, biologists often apply state-structure models without age to

their analysis. Essentially, researchers of empirical studies now need to consider each age struc-

ture. Evolution cannot ignore age because natural selection is believed to act with individual

life histories. Multistate structured models involving age are an increasingly important area of

demography and ecology [12–14].

In this study, we construct a method that addresses the adaptive life schedule in the absence

and presence of a variable environment based on a continuous multi-state age-structured

population model. Our method follows the general theorem for r/K-selection established by

Oizumi et al. [3] and derives a more generalized control equation for the adaptive life strategy

from it in a constant environment. Further, we construct a perturbation method that corre-

sponds to Tuljapurler’s approximation in continuous models. We adopt this method for the

adaptive control of heterogeneity for an optimal foraging problem in a variable environment

as an analyzable example. Next, by comparing adaptive strategies in the presence and absence

of a variable environment, we suggest that there exists an adaptive threshold for the variance of

heterogeneity under environmental stochasticity. This study systematizes adaptive life histories

in the presence of individual heterogeneity, density effects, and environmental stochasticity

using the aforementioned objective function.

Our results reveal that fitness is closely related to the reproductive value. We show that

characteristic functions play an important role in population dynamics even in constant and

variable environments. Our model shows that heterogeneity is more likely to evolve in a vari-

able environment than in a constant environment. Our framework will help us find a universal

definition of fitness.

Theory and mathematical methods

Multi-state age-structured population model

We developed a general model theory for biomathematics. We define the state-growth model

for each trait. Suppose that y 2 A � Rd are d-dimensional trait features characterizing each

individual where A is the domain of y. The growth of each trait from age a0 to a is assumed to

be described by a d-dimensional Ito-type diffusion process

Xj
a ¼ yj þ

Z a

a0

gjðs;XsÞdsþ
XN

‘¼1

Z a

a0

sj‘ðs;XsÞdB
‘

s j ¼ 1; 2; � � � ; d: ð1Þ

B‘
t

represents the ℓ-th element of the N-dimensional Brownian motion and σjℓ(�) comprises

Sj;j0 ða; yÞ≔
XN

l¼1

s‘jða; yÞs‘j0 ða; yÞ:

Further, gj(�) and Sjj0(�) represent the mean and covariance of j-th state growth rates,

respectively.

This SDE can be interpreted as a rule for each state growth of individuals. The heterogeneity

of individuals generated by the SDE is referred to as internal stochasticity to distinguish it

from environmental stochasticity, which is external stochasticity [15].

For the boundary value x 2 @A, each state transition rate and fluctuation term are assumed

to be zero (Dirichlet condition). The age-specific fertility rate in state y is given by F(a, y)� 0,
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and the force of mortality is assumed to satisfy

m 2 L1
loc;þð½0; aÞ � AÞ;

Z a

0

da mða; yÞ ¼ 1 8y 2 A; ð2Þ

in each state because α denotes the maximum attainable age.

Let the population vector Pt(a, y), in which each individual follows the ingredients Eq (1),

F(a, y), and Eq (2), be a cohort density at age a at a state y in time t. Then, we obtain the basic

partial differential equation as

@

@t
þ
@

@a

� �

Pt a; yð Þ ¼ � H a; yð ÞPt a; yð Þ; ð3Þ

where the linear operator H(a, y) is given by [16]

Hða; yÞ� yð Þ ¼ mða; yÞ þ
Xd

j¼1

@

@yj
gj a; yð Þ� yð Þ
� �

�
1

2

Xd

j¼1

j0¼1

@
2

@yj@yj0
Sjj0 a; yð Þ� yð Þ
� �

:

Eq (3) implies that the cohort transitions dynamically for age a and state y at time t.
In addition, we assume that the boundary condition representing the birth law is given by

Ptð0; yÞ ¼ nðyÞ
Z a

0

Z

A
dadx Fða; xÞPtða; xÞ; ð4Þ

where nð�Þ 2 L1
þ
ðAÞ represents the state distribution of the neonatal population satisfying

Z

A
dy nðyÞ ¼ 1:

Basic renewal process. Let pt(a) ≔ Pt(a, �) represent the age-density function at time t
considering a value in the trait space E = L1(A); further, let X≔ L1(0, α;E) be the state space of

the age-density functions. Then, the basic system (Eqs (3) and (4)) is formulated as an abstract

McKendrick equation given as

@

@t
þ
@

@a

� �

pt að Þ ¼ � HðaÞptðaÞ;

pðt; 0Þ ¼
Z a

0

daFðaÞptðaÞ;
ð5Þ

where HðaÞ is a linear operator acting on E given by ðHðaÞf ÞðyÞ ¼ Hða; yÞf ðyÞ for f 2 E, and

FðaÞ is a one-dimensional linear operator from E, given by

ðFðaÞf ÞðyÞ ¼ nðyÞ
Z

A
dz Fða; zÞf ðzÞ; f 2 E: ð6Þ

Suppose that the operator � HðaÞ generates an evolutionary system U(a, s), a� s� 0, on E.

Then, for φ 2 DðHðaÞÞ, it holds that

@þ

@a
Uða; sÞφja¼s ¼ � HðsÞφ;

@

@s
Uða; sÞφ ¼ Uða; sÞHðsÞφ;

ð7Þ
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and the solution p is expressed as

pt að Þ ¼

(Uða; a � tÞp0ða � tÞ; t � a;

Uða; 0Þpt� að0Þ; t > a:
ð8Þ

Let β(t) ≔ pt(0) 2 E be the density of the newborns at time t.

bðtÞ ¼
Z a

0

da FðaÞptðaÞ:

Substituting Eq (8) into the boundary condition of Eq (5), we have

bðtÞ ¼ GðtÞ þ
Z t

0

da CðaÞbðt � aÞ; ð9Þ

where

CðaÞ≔ FðaÞUða; 0Þ;

GðtÞ≔
Z maxðt;aÞ

t
da FðaÞUða; a � tÞn:

Then, C(a) is a one-dimensional positive operator on E, whose range is spanned by ν; the

next generation operator is K ¼
R a

0
da CðaÞ. Thus, the spectral radius is given by

rðKÞ ¼
Z a

0

da
Z

A
dz Fða; zÞðUða; 0ÞnÞðzÞ; ð10Þ

which is the reproduction number R0 of our system.

Let ĈðlÞ≔
R a

0
da expf� lagCðaÞ and r 2 C. Then, there exists a unique real root r0 sat-

isfying the characteristic equation LðĈðlÞÞ ¼ 1, i.e.,

Z a

0

da
Z

A
dz expf� lagFða; zÞðUða; 0ÞnÞðzÞ ¼ 1: ð11Þ

It follows from the well-known renewal theorem [17, 18] that there exist numbers C0 > 0

and η> 0 such that

bðtÞ ¼ C0 expfr0tg½1þ Oð expf� ZtgÞ�: ð12Þ

where r0 is known as the dominant characteristic root:

r0 > <rk � <rkþ1; k ¼ 1; 2 � � � ;

and rk (k = 0, 1, 2, � � �) are the characteristic roots of (11)

rk 2 L≔ l 2 C :

Z a

0

da
Z

A
dz exp f� lagFða; zÞðUða; 0ÞnÞðzÞ ¼ 1

� �

:

The long-term logarithmic growth rate (LLGR) of the population denoted by �r is defined as

�r ≔ lim
t!1

1

t
lnfkptð�ÞkXg; ð13Þ
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where L1-norm k�kX is defined as

k�kX ≔
Z a

0

da j�ðaÞjE;

where |�|E denotes the L1-norm of the trait space E. From the renewal theorem (9), we have

�r ¼ r0 in a constant environment.

