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Simple Summary: Multi-strain probiotics are composed of more than one species or strains of
bacteria and sometimes, including some fungal species with benefits to human and animals’ health.
The mechanisms by which multi-strain probiotics exert their effects include cell–cell communications,
interactions with the host tissues, and modulation of the immune systems. Multi-strain probiotics
applications include alleviation of disease conditions, inhibition of pathogens, and restoration of the
gastrointestinal microbiome. Despite all these benefits, the potential of using multi-strain probiotics
is still not fully explored.

Abstract: The use of probiotics for health benefits is becoming popular because of the quest for
safer products with protective and therapeutic effects against diseases and infectious agents. The
emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over
the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal
husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be
more helpful because of synergy and additive effects among the individual isolates. This article
documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious
and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The
administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions,
such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and
gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-
strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms
of synergy among multi-strain probiotics isolates. This forms a basis for future research in the
development of multi-strain probiotics for enhanced health benefits.

Keywords: antibiotics; probiotics; cell-cell communication; synergy; antagonism

1. Introduction

The Food and Agriculture Organization/World Health Organization (FAO/WHO)
working committee on probiotics defined probiotics as “live microorganisms which when
administered in adequate amounts confer health benefits on the host” [1]. These micro-
bial dietary preparations could exert valuable functions on man and animals’ physiology
through modulation of systemic and mucosal immunity and restore the dietary and micro-
bial balances within the gastrointestinal system [2,3]. The use of probiotics is increasing
due to consideration as a suitable option following restrictions on antibiotics as growth
promoters in the livestock industries by many countries [4]. Probiotics have gained several
applications such as inhibition of pathogen [5], improvement of animals health and perfor-
mance, and pond quality in aquaculture [6,7]. Previous studies revealed that some probi-
otics might affect health indexes, microbiome structure, and inhibit pathogenic microbes’
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population within the gut [8–10]. The strains of microorganisms used as probiotics include
members of the genus Bacillus, Enterococcus, Lactobacillus, Pedicoccus, Streptococcus, Propi-
onibacterium, Bifidobacterium, Saccharomyces, Debaryomyces, Micrococcus, and Photobacterium
among others [11]. Recently, different studies are also proposing the use of some commen-
sal clostridial species as probiotics due to their spore formation [12] and stimulation of
T-cell production [13].

There are different forms of probiotics preparations, and sometimes, their efficacy
depends on whether they are single- or multi-strain preparations [14]. Compared to single-
strain preparations, multi-strain probiotics contain more than one strain of the same species,
genera, or multiple genera and sometimes including both bacteria and fungi (Saccharomyces
species) [15]. Some single-strain probiotics are beneficial in alleviating gastrointestinal-
tracts-associated diseases [16]. However, previous in-vitro studies showed that some
multi-strain probiotics could exhibit better inhibitory effects on entero-pathogens, [17]
and enhanced benefits by combining effects of different strains compared to their single-
strain preparations [18]. Additionally, some multi-strain probiotics could reduce the
absorption of harmful chemicals in humans and animals [19,20] due to their ability to
absorb heavy metals within their cell walls [21]. Hence, prompting their application in
biotechnology, detoxification therapy, and as dietary supplements [20,22]. The increased in
the use of multi-strain probiotics has revealed optimal effects compared to single-strain
probiotics [23]. However, despite the availability of multi-strain probiotics, not all had
shown superior benefits [17], but overall, their effectiveness compared to single-strain
probiotics are preferred [23]. Some multi-strain probiotics are more consistent in their
actions than single-strain probiotics [15]. Therefore, this article discussed the mechanisms
of synergy among constituent strains of multi-strain probiotics and their health benefits in
humans and animals. However, very little data were found on the molecular mechanisms
of cell-to-cell interactions among the isolates of multi-strain probiotics. Hence, the need for
more robust and in-depth studies on this aspect.

2. Mechanisms of Action of Probiotics

The mechanism of probiotics’ actions is the various means by which they exert their
beneficial effects on the host, including immune modulation, stimulation/modulation
of gut microbiota, stimulation of digestive enzymes, displacement of pathogens, and
production of bioactive compounds [24–26]. The gut-associated actions are the principal
effects of probiotics, also regarded as the basis of other health benefits [27] as summarized
in Figure 1.

2.1. Stimulation of Bowel Microbiota

The gastrointestinal tract (GIT) is home to an organized microbial community (micro-
biota) which partake in metabolic, nutritional, biochemical, and immunological processes
within the body. Hence, cell-to-cell interactions exist to regulate microbial multiplication,
and preserve the intestinal homeostasis, leading to a range of host responses against com-
mensal and pathogenic organisms [28]. The microbiota is an active ecosystem which is
affected by many factors such as genetics, metabolism, nutrition, geographical location,
stress, and antimicrobial treatment [29]. Some probiotics stimulate the action of the bowel
microbiota [30], while others like Bifidobacterium animalis alter the microbiota’s metabolic
pathways to increase the metabolism of carbohydrate and nucleotide while decreasing the
metabolism of lipids and amino acids [31]. Similarly, yoghurt starter cultures containing
Streptococcus thermophilus MK-10 and Lactobacillus bulgaricus 151 alter the gut microbiota in
rats by increasing the population and diversity of mucosal microbes including enterobacte-
ria, enterococci, and yeast [28]. These organisms benefit the host through maintenance and
modification of favorable microbial population in the gut [14,32], and also restore the gut
microbiota disrupted by antibiotic treatment [33] (Figure 1).
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Figure 1. (created with BioRender; https://app.biorender.com/illustrations/edit/6001622bd73fad00a4e81c08, accessed
on 28 November 2020) shows the mechanism of actions of probiotics: the intake of probiotics stimulates an increase in
the secretion of mucus by goblet cells, mobilization of intraepithelial leucocytes, and tightening of the tight junctions to
protect against the invasion of pathogens. The increase in mucus secretion and improvement of gut microbiota enhances
competitive displacement and inhibition of pathogens adhesion to the gut epithelial surface. Furthermore, the action of
bioactive substances such as lysozyme and cytokines stimulate phagocytosis by macrophages.