Eigenvalue problem

Let

H ≔ �
d
da
� HðaÞ;

be a linear operator on X with domain

DðH Þ ¼ φ 2 X :H φ 2 X;φð0Þ ¼
Z a

0

FðaÞφðaÞda
� �

:

Then, (5) can be viewed as an ordinary differential equation on the Banach space X.

dpt
dt
¼H pt; ð14Þ

where pt = pt(�) is a population vector taking a value in X.

Then,H becomes an infinitesimal generator of the C0-semigroup T(t), t� 0, on X, andH
has eigenfunctions wk as

wkðaÞ ¼ expf� rkagUða; 0Þn; k ¼ 0; 1; 2; � � � : ð15Þ

Consider an adjoint operatorH �
and its eigenfunction of w�k . Let us introduce the duality

pairing hv, wiX between v 2 X� and w 2 X as

hv;wiX ≔
Z a

0

Z

A
dady vða; yÞwða; yÞ:

From the relationship hH �v;wi ¼ hv;H wi, we have

ðH �vÞðaÞ≔
dvðaÞ
da
� H�

ðaÞvðaÞ þ vð0ÞnFða; �Þ; ð16Þ

where the domain is given by

DðH �Þ ¼ fv 2 X� :H �v 2 X�; vðaÞ ¼ 0g

and H�ðaÞ is a linear operator on E� given by

H�
ðaÞ≔ �

Xd

j¼1

gj a; yð Þ
@

@yj
�

1

2

Xd

j¼1

j0¼1

Sjj0 a; yð Þ
@

2

@yj@yj0
þ m a; yð Þ:

The adjoint operator � H�
ðaÞ is the generator for the adjoint evolutionary system U�(a, s) =

U(s, a)�, s� a. It follows from (7) that

@

@s
U�ða; sÞ�� ¼ H�

ðaÞU�ða; sÞv; v 2 E�: ð17Þ
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It is reasonable to define the adjoint eigenfunction corresponding to the dominant eigen-

value r0 as the reproductive value. From the adjoint eigenvalue problemH �vk ¼ rkvk, we have

the adjoint eigenvector associated with the eigenvalue rk as

vkðaÞ ¼
Z a

a
ds exp f� rkðs � aÞgU

�ða; sÞvkð0ÞnFðs; �Þ; ð18Þ

where vk(0) is an arbitrary value in E.

From a stochastic perspective, transition operators U and U� are represented by a funda-

mental solution K(s, x! a, y) satisfying

@

@a
K s; x! a; yð Þ ¼ � HðaÞKðs; x! a; yÞ

Kðs; x! s; yÞ ¼ ddðx � yÞ
s � a � að Þ:

or

@

@s
K s; x! a; yð Þ ¼ � H�

ðsÞKðs; x! a; yÞ

Kða; x! a; yÞ ¼ ddðx � yÞ
s � a � að Þ

(cf. [19]). Therefore, Eqs (15) and (18) can be rewritten as

wkða; yÞ ¼ exp f� rkag
Z

A
dy nðxÞKð0; x! a; yÞ ð19Þ

vkða; yÞ ¼
Z

A
dx vkð0; xÞnðxÞ

Z a

a
ds expf� rkðs � aÞg

Z

A
dz Kða; y! s; zÞFðs; zÞ: ð20Þ

Accordingly, characteristic Eq (11) becomes

Z a

0

da
Z

A
dz expf� lagFða; zÞ

Z

A
dy nðxÞKð0; x! a; zÞ ¼ 1:

This fundamental solution K(s, x! a, y) implies the transition probability of the state growth

from an initial state x at age s to a final state y at age a; this is generated by Eq (1).

Using eigenfunctions, we can obtain an asymptotic expansion of the population semigroup.

T tð Þφ≔
Xn

k¼0

hvk;φi
hvk;wki

expfrktgwk þ Oð expfð<rk � �ÞtgÞ; ð21Þ

where � is a small positive number [20].

Further, it is easy to see that the total reproductive value V(t) ≔ hv0, T(t)φi satisfies

VðtÞ ¼ Vð0Þ expfr0tg; ð22Þ

from which we have

�r ¼ r0 ¼ lim
t!1

lnfVðtÞg
t

: ð23Þ

This derivation via functional analysis is technically convenient for defining the semigroup

operator using eigenfunctions; further, a stochastic interpretation of those eigenfunctions is

reasonable to connect the population dynamics with the life histories of individuals. The latter
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interpretation is required to derive the Hamilton–Jacobi–Bellman equation involved in the

adaptive control of life history, and we address this later.

General adaptive life history in a constant environment

To the best of our knowledge, the study of adaptive life histories using structured population

models began with [1, 4]. These studies verified that maximizing the characteristic function

(Eq (11)) is equivalent to maximizing the dominant characteristic root r0. Further, recent stud-

ies have extended this theorem to address internal stochasticity and density effects by adopting

the stochastic control theory [3, 16].

Let us consider the general population dynamics containing the control parameter

u 2 U � Rd0 , where u represents a value in the given Borel set U to control each state Xa [21].

If the d0-dimensional density effect is given by Gt 2 R
d00
þ

, the general population dynamics are

@

@t
þ
@

@a

� �

Pt a; yð Þ ¼ � H a; y; u;Gtð ÞPt a; yð Þ: ð24Þ

Moreover, the renewal process of this system is given by

Ptð0; yÞ ¼ nðyÞ
Z a

0

da
Z

A
dadx Fða; x; ua;GtÞPtða; xÞ:

Then, if γℓ0 = γℓ0(a, y) is a weight function for each age and state, the vector of d0-dimen-

sional density effect Γt is given by

Gt ≔ ðG
‘0

t Þ0�‘0�d00 ; G
‘0

t ≔ hg‘0 ; Pti:

For simplicity,H(a, y, u, Γ) is assumed to be an adjoint Fokker–Planck Hamiltonian param-

eterized by constant vectors u and Γ

Hða; y; u;GÞ�ðyÞ≔

Xd

j¼1

@

@yj
gj a; y; u;Gð Þ� y rightð ÞÞ

� �

�
1

2

Xd

j0¼1

@
2

@yj@yj0
Sj;j0 a; y; u;Gð Þ� yð Þ

� �

þmða; y; u;GÞ�ðyÞ

ð25Þ

Suppose that fertility depends on states y, u, and Γ such that

Fða; y; u;GtÞ ¼ Fða; y; u;GÞ: ð26Þ

These assumptions assume that the density effects are approximated to zero or are constant

in sufficiently small or stationary populations.