2.2. Immune Modulation

One of the essential mechanism of probiotics’ action is immune stimulation and
immunomodulation against pathogenic microbes in the gastrointestinal tract (GIT) [34].
Probiotics influence the hosts’ immune system and have the ability to regulate inflamma-
tory responses [35]. These effects were expressed in the intestine through the strengthening
of the barrier protection resulting from the increased amounts of intra-epithelial leucocytes
and goblet cells, and stimulation of the production of proinflammatory (tumor necrosis
factor α (TNFα) and ILβ) and regulatory cytokines (TGFb, IL-10) for responses against
pathogens, and the sustenance of mucosal integrity [36,37]. Multi-strain probiotics (con-
taining Lactococcus lactis subspecies lactis CB460, L. lactis subspecies cremoris CB461, Strepto-
coccus thermopilus, and Propionibacterium freudenreichii CB129) stimulates the production of
anti-inflammatory cytokines; interleukin 10 and 12 (IL-10 and IL-12) in human peripheral
blood mononuclear cells in-vitro [34]. Similarly, Pediococcus acidilactici and Saccharomyces
cerevisiae subsp. boulardii mixture stimulate the production of proinflammatory cytokines
(IL-6, IL-8, and TNFα) in the ileum of pigs experimentally infected with enterotoxigenic
Escherichia coli (ETEC) F4 [38]. The lysozyme is an essential component of the innate
immune system available in high quantity in the cytoplasmic granules of macrophages
and polymorphonuclear neutrophils [39]. Neveling, et al. [40] reported an increase in the
serum concentration of lysozyme which stimulates the activity of macrophages for phago-
cytosis by the administration of a multi-strain probiotic (containing Lactobacillus crispatus,
Lactobacillus salivarius, Lactobacillus gallinarum, Lactobacillus johnsonii, Enterococcus faecalis
and Bifidobacterium amyloliquefaciens) in chickens (Figure 1). The synthesis of interferon-γ
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(IFN-γ) by natural killer cells and Th1-lymphocytes stimulates production of oxidants
with antimicrobial properties, also known to be upregulated by Salmonellae infections due
to inflammatory responses [41]. However, the administration of a multi-strain probiotic
(containing Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, and
Enterococcus faecium) downregulates IFN-γ in chickens infected with Salmonella enterica [42].
Additional means by which probiotics modulate the immune system is through stimula-
tion of mucus production and tightening of the intestinal tight junctions. Some strains of
Lactobacillus and Bifidobacterium increase the expression of mucin on human intestinal cell
lines and upregulate the tight junction protein (zona-occludens 1) which blocks pathogens
from penetrating the lamina propria [27] (Figure 1).

2.3. Stimulation of the Digestive Enzymes

Some probiotics aid in the breakdown of complex macronutrients and provide the host
with digestive enzymes and vitamins which enhance the absorption of nutrients [43,44].
Oak and Jha [27] showed the ability of some probiotics to lower lactose concentration in
fermented food and increase the influx of lactase enzyme into the small intestine along with
fermented food. The ability of probiotics to promote lactose fermentation has made them
useful in treating lactose intolerance in humans [45]. Probiotics Bifidobacterium strains, such
as B. longum and B. animalis, participate in the metabolism of oligosaccharides by secreting
glycosyl hydrolases and stimulating beta-galactosidase activities [46]. Similarly, Lactobacil-
lus species’ probiotic strains also exhibit high beta-galactosidase activities and increase
insulin secretion, while S. boulardii expresses high disaccharidases alpha-glucosidases,
alkaline phosphatases, and aminopeptidases activities [27].

Furthermore, feed supplementation with multi-strain probiotics (containing Bacillus
subtilis, Bacillus licheniformis and Lactobacillus strains) revealed increased lipase activities
and amylase enzymes within the gastrointestinal tract of shrimps [30]. Similarly, feeding of
Nile tilapia (Oreochromis niloticus) with probiotics strains of B. subtilis, L. rhamnosus, and S.
cerevisiae mixture also enhances amylase, lipase, and protease activities in the intestines [47].
The increase in digestive enzymes’ actions associated with some probiotics’ ingestion
ultimately results in improved nutrients absorption, optimum feed utilization and growth
performance [48]. In addition to the secretion of enzymes in the digestive tract, multi-strain
probiotics containing B. subtilis, E. faecium, L. reuteri, and P. acidilactici, also enhances the
intestinal surface area by increasing micro-villi density and heights, and immune integrity
in tilapia fish [49]. The increase in villi heights was observed in heat-stressed broilers when
fed with probiotics (containing strains of B. subtilis) [50]. Some probiotics were also found
to stimulate the production of proteolytic and lipolytic enzymes helpful in the digestion of
proteins and lipids, respectively [51].