Here, ϕ[u] indicates that ϕ is a functional with respect to u. If ~uða;XaÞ 2 U is the adaptive

control of the life schedules, it should satisfy the following theorem.

Theorem 0.1 Let ~u ¼ ~uða;XaÞ be

~u 2 U; s:t: r0½~u�ðGÞ ¼ sup
u2U

r0½u�ðGÞ;

Let ψr [u] (Γ) be given by

cr½u�ðGÞ≔
Z a

0

da expf� ragFða; y; u;GÞðUða; 0; v;GÞnÞðyÞ
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and cr0 ½u�
½u�ðGÞ ¼ 1. We define ~r0ðGÞ as ~r0 ≔ r0½~u�ðGÞ as follows: Then, we have

c~r0
½u�ðGÞ � c~r0

½~u�ðGÞ ¼ 1:

This theorem is easily verified because of the monotonicity of ψr [u] (Γ) with respect to r.
The theorem implies that a control that maximizes ψr [u] (Γ) is equivalent to maximizing the

dominant characteristic root r0(Γ) as a function of Γ (cf. [3]).

This theorem leads to two types of arguments: Let the maximized ψr [u] (Γ) be given by

~crðGÞ≔
Z

A
dy sup

u2U

Z a

0

da expf� ragFða; y; u;GÞðUða; 0; u;GÞnÞðyÞ
� �

: ð27Þ

One argument is related to the r selection theory that maximizes the dominant characteris-

tic root when we choose the condition

~crðGÞ

�
�
�
r¼~r ;G¼o

¼ 1: ð28Þ

Because Γ represents the strength of the density effects, Γ = o indicates the adaptive strategy

that will satisfy the selection of r. The second argument represents the conditions in K selec-

tion:

cr½u�ðGÞ
�
�
�
r¼0;G¼~G

� ~crðGÞ

�
�
�
r¼0;G¼~G

¼ 1;

because the adaptive strategy in a stationary population is believed to be uninvaded by any

strategy. ψ0 [u] (Γ) is essentially the basic reproductive number, and, therefore,

~crðGÞ

�
�
�
r¼0;G¼~G

¼ 1 ð29Þ

is necessary and sufficient for the adaptive strategy in K selection (K strategy). ~G must satisfy

several additional conditions, such as existence, uniqueness, and stability. The details of these

additional conditions can be determined in Text A in S1 File. Although the r strategy cannot

serve to conserve the exponential growth of the population in nature, it is believed to be the

case that the r strategy matches the K strategy. In this case, the r strategy comprising precocity

and prolificacy becomes a candidate for the adaptive strategy even in a stationary population.

For example, there is a mathematical model in which intraspecific competition does not influ-

ence the control of foraging resources [3]. If ν(y) = δd(x − y), our method unifies the r/K strate-

gies via the characteristic function in Eq (27), which is matched with the consequence in the

references mentioned previously.

Γ is adjusted to

G ¼ Gy 2 G 2 Rd0
þ

�
�
�r0ðGÞ ¼ 0

n o

assuming that each element is positive for all ℓ0:

0 < Gy‘
0

<1:
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Then, a population density P†(a, y) generating Γ† exists and satisfies

@

@a
Py a; yð Þ ¼ � Hða; y; v;GyÞPyða; yÞ

Pyð0; yÞ ¼ bynðyÞ

b
y

: ¼ hF; Pyi
�
�
�
G¼Gy
¼ const:, crðGÞ

�
�
�
r¼0;G¼Gy

¼ 1:

Therefore, Γ† can provide a saturated population under nonlinear population dynamics.

Let us consider the maximized function

~vrða; y;GÞ :¼ sup
u2U
fvr½u�ða; y;GÞg ð30Þ

vr½u�ða; y;GÞ ¼
Z a

a
dt exp f� rðt � aÞgU�½u�ða; t;GÞvð0ÞnFðt; ut;G; �Þ: ð31Þ

By applying the stochastic interpretation to Eq (31), Eq (30) can be rewritten as the statistics of

a diffusion process Xt ¼ ðXj
t
Þ

1�j�d as

~vrða; y;GÞ ¼

sup
u2U

~crðGÞEy
Z a

a
dt Fðt;Xt; ut;GÞ exp �

Z t

a
ds ðmðs;Xs; us;GÞ þ rÞ

� �� �� �

;
ð32Þ

where Ey½�� denotes the expectation of the probability measure of Xτ in Xa = y. This representa-

tion is called the Feynman–Kac formula, and it is well known in stochastic analysis [19]. Eq

(32) is called the value function in the control theory [21]. The diffusion process Xt ¼ ðXj
t
Þ

1�j�d

satisfies the following stochastic differential equation (SDE):

Xj
t
¼ yj þ

Z t

a
ds gjðs;Xs; us;GÞ þ

XN

‘¼1

Z t

a
sj‘ðs;Xs; us;GÞdB

‘

s a � t � a

Xj
a ¼ yj

:

The SDE is given by Eq (1) parameterized by u and Γ, and it can describe the growth process

of each state from age a to u in both trivial (Γ = 0) and nontrivial (Γ = Γ†) equilibrium points.

Thus, vr [u] (a, y, Γ), the solution of the Dirichlet problem

@

@a
� H� a; y; u;Gð Þ � r

� �

vr u½ � a; y;Gð Þ þ ~vr Gð ÞF a; y; u;Gð Þ ¼ 0;

provides a statistical representation of the corresponding diffusion process called the Feyn-

man–Kac formula [19, 22]. The adjoint Hamiltonian is given by

H�ða; y; v;GÞ ¼

�
Xd

j¼1

gj a; y; u;Gð Þ
@

@yj
�

1

2

Xd

j¼1

j0¼1

Sjj0 a; y; u;Gð Þ
@

2

@yj@yj0
þ m a; y; u;Gð Þ

The stochastic interpretation is appropriate for describing the adaptive life history and cor-

responding population dynamics for the following two reasons. (1) To reveal that the fittest

dynamics are generated by the optimally controlled life history of individuals. (2) To derive

the main equation in this study from the central principle of optimality efficiently.
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According to the optimal control theory, adaptive strategies must follow a basic property

called Bellman’s principle (or the principle of optimality):

“an optimal strategy has the property that whatever the initial state and initial control are,

the remaining control must constitute an optimal strategy with regard to the state resulting

from the first strategy” [23].