2.4. Displacement of Possible Pathogens

One of the protective mechanisms of probiotics’ action is the competitive displace-
ment of pathogens for adhesion and colonization of the mucosal surfaces [52] (Figure 1).
Attachment to the intestinal mucosa is an essential factor associated with probiotics when
there is intestinal inflammation [53]. Some probiotics microbes also share binding sites with
some entero-pathogens and could hinder their attachment to the host’s cells by binding to
the respective attachment sites [54]. Hence, justifying the rationale for using probiotics to
protect against infections at early stages [52]. The adhesion of probiotics to the intestinal
surface is necessary for the competitive displacement of pathogens and the modulation of
immunological activities [55] (Figure 1). Additionally, the attachment of probiotics bacteria
to the host’s mucosal surfaces increases the chance of host–probiotics interactions thereby
resulting in temporary colonization and prolonging transit time within the intestine to
cause their intended benefits [54].
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2.5. Secretion of Bioactive Substances

The bioactive substances produced by lactic acid bacteria (LAB) include hydrogen
peroxide, lactic acid, diacetyl, acetaldehyde, reuterin, and antimicrobial peptides [56]
(Figure 1). For example, B. subtilis and B. licheniformis produce varieties of bioactive
proteins, such as antibacterial peptides, chitinases, and dextranases which inhibits other
pathogenic bacteria [57]. Antibacterial proteins were also isolated from LAB, among which
bacteriocins constitute an essential group [58]. The bacteriocins are low-molecular-weight
genetically encoded proteins synthesized in the ribosome and secreted outside the cell by
some bacterial species [59]. These active peptides act by binding to surface receptors or
invade host cells. Bacteriocins also act by pore formation on the target cells, cause cellular
DNA degradation and inhibit the biosynthesis of peptidoglycan component of the bacterial
cell wall [60]. The production of bacteriocin by LAB makes them inhibit pathogenic and
food spoilage microbes, hence their potential for use as bio-preservatives [61]. Earlier
research has revealed the presence of bacteriocin producing LAB strains from milk and
cheese [62]. At a regulated pH (5.5), some produce gamma-aminobutyric acid (GABA) [63];
a neurotransmitter with antihypertensive activities [64]. Some probiotics can also stimulate
the production of enzymes that hydrolyze bacterial toxins and modify toxin receptors in
the host [65]. Different lactic acid bacteria species yield various bioactive substances that
inhibit the proliferation of pathogenic microbes (Figure 1).

2.6. Mechanisms of Action of Multi-Strain Probiotics

Some multi-strain probiotics showed enhanced benefits due to the constituent strains’
synergy and additive effects resulting in high adhesion to the mucosae and pathogen
inhibition within the digestive tract [66]. The genetics of the constituent species or strains of
multi-microbial probiotics is vital for understanding the mechanisms by which they interact
with each other, the intestinal microbiota, and the host. A comparative genomic analysis
of the multi-strain probiotics VSL#3 by Douillard, et al. [67] revealed numerous genes
that encode various bioactive substances associated with the probiotics’ health benefits.
These include genes involved in lactose transport (lacF), peptidase activity, carbohydrate,
metal, and amino acid transport. Some bacteria are endowed with extra-cellular structures
known as fimbriae or pili that can adhere to the intestinal epithelium [68,69]. Two main
types of pili are found in LAB and Bifidobacteria; the tight adherence pili (Tad pili) and the
sortase-dependent pili where genes were found in some isolates of VSL#3 probiotics [67].
The Tad pilus gene clusters of B. breve (one of the VSL#3) strains are highly conserved and
involved in gut colonization in mice [69]. All the isolates in VSL#3 also encoded cell-surface
proteins carrying LPXTG motifs that enhance interactions with the host cells [67]. Several
genes that encode fibronectin-binding region proteins, collagen adhesins, outer membrane
proteins, fimbriae or pili were also identified in L. helveticus BD08, L. plantarum BP06,
L. acidophilus BA05 and B. animalis subsp. lactis BL03 and BI04 with possible roles in host
adherence [70]. Lactobacillus plantarum BP06 was shown to harbor the sortase-substrate,
which were also present in L. plantarum WCFS1 in addition to a large mucus-binding
protein that is O-glycosylated by N-acetyl-hexosamine [71]. These peptides are secreted in
a glycosylated form and may have a host signaling function [72]. The presence of the genes
encoding Tad pili, sortase-dependent pili, mucus binding proteins, some even glycosylated,
and S-layer proteins involved in the interactions of probiotic isolates with one another, the
host cells and the host’s microbiota showed that the combination of different species and
strains might offer possible complementary, additive and synergistic effects in the gut [67].
Experimental assessment of the effects of single-strain probiotics of L. helveticus R0052,
B. longum subsp. infantis R0033, and B. bifidum R0071 and the multi-strain preparation
of all the three isolates revealed that the multi-strain synergistically influenced both T-
helper type 1 (TH1) and T-helper type 2 (TH2) responses in Wistar rat models infected with
enterotoxigenic Escherichia coli (ETEC) and Nippostrongylus brasiliensis, respectively [73].
The mechanism by which the multi-strain probiotics exerts their effects was proposed to be
through the downregulation of the nuclear factor-kappa-B (NFκB) pathway [74].
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The other mechanism by which bacteria communicate and regulate several genes’
expression is through a cell–cell communication known as quorum sensing (QS). Quorum
sensing is based on the production, secretion, and detection of small signaling molecules,
whose concentration correlates with the organisms’ cell density secreting these molecules
in the surrounding [75]. An example of QS signaling molecules in bacteria is linked to
autoinducer-2 (AI-2) which is synthesized through LuxS enzyme action [76]. Notably, Gram-
positive bacteria use autoinducing peptides (AIP or peptide pheromones) that act as species-
specific communication signals [75]. The AIP gene regularly borders a two-component
regulatory system (QSTCS) gene cassette [77] which comprises the membrane located
histidine protein kinase (HPK) that monitors environmental factors, and the cytoplasmic
response regulator (RR) that modulates some specific genes expressions [77]. L. plantarum
WCFS1 genome contains relatively high amount of peptide-based QS-TCS and other
putative QS genes [78]. In the past, it was shown that interactions with other lactobacilli
influenced the metabolic traits of L. sanfranciscensis and L. plantarum strains through LuxS-
mediated mechanisms of QS [79].

2.7. Antagonisms among Multi-Strain Probiotics

Some probiotics and lactic acid bacterial strains produce antimicrobial substances rang-
ing from organic acids to bacteriocins. Bacteriocins may be active against closely related
strains, thereby suggesting the likelihood of antagonistic activities among closely related
species or strains such as the lactic acid bacteria [66]. Previous studies have shown that
the activation of some specific component regulatory systems such as plantaricin system
regulated through the QS pathway by competing microorganisms could trigger microbial
antagonism [80,81]. The growth of L. sanfranciscensis DPPMA174 and P. pentosaceus 2XA3
were shown to be inhibited when co-cultured with L. plantarum DC400 with an increased
number of dead/damaged cells compared to their respective monocultures [80]. That was
due to the biosynthesis of pheromone PlnA by L. plantarum DC400 either in a monoculture
or co-culture conditions. The level of PlnA synthesis by L. plantarum DC400 is dependent
on the co-cultivation microbe [82]. Hence, suggesting that co-culturing with L. plantarum
DC400 might constitute stress to L. sanfranciscensis DPPMA174 and P. pentosaceus 2XA3.
Another study by Di Cagno, et al. [75] showed that coculturing of L. sanfranciscensis CB1
and L. brevis CR13 or, L. plantarum DC400 constituted stress and inhibited L. sanfranciscensis
CB1 with an increase in the number of dead/damaged cells and a decrease in the cultivable
cell. This could have been due to several not easily definable conditions such as acid
production, synthesis of antimicrobial compounds, ability to thrive in the medium, and
competition for available nutrients.

3. Applications and Biological Functions of Multi-Strain Probiotics

Probiotics are live microorganisms with an expanded range of healthful activities,
not just on the digestive tract but also on other body systems, including the urogenital
and nervous systems [83]. There is increasing evidence in the biological applications of
probiotics for the maintenance and improvement of gut health [34], inhibition of microbial
pathogens and biofilms [84], improvement of human health through ingestion of fermented
food products [85], and enhancement of growth and productivity in animals [86]. These
and many other beneficial effects of probiotics made it necessary to review the different
multi-strain probiotics applications, such as treating non-infectious diseases, inhibiting
pathogens, and improving human and animal health.

3.1. Treatment of Diseases

Different randomized control clinical trials revealed that some specific probiotics are
useful in the therapeutic management of gastrointestinal (GI) illnesses like inflammatory
bowel disease (IBD) [34], irritable bowel syndrome (IBS), and pouchitis [87,88]. The ad-
ministration of multi-strain probiotics containing different Lactobacilli species, Streptococcus
and Bifidobacterium to patients who have systemic sclerosis alleviates the symptoms of
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gastrointestinal reflux and increased microbial alpha diversity group [88] (Table 1). Frech,
et al. [89], suggested the intake of multi-strain probiotics in the amelioration of systemic
sclerosis due to the association of the GI microbiome imbalance with the pathogenesis
of the disease. Evaluating the functions of multi-strain probiotics containing a mixture
of Bifidobacterium, Lactobacillus, and Streptococcus probiotics strains significantly alleviate
the indicators of IBS including abdominal ache/distress and bloating and improved the
compositions of intestinal microbiota in the treated patients [90]. Yoon, et al. [90] further
proposed that these benefits were due to synergy between the different strains in the
probiotic preparation since the action of probiotics is strain- and disease-specific.