The following relationship is derived based on this principle:

~vrða0; y;GÞ ¼

sup
u2U

�

Ey
�

~vrða;Xa;GÞ exp
�

�

Z a

a0

ds ðmðs;Xs; us;GÞ þ rÞ
�

þ~crðGÞ

Z a

a0

ds Fðs;Xs; us;GÞ exp
�

�

Z s

a0

dt ðmðt;Xt; ut;GÞ þ rÞ
���

;

ð33Þ

where 0� a0� a� α. This relationship implies that the adaptive control from a0 to a in the

terminal condition ~vrða; y;GÞ is consistent with the control of this function from a0 to α, and it

leads to

@

@a
~vr a; y;Gð Þ � inf

u2U
f H� a; y; u;Gð Þ þ r½ �~vr a; y;Gð Þ � ~cr Gð ÞF a; y; u;Gð Þg ¼ 0

~vrða; y;GÞ ¼ 0

ð34Þ

~crðGÞ ¼

Z

A
dy ~vrð0; y;GÞnðyÞ; ð35Þ

(see Text B in S1 File). This equation is significant in control theory and is called the Hamil-

ton–Jacobi–Bellman (HJB) equation. From the basic theorem of the adaptive life schedule, the

adaptive strategy ~urða; yÞ
�
�
y¼Xa

in r selection (r strategy) is obtained using Eq (28), and the K

strategy ~uKða; yÞ
�
�
y¼Xa

is given by Eq (29).

Based on Eqs (28) and (29), Eq (34) is simplified as

@

@a
~vr a; y;Gð Þ � inf

u2U
f H� a; y; u;Gð Þ þ r½ �~vr a; y;Gð Þ � F a; y; u;Gð Þg ¼ 0;

~vrða; y;GÞ ¼ 0

~crðGÞ ¼ 1

ð36Þ

Thus, we obtain an equation for which the adaptive strategy is satisfied in a constant envi-

ronment. Eqs (28), (29) and (36) contain and are more general than the result of [3] because

they account for reproductive controls. Moreover, these equations reveal that adaptive control

depends on the state distribution of the neonatal population ν(y) via ~r0 or ~G. Accordingly, the

equation above indicates that individual life histories evolve to maximize the reproductive

value function (Eq (32) at age zero) in a constant environment.

External stochasticity and perturbation method

The previous sections revealed a parameter that maximizes the adaptive life history in a con-

stant environment. This section presents the population dynamics behavior under a simple

stochastic environment.

Although there are several assumptions and candidates for statistical noise as external sto-

chasticity, we simplify environmental stochasticity as white noise parameterized by a and y
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W tða; yÞ.

W tða; yÞ ¼
@

@t
Bt a; yð Þ ð37Þ

Eext
½W tða; yÞ� ¼ 0 ð38Þ

Eext½W tða; yÞW tða0; y0Þ� ¼ dða � a0Þd
d
ðy � y0Þ; ð39Þ

for all t> 0. Btða; yÞ denotes the Brownian motion parameterized by a and y. Consider that a

population vector under external stochasticity Pεt ða; yÞ follows the stochastic partial differential

equation

@

@t
þ
@

@a

� �

Pεt a; yð Þ ¼ � H a; yð Þ � εW t a; yð Þð ÞPεt a; yð Þ; ð40Þ

where ε denotes a sufficiently small positive constant that represents the strength of external

stochasticity. Because it is difficult to compute a strict value of an LLGR involving external sto-

chasticity, we apply a perturbation method to ε to calculate its approximate value, such that

�rðεÞ ¼ r0 þ εD1 þ ε
2D2 þ � � � :

Second-order approximation of long-term logarithmic growth rate. We introduced the

derivation of the second-order approximation of LLGR in Eq (40). The population Hamilto-

nian vector, Hamiltonian, and noise functions are simplified to avoid computational complex-

ity as

Pεt ¼ Pεt ða; yÞ

W t ¼ W tða; yÞ:

Let us consider the following variation of the constants formula:

Pεt ¼ TðtÞφþ ε
Z t

0

dt0 Tðt � t0ÞW t0P
ε
t0 : ð41Þ

The semigroup T(t) is defined by Eq (21). With Eq (41) and Ito’s formula for the multiple sto-

chastic integral [24], a perturbation of the population vector is found by computing iteratively.

Pεt ¼
X1

m¼0

εmQmðtÞφ

Q0ðtÞφ≔ TðtÞφ ¼
Xn

k¼0

hvk;φi expfrktgwk þ Oð expfð<rk � �ÞtgÞ

QmðtÞφ≔

Z t

0

� � �

Z tðm� 1Þ

0

dt0dt00 � � � dtðmÞ Tðt � t0ÞW t0Tðt
0 � t00ÞW t00Tðt

00 � t000Þ � � �W tðmÞTðt
ðmÞÞφ

ð42Þ

Introducing a new operation symbol

kf k ¼
Z a

0

da
Z

A
dy f ða; yÞ;
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each Qm (t) φ is deformed as

QmðtÞφ ¼
Xn

k1 ;���;km

expfrkmtgwkm

�

Z t

0

� � �

Z tðm� 1Þ

0

dt0dt00 � � � dtðmÞ
Ym� 1

‘¼1

kvkm� ‘W tðm� ‘Þwkm� ‘þ1
kkvkmW tmφk

¼
Xn

k1 ;���;km

expfrkmtgwkm

Z t

0

� � �

Z tðm� 1Þ

0

Ym� 1

‘¼1

kvkm� ‘dBtðm� ‘Þwkm� ‘þ1
kkvkmdBtmφk

¼
t
m
2

m!

Xn

k1 ;���;km

expfrkmtgwkm
khm

Btffiffi
t
p

� �

vkmφ
Ym� 1

‘¼1

vk‘wk‘
k;

ð43Þ

where hm(x) denotes the Hermite polynomial

hm xð Þ≔ ð� 1Þ
m exp

x2

2

� �
dm

dxm
exp �

x2

2

� �

m ¼ 0; 1; 2; � � � :

The last row in Eq (43) is derived from the following formula [24]:

m!

Z t

0

Z t0

0

� � �

Z tðm� 1Þ

0

dBt0dBt00 � � � dBtðmÞ ¼ tm2hm
Btffiffi
t
p

� �

t � t0 � � � � � tðmÞ:

The arbitrary constant of the adjoint eigenfunction is set as

Z

A
dx vkð0; xÞnðxÞ ¼ hvk;wki

� 1 k ¼ 0; 1; 2; � � � :

If the population vectors in the presence and absence of external stochasticity are close to each

other, Pεt � P0
t ¼ Pt ðε� 1Þ, the perturbation expressed in Eq (43) provides an accurate

approximation. With this assumption, a ε-specific mean LLGR �rEðεÞ is represented by substi-

tuting Eq (43) into Eq (23) such that

�rE εð Þ ¼ lim
t"1

1

t
Eext lnkPεt kX
� �

� ¼ lim
t"1

1

t
Eext ln

(
X1

m¼0

εm hv0;Qm tð Þw0i

" )#

: ð44Þ

For simplicity, suppose that the initial population is the eigenfunction corresponding to the

0–zeroth characteristic root.

By expanding Eq (44) into a Taylor series at ε = 0, the growth rate becomes

�rEðεÞ ¼ r0 þlim
t"1

ε
t
Eext hv0;Q1ðtÞw0i

hv0;Q0ðtÞw0i

� �

þlim
t"1

ε2

t
Eext hv0;Q2ðtÞw0i

hv0;Q0ðtÞw0i
�

1

2

hv0;Q1ðtÞw0i

hv�
0
;Q0ðtÞw0i

� �2
" #

þOðε3Þ:

ð45Þ

Let us consider the mean growth rate in an environment comprising sufficiently small distur-

bances such that the third- (or higher-) order terms in ε can be truncated. The second term on

the right-hand side is zero in the mean growth rate because of the statistical property of the

fluctuation term (cf. Eq (38)). Accordingly, the key point is the estimation of the second-order
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term in Eq (45). One of the pieces composing the second-order term is computed as

hv0;Q2 tð Þw0i ¼ expfr0tg
t
2!

X

k

kh2

Btffiffi
t
p

� �

v0w0vkwkk: ð46Þ

Hermite polynomials are orthogonal with respect to Gaussian measure

1
ffiffiffiffiffiffi
2p
p

Z 1

� 1

dx hm xð Þhm0 xð Þ exp �
x2

2

� �

¼ m!dmm0 ;

i.e., the term becomes statistically zero.

Eext
½hv0;Q2ðtÞw0i� ¼ 0: ð47Þ

Similarly, the other component of the third term in Eq (45) is computed as

1

2
lim
t"1

1

t
Eext hv0;Q1ðtÞw0i

hv0;Q0ðtÞw0i

� �2
" #

¼
1

2
lim
t"1

1

t

Z t

0

dt0 kðv0w0Þ
2
k

¼
1

2
kðv0w0Þ

2
k:

ð48Þ

After combining the components (Eqs (47) and (48)), the second-order approximation of

the LLGR becomes

�rE εð Þ � r0 �
ε2

2
kðv0w0Þ

2
k

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
deviation term

:
ð49Þ

This approximation is similar to the Tuljapurkar approximation [7]; however, it differs in

several aspects. For instance, the deviation term corresponding to the original Tuljapurkar

approximation is described by a sensitivity matrix. In this continuous version, statistics con-

cerning the diffusion process Xa account for the term. One important point is that the second

term on the right-hand side of the equation above incorporates eigenfunctions. As described

previously, the adjoint eigenfunction serves as an objective function to determine the adaptive

strategy. This characteristic suggests that an adaptive species in a variable environment does

not always maximize identical functions in a constant environment. That is, we may find

another adaptive strategy u� as

�rE ~ur½ � � ~r �
ε2

2
kð~v0 ~w0Þ

2
k � �rE u

�½ �;

where the arbitrary constant is set to

Z

A
dx ~v0ð0; xÞnðxÞ ¼ h~v0; ~w0i

� 1
:

Results

Specific model for twofold stochasticity

The previous section revealed that the effect of external stochasticity on population growth is

represented by the eigenfunctions corresponding to the dominant characteristic root in the

mean environment. We use a specific mathematical model that is analytically solvable to

examine the contribution of internal stochasticity to external stochasticity.
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Let us consider the role of internal stochasticity in external stochasticity. We construct a

mathematical model that compares the LLGRs on a group of inhomogeneous growth rates

with those of a group of homogeneous growth rates in a variable environment (cf. Fig 1). This

figure illustrates the concept of a simple model. This model verifies whether the variance in

size growth σ1 increases with the LLGR �rEðs1Þ for positive values of ε.

The model aims to estimate the existence of the adaptive control of internal stochasticity

against external stochasticity. As indicated in the aforementioned analyses of matrix models

based on empirical data, if organisms control their growth rate statistics, there exists an adap-

tive strength of heterogeneity.

When Xa 2 Rþ is the size at age a 2 [0,1), as an effect of internal stochasticity, we assume

that the heterogeneity of the individual size growth rate is

dXa ¼ b1Xadaþ s1XadB1
a ðb1; s1 > 0Þ

X0 ¼ x
: ð50Þ

Heterogeneity is generated by the fluctuation in the second term on the right-hand side of Eq

(50). The SDE provides a geometric Brownian motion that grows exponentially with the fluc-

tuation. Suppose that mortality is constant. Then,

mða; yÞ � m0 ¼ const: ð51Þ

Fertility is assumed to be an allometric function in size

Fða; yÞ ¼ f0yr 0 < r < 1: ð52Þ

Fig 1. Variation in individual size growth in a variable environment.

https://doi.org/10.1371/journal.pone.0257377.g001
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This life history generates the following Hamiltonian and adjoint Hamiltonian.

Hða; yÞ�ðyÞ ¼ Hy� yð Þ ¼
@

@y
b1y� yð Þð Þ �

1

2

@
2

@y2
s2

1
y2� yð Þ

� �
þ m0� yð Þ ð53Þ

H�ða; yÞ�ðyÞ ¼ H�

y� yð Þ ¼ � b1y
@

@y
� yð Þ �

1

2
s2

1
y2 @

2

@y2
� yð Þ þ m0� yð Þ; ð54Þ

respectively. Assuming all neonates have identical state x

nðyÞ ¼ dðx � yÞ;

eigenfunction wr satisfies

@

@a
þHy þ r

� �

wr a; yð Þ ¼ 0; φr 0; yð Þ ¼ d x � yð Þ: ð55Þ

Substituting an ansatz

wrða; yÞ ¼ expf� ðm0 þ rÞag�ða; yÞ

into Eq (55), the equation is converted into a Fokker–Planck equation

@

@a
þHy � m0

� �

� a; yð Þ ¼ 0; lim
a#0
� a; yð Þ ¼ d x � yð Þ;

which gives the probability density function of the geometric Brownian motion in Eq (50).

The probability density function is then given by the logarithmic normal distribution

� a; yð Þ ¼
1

y
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

1
a

p exp �
ln y

x � b1 �
s2

1

2

� �
a

� �2

2s2
0
a

8
><

>:

9
>=

>;
:

Therefore, the eigenfunction is

wr a; yð Þ ¼
1

y
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

1
a

p exp �

ln
y
x
� b1 �

s2
1

2

� �

a
� �2

2s2
1
a

� m0 þ rð Þa

8
>>><

>>>:

9
>>>=

>>>;

: ð56Þ

Because the size growth rate follows an age-homogeneous Markovian process (Eq (50)), this

adjoint function does not depend on age.

vrða; yÞ ¼ vrð0; xÞ lim
a"1
Ey
Z a

a
ds f0X

r

s expf� ðr þ m0Þðs � aÞg
� �

¼ vrð0; xÞ lim
a"1

Z a

a
ds expf� ðr þ m0Þðs � aÞgEy½f0Xr

s� a�

¼ vrð0; xÞ lim
a"1

Z a� a

0

ds0 expf� ðr þ m0Þs
0gEy½f0X

r

s0 �

¼ vrðxÞ
Z 1

0

ds0 expf� ðr þ m0Þs
0gEy½f0X

r

s0 �

¼ vrðyÞ:

ð57Þ
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Therefore, we have

vrða; yÞ ¼ vrðyÞ: ð58Þ

Then, the adjoint eigenfunction follows the adjoint equation

� ðH�

y þ rÞvrðyÞ þ vrðxÞf0y
r ¼ 0: ð59Þ

This equation is explicitly solvable using the following ansatz:

vrðyÞ ¼ Cry
r C 6¼ 0;

which gives

vr yð Þ ¼ Cryr ¼
vrðxÞf0yr

� b1rþ
1

2
s2

1
r 1 � rð Þ þ m0 þ r

:
ð60Þ

Because the function above can compose the characteristic equation

cr

�
�
r¼r0
¼ vrðxÞ

�
�
r¼r0
¼ 1; ð61Þ

the dominant characteristic root is computed as

r0 ¼ r b1 �
1

2
s2

1
1 � rð Þ

� �

þ f0xr � m0: ð62Þ

By the definition of 0< ρ< 1, the characteristic root indicates that internal stochasticity

has a negative effect on population growth in a constant environment

@r0

@s
< 0:

That is, it is nonadaptive for species to have heterogeneity under the condition 0< ρ< 1.