Similarly, a multi-strain probiotic containing S. boulardii, B. lactis, L. acidophilus, and
L. plantarum alleviated the signs of constipation, diarrhea, and modulates the microbial
community in the small intestine of IBS patients [91]. The evidence of the existing relation-
ship between alteration in the intestinal microbiome and cognitive behavioral changes is
also increasing the application of probiotics [92]. In line with this, multi-strains probiotics
consisting of L. acidophilus, L. casei, B. bifidum, and L. fermentum improve cognitive behavior
in patients with Alzheimer’s disease [93]. Some multi-strain probiotics could significantly
lower the level of circulating bacterial endotoxin in type-II diabetes mellitus patients [94].
Ingestion of multi-strain probiotics by pregnant women and their infants decreases food
allergens’ sensitivity and the incidence of atopic eczema [95]. Consumption of yoghurt
starter culture of L. bulgaricus 151 and S. thermophilus MK-10 mixture also relieves the symp-
toms of colitis in rats by increasing the colon length and the amount of mucosa-associated
microbiota [28]. A decrease in the level of putrefactive short-chain fatty acid in the cecum
contents of dextran sodium-sulphate salt-induced colitis in BALB/c rats was previously
reported by Wasilewska, et al. [28]. A similar study also revealed the improvement of the
same condition by a probiotic Dahi (made up of L. acidophilus LaVK2 and B. bifidum Bbvk3
mixture) through a reduction in myeloperoxidase action and level of TNF-α, IL-6, and
IFN-γ in mice [96]. These studies showed the applications of multi-strain probiotics in
alleviating inflammatory responses within the digestive tract, which might be useful in the
treatment of different conditions, as shown in Table 1.

3.2. Inhibition of Pathogens

Recently, there is a rising concern over the high prevalence and spread of antimicrobial-
resistant (AMR) pathogens worldwide. This global challenge is multifactorial and linked
to selective pressure due to the frequent, prolonged, and irrational use of antibiotics in
humans and animals [97]. The prolonged antimicrobial intake depletes the gut microbial
populations thereby allowing the proliferation of pathogenic AMR pathogens like toxi-
genic Clostridium difficile, extended-spectrum β-lactamase (ESBL) producing Enterobacteria,
methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococcus species and other
multi-drug resistant bacteria [98]. Patients on prolonged treatment with broad-spectrum
antibiotics are at high risk of antibiotics-associated diarrhea and pseudomembranous colitis
caused by antibiotic-resistant C. difficile and other pathogenic bacteria [99,100]. Some pro-
biotics’ ability to modulate the intestinal microbiome is one of the mechanisms by which
they prevent antibiotics-associated diarrhea and decrease the spread of AMR bacteria [101].
Lakhtin, et al. [102] reported that multi-strain probiotics consisting of L. acidophilus (strains
NK1, K3III24, 100 ash), Bifidobacterium adolescentis MC 42, B. bifidum, and B. gallinarum
GB synergistically produced lectins with antimicrobial activity against clinical strains of
nystatin-resistant Candida albicans, S. aureus, and their biofilms. Experimental administra-
tion of probiotics to mice showed the inhibition of C. difficile by a multi-strain probiotic con-
taining four strains of E. faecalis [103] (Table 1). Very similar work by Kondepudi, et al. [99]
also showed the inhibition of C. difficile by the administration of multi-strain probiotics
containing L. plantarum F44, L. paracasei F8, B. breve 46, and B. lactis to mice experimentally
infected with C. difficile. The minimal side effects associated with the intake of probi-
otics for treatment coupled with the high incidence of reoccurrence of infections such
as UTI [104] is also increasing the use of probiotics as a suitable alternative or adjunct
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therapeutic plan to conventional antimicrobials [33]. Probiotics do not leave residues or
facilitate the development of resistance to antibiotics because they are preparations of live
organisms [105].

Table 1. The use of multi-strain probiotics in disease treatment.

Probiotics Mixture Conditions Mechanism of Actions References

B. bifidum W23, B. lactis W52, L. acidophilus W37,
L. brevis W63, L. casei W56, L. salivarius W24,
Lactococcus lactis W19 and L. lactis W58

Endotoxins

Improvement of endothelial
barrier, inhibition of mast
cell, activation of
proinflammatory cytokines,
and decrease endotoxin

[94]

L. acidophilus, L. casei, B. bifidum, and L. fermentum Cognitive function in
Alzheimer’s disease [93]

L. paracasei DSM 24,733, L. plantarum DSM 24,730,
L. acidophilus DSM 24,735, and L. delbrueckii
subspecies bulgaricus DSM 24,734), Bifidobacteria
(B. longum DSM 24,736, B. breve DSM 24,732, and
B. infantis DSM 24,737), and Streptococcus
(S. thermophilus DSM 24,731)

Systemic
sclerosis-associated
gastrointestinal disease

Improvement of GI reflux
and intestinal microbiota
alpha diversity

[89]

L. acidophilus LaVK2 and B. bifidum Bbvk3
Dextran sodium- sulphate
salt-induced ulcerative
colitis in mice

Reduction in
myeloperoxidase activity,
levels of TNF-α, IL-6,
and IFN-γ

[96]

L. bulgaricus 151 and S. thermophilus MK-10 Dextran sodium- sulphate
salt-induced colitis

Modulation of intestinal
microbiota, decrease the
content of putrefactive
short-chain fatty acid,
enhanced production
of cytokines

[28]

B. bifidum (KCTC 12199BP), B. lactis (KCTC
11904BP), B. longum (KCTC 12200BP), L.
acidophilus (KCTC 11906BP), L. rhamnosus (KCTC
12202BP) and S. thermophilus (KCTC 11870BP)

Irritable Bowel
Syndrome (IBS)

Alleviation of IBS symptoms
and improvement of
intestinal microbiota

[90]

B. longum and L. casei strain Shirota Treatment of obesity
Decreased weight and
triglyceride in rats fed with
the high-fat diet.

[106]

S. boulardii, L. acidophilus, L. plantarum, B. lactis
IBS associated with bacterial
overgrowth and
constipation

Improvement in bloating,
and pain associated with
constipation

[91]

L. plantarum, B. breve, and L. fermentum
high-dietary fat-induced
obesity and E. coli
challenged

Causes reduced
Lipopolysaccharide and
IL-1β, improved the
structure of intestinal flora
and increased the fecal
short-chain fatty acid
(SCFA) content

[107]

Certain probiotics can modify or alter pathogenic microbial colonization in humans
and animals [108]. Different multi-strain probiotics preparations significantly inhibit
pathogenic bacteria such as Vibrio cholerae (in-vitro) [2], S. aureus, S. epidermidis, Streptococ-
cus pneumoniae, S. pyogenes, Propionibacterium acnes, Moraxella catarrhalis [109], and Proteus
mirabilis [84]. Similarly, cell-free supernatants of Lactobacilli inhibit non-Albicans Candida
species biofilm formation and suggest its use for adjunctive treatment of oral candida
infection [110]. These authors further suggested that some of these probiotic bacteria’s
anti-biofilm activities are due to subtilisin and subtilin production, which are active an-
timicrobial molecules. Multi-strain probiotics containing a culture of L. rhamnosus and
L. reuteri modify the vaginal microbial flora to decrease the vaginal coliforms and yeast
in patients with bacterial vaginosis [104]. However, oral administration of multi-strain
probiotics comprising L. rhamnosus GR-1 and L. reuteri RC-14 showed inactivity on the
microbiome of the lower urinary system, rather an increase in the population of urinary
pathogens was observed [108], thus, emphasizing the administration route as an essential
factor for consideration to achieving the desired benefits.
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A multi-strain probiotic containing different Lactobacillus strains hinders the adhesion
of E. coli and E. faecalis to the bladder cell-lines, unlike the single-probiotics preparations [33]
(Table 2). Likewise, the addition of feed-supplement fermented with a mixed culture of
S. cerevisiae, E. faecium, L. acidophilus, and B. subtilis resulted in significant increase in serum
immunoglobulin-M (IgM) level and inhibit the multiplication of E. coli in broilers [111]. Pro-
phylactic and therapeutic administration of multi-strain probiotics of L. acidophilus (LA-5)
and B. animalis subsp. Lactis (Bb12) mixture proved useful in preventing scar formation in
the kidney of E. coli-induced pyelonephritis in a rat model [112]. Pre-treatment of chicks
with certain multi-strain probiotics before exposure to pathogenic S. Enteritidis A9 inhibits
the pathogens from colonizing the birds [40] (Table 2). Similarly, the administration of
multi-strain probiotics and a recombinant attenuated Salmonella vaccine confers protection
against avian pathogenic E. coli and Salmonella Kentucky in White Leghorn chicks [113].
The in-vitro study of a multi-strain probiotic containing L. plantarum (strain L21 and strain
L80) and L. paraplantarum (strain L103) revealed the inhibition of E. coli, Salmonella groups B
and D in a co-culture tested using agar-spot assay [114]. Multi-strain probiotics mixture of
L. casei and E. faecium also showed significant inhibition of Entamoeba invadens (the causative
agent of traveler’s diarrhea in humans) [115].

Table 2. Multi-strains probiotics against pathogenic microbes.

Multi-Strain Probiotics Isolates Pathogenic Bacteria Host References

B. subtilis and L. mesentroides Vibrio cholereae In-vitro agar
diffusion test [2]

L. plantarum F44, L. paracasei F8, B. breve 46 and B. lactis Clostridium difficile Mice [99]

S. oralis and S. salivarius
Biofilm (S. aureus, S. epidermidis,
S. pneumoniae, S. pyogenes,
Propionibacterium acnes and
Moraxella catarrhalis

Dogs [109]

L. acidophilus LAP5, L. fermentum P2, P. acidophilus LS,
and L. casei L21 S. enterica subspecies Enterica Chickens [9]

L. acidophilus LA-5 and B. bifidum BB-12 P. stomatis, P. multocida, P. canis,
N. animaloris, and N. zoodegmatis [116]

P. acidilactici and S. cerevisiae boulardii Enterotoxigenic E. coli (ETEC) F4 Pigs [38]
L. acidophilus NCIMB 30184, L. fermentum NCIMB
30226, L. plantarum NCIMB 30187, and L. rhamnosus
NCIMB 30188

Pathogenic E. coli and E. faecalis [33]

S. cerevisiae, E. faecium, L. acidophilus and Bacillus
subtilis E. coli Chickens

(broilers) [117]
L. acidophilus NCIMB 30184, L. rhamnosus NCIMB
30188, L. plantarum NCIMB 30187, L. delbrueckii ssp.
bulgaricus NCIMB 30186, L. casei NCIMB 30185,
L. lactis NCIMB 30222, L. salivarius NCIMB 30225,
L. fermentum NCIMB 30226, L. helveticus NCIMB 30224,
B. bifidum NCIMB 30179, B. breve NCIMB 30180,
B. infantis NCIMB 30181, B. longum NCIMB 30182,
S. thermophilus NCIMB 30189 B. subtilis NCIMB 30223