Substituting the dominant characteristic root Eq (62) into Eq (60), the functional becomes

hv0;w0i ¼ vr xð Þ
d
dr
cr

�
�
r¼r0
¼

1

f0xr
:

Hence, the arbitrary constant is determined to be

v0ðxÞ ¼ hv0;w0i
� 1
¼ f0x

r;

and the adjoint eigenfunction corresponding to the dominant characteristic root is

v0ðyÞ ¼ f0yr: ð63Þ

In this case, the adjoint eigenfunction corresponding to the dominant root matches the fer-

tility function.
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Combining the previous steps, the deviation term is given by

ε2

2
kðv0w0Þ

2
k ¼

ε2

2

Z 1

0

Z

Rþ

dady
f 2
0
y� 2ð1� rÞ

2ps2
1
a

� exp �

2 ln
y
x
� b1 �

s2
1

2

� �

a
� �2

2s2
1
a

� 2 m0 þ rð Þa

8
>>><

>>>:

9
>>>=

>>>;

�
�
�
�
�
�
�
�
�
r¼r0

¼
ε2f 2

0
x2r� 1

4s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 r 2 �
ffiffiffi
2
p� �
þ

ffiffiffi
2
p

2

� �

þ
1

2
s2

1

ffiffiffi
2
p

rþ

ffiffiffi
2
p
� 1

2

� �

þ f0x
r

s :

ð64Þ

This deviation term diverges to infinity in the absence of internal stochasticity

s1 ! 0;
ε2

2
kðv0w0Þ

2
k ! 1:

Thus, it is reasonable to consider the effect of higher orders of ε on this divergence. However,

this consequence suggests the significance of heterogeneity in the persistence of species in

minimally variable environments. This property contrasts with the effect of internal stochasti-

city on the dominant characteristic root (Eq (62)). Substituting Eqs (62) and (64) into Eq (49),

the LLGR approximates

�rE εð Þ � r b1 �
1

2
s2

1
1 � rð Þ

� �

þ f0xr � m0

�
ε2f 2

0
x2r� 1

4s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 r 2 �
ffiffiffi
2
p� �
þ

ffiffi
2
p

2

� �
þ 1

2
s2

1

ffiffiffi
2
p

rþ
ffiffi
2
p
� 1

2

� �
þ f0xr

q

: ð65Þ

The LLGR represents a monotonically increasing function with respect to the mean size

growth rate b1,

@�rEðεÞ
@b1

� 0:

This point may appear to be trivial, yet it is notable that the deviation term monotonically

decreases in b1. Further, rapid growth may reduce the risks inherent to variable environments.

The hHeterogeneity of the size growth rate reduces the mean dominant characteristic root

and causes the risk of extinction from the variable environment. By computing Eq (65) in

terms of σ and ε, we find the adaptive heterogeneity of the size growth rate for each ε (see Fig

2). This figure shows the existence of an adaptive value in σ1. Each ε representing the strength

of external stochasticity has a unique adaptive value of σ1 that maximizes the dominant charac-

teristic root r0; ε increases with an adaptive value σ1. This result suggests that species require

greater heterogeneity in more variable environments. The parameters are b1 = 0.6, x = 0.01,

μ0 = 0.1, f0 = 1.0, and ρ = 0.4.

Fig 2 illustrates that adaptive heterogeneity increases with environmental variability. The

numerical analysis suggests that species evolve to yield heterogeneity in variable environments.

This viewpoint corroborates conventional interpretations of the necessity for biodiversity.
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Adaptive resource utilization in external stochasticity

Based on Eqs (50)–(52), we consider a species utilizing different resources (R1 and R2). The

specialist utilizing R1 uses the size growth rate in Eq (50) and that of a specialist utilizing R2 is

( dX2
a ¼ b2X2

adaþ s2X2
adB

2
a

X2
0
¼ x:

ð66Þ

B1
a and B2

a are independent Brownian motions. Then, we assume that b1 2 Rþ � b2 2 R (b2

could be negative), σ1 > σ2� 0, that is, choosing R1 implies a higher risk and growth rate

expectation than choosing R2. Conversely, choosing R2 under the same conditions confers

another risk—that individuals have lower survival until they reach maturity than when choos-

ing R1 because of the slower average growth rate. Therefore, individuals should find their

adaptive risk by hedging ~uða;XaÞ 2 ½0; 1� in accordance with each population size under the

following growth rate (cf. Fig 3).

( dXa ¼ ½b1ð1 � uÞ þ b2u�Xadaþ ½s1ð1 � uÞdB1
a þ s2udB2

a�Xa

X0 ¼ x;
ð67Þ

Fig 2. Adaptive heterogeneity under two-fold stochasticity.

https://doi.org/10.1371/journal.pone.0257377.g002

PLOS ONE Evolution under constant and variable environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0257377 September 13, 2021 19 / 27

https://doi.org/10.1371/journal.pone.0257377.g002
https://doi.org/10.1371/journal.pone.0257377


Fig 3 illustrates the concept of the adaptive resource utilization model. A resource R1 pro-

vides the high size growth rate b1 on average; however, the risk σ1 is also high. Conversely, R2

is low risk σ1 > σ2 and has a low size growth rate on average, i.e., b1 > b2. The species maxi-

mizes its LLGR by optimizing the utilization of both resources. Then, we verify that the exis-

tence of external stochasticity evolves different adaptive utilizations from that in a constant

environment.

H�

yðuÞ ¼

� b1 1 � uð Þ þ b2uð Þy
d
dy
�

1

2
s2

1
ð1 � uÞ2 þ s2

2
u2

� �
y2
d2

dy2
þ m0:

ð68Þ

In this model, finding the adaptive utilization is analogous to generatinge the optimal size

growth curve with heterogeneity. This growth curve maximizes Eq (57) following our frame-

work. Consequently, individuals adopting the adaptive allocation strategy compose the fittest

species by maximizing the LLGR under r-selection.

Because the reproductive value is independent of age in this model, the value function (Eq

(32)) also does not depend on age, such that

~vrðxÞ ¼ sup
u2½0;1�

Z 1

0

ds0 expf� ðr þ m0Þs
0gEx½f0X

r

s0 �

� �

:

From the Bellman’s principle Eq (33), the value function has the following decomposition for

Fig 3. Adaptive resource utilization in external stochasticity conditions. This model is referred to as the two-

resource utilization model and it generates the following adjoint Fokker–Planck Hamiltonian.

https://doi.org/10.1371/journal.pone.0257377.g003
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arbitrary age a:

~vrðxÞ ¼ sup
u2½0;1�

�Z a

0

ds0 expf� ðr þ m0Þs
0gEx½f0X

r

s0 �

þ

Z 1

a
ds0 expf� ðr þ m0Þs

0gEx½f0X
r

s0 �

�

¼ sup
u2½0;1�

�Z a

0

ds0 exp f� ðr þ m0Þs
0gEx½f0X

r

s0 � þ Ex½~vrðXaÞ� expf� ðr þ m0Þag
�

:

The equation above is deformed as

0 ¼ sup
u2½0;1�

�Z a

0

ds0 expf� ðr þ m0Þs
0gEx½f0X

r

s0 �

þ

Z a

0

dðEx½~vrðXs0 Þ� expf� ðr þ m0Þs
0gÞ

�

:

ð69Þ

Using the same process as that used for the derivation of the general HJB equation (see S.2.),

adopt the Feynman–Kac formula [19, 21] into the equation above:

dðEx½~vrðXs0 Þ� expf� ðr þ m0Þs
0gÞ ¼ � ds Ex½½H

�

Xs
ðuÞ þ r�~vrðXs0 Þ� expf� ðr þ m0Þs

0g:

Take the limit as a tends to zero such that

0 ¼ lim
a#0

1

a
sup
u2½0;1�

�Z a

0

ds0 expf� r þ m0ð Þs0gEx f0X
r

s0½ �

�

Z a

0

ds Ex½½H
�

Xs
ðuÞ þ r�~vrðXs0 Þ� expf� ðr þ m0Þs

0g

�

:

ð70Þ

Then, we have

� inf
u2½0;1�
f½H�

xðuÞ þ r�~vrðxÞg þ f0x
r ¼ 0: ð71Þ

The equation above implies that the adaptive control should provide an extreme value:

@

@u
H�

x uð Þ~vr xð Þ
� ���

�
u¼~ur
¼ 0

for all x. This necessary condition leads to the following relationship between adaptive utiliza-

tion and the adjoint function.

~ur ¼
s2

1

s2
1
þ s2

2

þ
b1 � b2ð Þ @

@x ~vr xð Þ
s2

1
þ s2

2

� �
y @2

@x2 ~vr xð Þ
: ð72Þ

Thus, the control is independent of age, which is called stationary control in control theory.

Substituting the adaptive control condition into the adjoint Hamiltonian

� ½H�

xð~urÞ þ r�~vrðxÞ þ f0x
r ¼ 0;

we can derive the adjoint eigenfunction of the adaptive life history from the same ansatz, as in
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Eq (60).

~vrðxÞ ¼
f0xr

r � l

l ¼

r b1 �
1

2
s2

1
1 � rð Þ

� �
þ f0xr � m0 ~ur ¼ 0

b1s
2
2
þb2s

2
1

s1
1
þs2

2

� �
r � 1

2

s2
1
s2

2
rð1� rÞ

s2
1
þs2

2

þ 1

2

ðb1 � b2Þ
2r

ðs2
1
þs2

2
Þð1� rÞ

þ f0xr � m0 0 < ~ur < 1

r b2 �
1

2
s2

2
1 � rð Þ

� �
þ f0xr � m0 ~ur ¼ 1

:

8
>>>>><

>>>>>:

From Eq (72) and the function above, adaptive utilization is computed as

~u ¼ max

(
s2

1

s2
1
þ s2

2

�
ðb1 � b2Þ

ðs2
1
þ s2

2
Þð1 � rÞ

; 0

)

; ð73Þ

which is identical to the strategy in [16], and it is known as constant value control. It indicates

that R2-specific utilizers do not evolve. Because adaptive utilization is constant in constant

environments, finding another utilization constant u� that maximizes the LLGR in a variable

environment implies that another adaptive utilization exists, even if the constant is not optimal

control. Suppose that utilization is always constant, and that v� becomes the adaptive strategy

for twofold stochasticity. The utilization constant specific LLGR �r½u�ðεÞ considers whether the

variable environment selects a life history that favors heterogeneity as adaptive. Because the

utilization rate does not depend on age or size, we can consider a specific LLGR with the fol-

lowing change of coefficients in Eq (65).

b1 ! b1ð1 � uÞ þ b2v; s1 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1
ð1 � uÞ2 þ s2

2
u2

q

:

Solving �r½u�ðεÞ numerically, we find that a variable environment favors heterogeneity, as

suggested in the previous section (Fig 4). This figure illustrates adaptive resource utilization

with respect to ρ for several values of ε. Although ρ represents the scaling exponent of fertility

that denotes a measure of risk aversion in a deterministic environment, the adaptive utilization

of risk appetite in the presence of external stochasticity exists in the domains of greater and

smaller values of ρ. The domain of the adaptive strategy utilizing both resources narrows as ε
increases. This consequence is linked to the relationship between the adaptive value of σ1 and

ε in Fig 1. The parameters are b2 = 0.5, σ1 = 0.8, σ2 = 0.005, and ε = {0, 0.1, 0.3, 0.6, 0.9}; the

others are the same as in Fig 1.

The scaling exponent ρ represents a risk appetite index in economics; small values favor

risk aversion. Adaptive strategy Eq (73) represents an identical interpretation of the exponent

to that in economics. However, under external stochasticity ε 6¼ 0, minimal internal stochasti-

city does not become adaptive for small values of ρ.

Discussion

This study attempted to construct a systematization of the optimal life schedule problem and

population dynamics using the eigenfunction expansion of a structured population model.

Our perturbation method was inspired by Tuljapurkar’s approximation; however, our model

is based on mathematical models of life scheduling that contain internal stochasticity (e.g.,

SDE). This change provides a theoretical basis for the argument that species pose environmen-

tal variability. By applying the framework in this study to this argument, we found that the

optimal parameters reduce the risk of external stochasticity and increase the LLGR. Further,

PLOS ONE Evolution under constant and variable environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0257377 September 13, 2021 22 / 27

https://doi.org/10.1371/journal.pone.0257377


the conventional adaptive life history in constant environments can be found using the HJB

equation derived from the adjoint equation. If we regard the ESS in stable populations as an

adaptive strategy, then using the HJB equation with additional parameters to represent the

magnitude of the density effects on state in a stationary population can provide an adaptive life

history under intraspecific competition.