S. typhimurium, C. difficile In-vitro distal
colon model [118]

L. acidophilus NCIMB 30184, L. fermentum NCIMB
30188, L. plantarum NCIMB 30187 and L. rhamnosus
NCIMB 30226

E. faecalis NCTC 0075 and E. coli
NCTC 9001

In-vitro agar
diffusion test [17]

L. rhamnosus and L. reuteri Vaginal coliforms and yeast Human (female) [104]
L. crispatus, L. salivarius, L. gallinarum, L. johnsonii,
E. faecalis and B. amyloliquefaciens Salmonella Enteritidis A9 Chickens

(broiler) [40]

L. acidophilus, L. fermentum, L. plantarum and E. faecium Salmonella enterica Chickens
(broiler) [42]

B. amyloliquefaciens B-1895 and B. subtilis
KATMIRA1933

Inhibits Proteus mirabilis biofilm
formation Invitro [84]

E. faecalis (strains NM815, and NM915) and E. faecium
NM1015 C. difficile infection Mice [103]
L. acidophilus (LA-5), and B. animalis subspecies Lactis
(Bb12) E. coli induced pyelonephritis Sprague-Dawley

rat [112]

L. casei and E. faecium Entamoeba invadens Invitro [115]
B. subtilis, L. acidophilus, P. acidilactici, P. pentosus,
Saccharomyces pastorianus

Avian pathogenic E. coli and
Salmonella Kentucky

White leg-horn
chicks [113]

L. gasseri and L. rhamnosus Non-Candida albicans biofilm
formation In-vitro [110]
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3.3. Improvement of Human Health

The health effects of probiotics are necessitating its commercial development due to
their worldwide consumption [85]. The benefits accrued to ingestion of fermented milk
containing probiotic bacteria include decreased total cholesterol, enhanced immunity by
facilitating resistance to infection and bacterial inhibition and preventing oxidative stress
during exhaustive bodily activities [119]. Ingestion of probiotics is known to improve gut
health in humans and animals [120]. In humans, probiotics have beneficial effects on the
nervous [93], gastrointestinal [121], and immune systems [122]. Some probiotics alleviate
various gastrointestinal ailments like irritable bowel disease (IBD) and systemic sclerosis in
humans [89]. Multi-strain probiotics had proved beneficial for the treatment of dysentery in
addition to the standard regimen with a marked reduction in the extent of bloody stooling,
and a decreased average length of hospital stay [123]. These effects were a result of the
alteration of the microbial and metabolic activities within the gut, and which are enough to
modify the disease process and pathological conditions [124].

3.4. Multi-Strains Probiotics in Animal Husbandry

The increase in the demand for animal proteins due to the global population’s rise
is overstretching the livestock industry, leading to the use of antibiotics as growth pro-
moters and prophylaxis against infectious agents [125]. However, this strategy is not
sustainable because of the growing concerns about antibiotic resistance among microbial
pathogens [126]. Hence, resulting in restrictions on the non-therapeutic administration of
antibiotics to animals [125] in different regions of the world. Therefore, probiotics may
be a potential alternative for improving gastrointestinal health and growth promotion
in different animal species [86]. Based on these, the roles of probiotics in the various
livestock sub-sectors, including poultry, aquaculture, piggery, and ruminant nutrition were
discussed as follows.

3.5. Poultry Farming

In poultry, the addition of probiotics derived from Lactobacillus, Bacillus [127], and
Clostridium species to feed has a positive impact on the growth yield, feed digestion [128],
immunity [129], meat quality [130], and coliforms bacterial count [86,131]. The admin-
istration of multi-strain probiotics (comprising of L. acidophilus LAP5, L. fermentum P2,
P. acidophilus LS, and L. casei L21) to specific-pathogen-free (SPF) chicks infected with
Salmonella enterica subspecies enterica decreases the abundance of proteobacteria of which
Salmonella is a member [9]. Likewise, multi-strain probiotics containing L. acidophilus,
B. subtilis DSM 17299, and Clostridium butyricum increases the serum level of IgA and IgM
with a decline in the count of E. coli in the feces of broiler chickens [86]. Furthermore,
supplementing poultry feed with multi-strain probiotics was reported to result in a rise
in villus length and the number of goblet cells in the jejunum, and villus height to crypt
ratio in the ileum of chickens [132]. Feeding of chickens with citrus-Junos by-product
fermented with multi-strain probiotics (containing S. cerevisiae, E. faecium, L. acidophilus
and B. subtilis) also increases the weight gain and mean daily feed consumption [111].
Multi-strain probiotics of B. subtilis (B. subtilis 1781 plus B. subtilis 747 or B. subtilis 1104
plus B. subtilis 747) boost the bowel immunity and strengthen the veracity of the gut barrier
by stiffening the gut tight junctions in chickens [133]. In laying chickens, administration of
multi-strain probiotics reduces feed conversion ratio and percentage of damaged eggs [134].
These studies are advocating probiotics to chickens feed to promote growth performance
and health through enhancement of digestive function and regulation of intestinal micro-
biome [129,135]. However, several works have also reported a little or no improvement in
the total increase of weight in chickens administered with probiotic (including multi-strain)
supplemented feed [136]. These differences could be a result of variations in the strains
or species used in the formulation of the probiotics, preparation techniques, the dosage
administered, age of the birds and general level of sanitation [86,128].
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3.6. Aquaculture