The framework of this study helps reveal what evolution maximizes. In a constant environ-

ment, this framework extends the consequence in [3]: both adaptive strategies in the presence

and absence of density effects maximize a common function. Further, although adaptive strat-

egies under variable environments are less simple than those in constant environments are,

this study shows that the effect of external stochasticity is closely related to eigenfunctions and

Tuljapurkar’s approximation. The second-order perturbation used in this study yielded trade-

offs between the mean dominant characteristic root and the corresponding eigenfunctions via

the LLGR. Given this relationship, the effect of internal stochasticity on the population growth

may differ from its effect in a constant environment. Thus, as shown in the analysis of the spe-

cific model, the same adaptive strategies are not always used. External stochasticity needs to be

treated as a different type of selection pressure than internal stochasticity and density effects.

Therefore, deterministic models approximated by the averaged environment often overlook

the essential adaptive strategies.

The specific model showed that deviation in the size growth rate buffers the reduction in

LLGR caused by the variable environment. There is a trade-off between the decrease in the

mean characteristic root and the buffering effect of a variable environment with internal sto-

chasticity. This determines the adaptive heterogeneity of size growth, where the length is pro-

portional to the magnitude of external stochasticity. These consequences support the premise

that adaptive utilization prefers high-risk resources in a resource-utilization model in a vari-

able environment. Compared with a constant environment, the domain of the allometric

Fig 4. Adaptive resource utilization under external stochasticity.

https://doi.org/10.1371/journal.pone.0257377.g004
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exponent wherein species evolve with risk aversion under constant environments changes to a

risk-taking strategy. Despite the small exponent value of a species, which indicates the brittle-

ness of internal stochasticity in the deterministic LLGR, risky resources in a variable environ-

ment are selected. Therefore, these specific models appear to provide a theoretical basis for the

conventional argument that individual heterogeneity is necessary for living in a variable envi-

ronment. The mean rapid size growth in risky resources can be interpreted as having an

advantage in terms of a small exponent value because fast growth statistically reduces the risk

of external stochasticity. Considering that precocious species, such as mice, have short life-

spans, this interpretation may be related to the short lifetime of organisms in variable environ-

ments [10, 11, 25]. However, in such a simple model, this interpretation requires careful

consideration because the deviation term of the LLGR does not depend on mortality. Despite

this simplification, our framework links empirical studies of evolution that pertain to life histo-

ries to various theoretical studies of structured population models.

The perturbation method in this study also avoids the mathematical complication of exter-

nal stochasticity at the expense of biological correctness; incorporating these features remains

an open problem. For instance, all cohorts should monotonically decrease with age; however,

setting white noise as external stochasticity violates this rule. There is a limit to this study. Eq

(40) can be interpreted as the fluctuation of mortality from external stochasticity; however,

white noise neither correlates with each age-containing parameter nor ensures the positivity of

mortality. This assumption is only for the sake of mathematical simplicity because it allows us

to assume that external stochasticity alters the mean state growth rate and the fluctuation term

from internal stochasticity or both. In this case, note the treatment of the derivatives in the

noise function; these assumptions can obey the aforementioned biological rules because of the

conservation law in the continuity equation. These noise functions are thought to complicate

the problem and require considerable mathematical discussion. In addition, candidate sto-

chastic processes are believed to vary such that the SDE can be defined by Ito’s integral,

Stratonovich’s integral, and others [26, 27]. If we choose a noise function that does not have

Markovian properties, the approximation of LLGR may not correspond with our results.

Disregarding the configuration method of each stochastic process, this study was conducted

under the premise that all stochastic processes are assumed to be Markovian, which is an

assumption that has been accepted by many ecologists. Structured population models have

various versions including age-, size-, and stage-structured models; Tuljapurkar’s approxima-

tion appears to work well in size- and stage-structured models that ignore cohort information.

However, individuals and cohorts are essential elements when considering evolution in vari-

able environments. Many empirical studies based on models that exclude cohort dynamics

suggest a correlation between the transition rate and environmental variability [8]; however,

they cannot clarify the strategy by which every individual’’s life history reduces the risk of

external stochasticity. On the other hand, these empirical studies suggest that the vital rate,

which is important for adaptive strategy, is robust against environmental changes [9]. This

suggestion imposes an important requirement on theoretical studies of life history evolution in

a variable environment. Theoretical studies based on cohort dynamics should also consider

this requirement. As mentioned in the Introduction, a twofold stochasticity perspective of

cohort dynamics is necessary to understand the effect of stochasticity on life histories. Future

transition matrix models must consider the age structure to understand how organisms

oppose risk in a variable environment in their life history.

Thus far, theoretical research on the evolution of life history has been focused on an indi-

vidual [28]. Within a lifespan, the strategy of maximizing the basic reproduction number is

considered to be adaptive. The idea was the same in a variable environment [29]. The draw-

back of maximizing the basic reproduction number is that the generation time is not
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considered. Therefore, it does not always match the maximization of r0 and LLGR. In r–selec-

tion, the maximization of basic reproductive number may not be the optimal solution. Our

framework overcomes that problem.

As shown in the analysis of the specific model in this study, internal and external stochasti-

city yield the diversity and extinction of organisms. Despite the simplicity of the assumptions

of stochasticity, this study quantitatively demonstrates that heterogeneity decreases risks asso-

ciated with a variable environment. Further, this result suggests that the existence of adaptive

heterogeneity maximizes the population growth. Because many organisms are believed to have

various adaptive strengths of traits, the diversity on an ecological scale may also occur. Eqs

(28), (29) and (36) link the evolution of life history to population growth under internal sto-

chasticity. Eq (49) connects the life history with the effect of external stochasticity via eigen-

functions. In r selection, an adaptive strategy must optimize not only the basic reproductive

number but also the generation time. An adaptive strategy in K selection must generate density

effects that prevent a stationary population from being invaded by other strategies. A previous

study [3] posited that adaptive strategies in both r and K selection were identical via the com-

mon HJB equation, and this provides adjoint eigenfunctions.

On the other hand, the density effect from other states will depend on the current state. In

addition, in terms of fertility, parental status is generally thought to affect the initial status of

the offspring. In this study, these state dependences were ignored and assumed to be constant.

Eliminating these assumptions will allow us to express more realistic intraspecific competition.

Consequently, this study shows that r and K selections and external stochasticity evolve

different phenotypes; these selection pressures are independent of each other. In r selection

under a constant variable, our simple model shows that the heterogeneity should decrease

because it decreases the expectation of the characteristic function. In the K selection, the previ-

ous study demonstrated that the evolution of heterogeneity depended on how density effects

operated in life history [3]. In r selection under the variable environment, the homogeneity

poses a high risk of extinction. The last one is caused by a trade-off between the mean growth

rate and its variance in population dynamics. However, these results also suggest that the con-

sequences of evolution in life history arise from optimizing a common factor, i.e., the repro-

ductive value, in each habitat. To prove this, we must examine whether a life history adaptive

strategy in more complicated environments (i.e., containing both density effects and external

stochasticity) is explained by the framework developed in this study. The choice of the density

effect and the definition of background noise (including non-Markovian) will generate

numerous evolutions concerning heterogeneity in life history. Studies on these themes will

find more sophisticated concepts of fitness. We hope that this research will be one of the cor-

nerstones for future research.

Supporting information
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