The use of probiotics for health improvement has also found application in aquacul-
ture. The addition of multi-strain probiotics in the feed of rohu (Labeo rohita) was revealed
to stimulate cellulolytic and amylolytic enzymes secretions with improved the growth
output [137]. The multi-strain culture of B. subtilis, B. licheniformis, and lactobacilli probiotics
significantly improves pacific white shrimps’ growth (Litopenaeus vannamei) and enhances
non-specific immunity and the abundance of Bacillus to influence the intestinal micro-
biota [30]. Similarly, a cocktail of Lactobacillus pentosus BD6, L. fermentum LW2, B. subtilis
E20, and S. cerevisiae P13 probiotics enhanced the health and growth output of white
shrimp (L. vannamei) compared to single-strain probiotics [6]. These works positioned
that the improved growth noted from the administration of the multi-strain probiotic is
due to a synergy or additive effects observed by the individual strains in the preparation
resulting in enhanced enzyme activity during digestion and better feed conversion [138].
Multi-strain probiotics (containing B. subtilis, E. faecium, L. reuteri, and P. acidilactici) also
results in improved growth yield, and bowel immunity through the elevation of proin-
flammatory cytokines (TNFα and ILβ) in the intestines of tilapia fish [139]. Unlike the
previously cited works, multi-strain probiotics decrease the growth rate in mud-crabs
when fed with B. subtilis E20 and L. plantarum 7–40 combination supplemented feed due to
antagonism [140]. These studies’ findings imply a careful selection of strains for inclusion
in multi-strain preparations [6].

3.7. Swine Production/Piggery

The weaning period in piggery coupled with diets changes from simply digestible
(milk) to solid feeds may result in intestinal perturbation, thereby causing diarrhea and
slow growth rate [141–143]. The stress of post-weaning alongside the alteration in the
gut microbiota results in post-weaning diarrhea; a severe health challenge characterized
by diarrhea, death in severe cases, and substantial monetary implications in piggery [38].
Post-weaning diarrhea may result from the rapid multiplication of enterotoxigenic E. coli
(ETEC) and primarily affects piglets two weeks after weaning [144]. The treatment of this
economic disease is by using antibiotics; however, the current surge of AMR bacteria had
necessitated the demand for farmers to look for an alternative treatment to prevent and
control diseases in their livestock [38]. Probiotics may serve as viable options to antibiotics
in piggery, especially for non-therapeutic usage and growth enhancement [145]. The
ingestion of probiotic bacteria (like P. acidilactici) and yeast (S. cerevisiae boulardii) protect
from microbial infection by enhancing intestinal defenses and performance in different
monogastric animals [146]. In line with this, piglets fed with multi-strain probiotics
consisting of L. reuteri (strains VB4 and ZJ625), Streptococcus salivarius NBCR 13956, and
L. salivarius ZJ614 have better mean regular weight increase and feed utilization, unlike the
single-strain and control groups [141].

Furthermore, the administration of some certain multi-strain probiotics to pigs results
in weight gain [125] and inhibits the attachment of Enterotoxigenic E. coli (ETEC) F4 to ileal
mucosa of piglets [38]. This finding was supported by the discoveries of the modulatory
effects of P. acidilactici and S. cerevisiae boulardii either as mixed or single preparations
on establishing microbial population such as members of the family Bifidobacteriaceae
and Lactobacillaceae in the porcine bowel [147]. These are therefore advised for a careful
screening and inclusion of probiotics microbes with proven properties to play vital roles
in the improvement of growths of piglets, primarily through the post-weaning period.
Similarly, multi-strain probiotics stimulate a rise in the level of proinflammatory cytokines
(TNF-α, IL-6, IL-4, IL-10, and TGF-β) and antibodies in the colostrum of sows when
administered during pregnancy and lactation, hence offering protection to both the dam
and neonates through stimulation of cellular immunity [148].
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3.8. Ruminants Nutrition and Production

Some probiotics are suitable supplements in livestock feeds and may improve the
rumen’s microbial ecosystem, enhance feed digestion, and restores gut microflora in
diarrhea in ruminants [149]. The administration of lactobacilli probiotics enhances calves’
overall health status [150]. Consequently, a probiotic mix (containing E. faecium, B. bifidum,
P. acidilactici, L. acidophilus, L. casei, peptide extract, an enzyme blend and killed yeast extract)
significantly shortens the duration of diarrhea in dairy calves at the onset of diarrhea [151].
Additionally, several studies reported using probiotics to control diarrhea, improve average
daily weight gain, and feed efficiency in calves [151–153]. The administration of multi-strain
probiotics (made up of Lactobacillus sakei FUA3089 and P. acidilactici FUA3138 and FUA3140)
modulates specific serum metabolites, milk components, and increased milk production in
dairy cows [154]. Similarly, feeding of dairy cows with pasture from paddocks treated with
multi-strain probiotics (containing L. parafarraginis, L. buchneri, L. rapi, L. zeae, Acetobacter
fabarum and Candida ethanolica) showed a higher volume of milk and protein content in the
treatment group compared to the control group [155].

3.9. Synbiosis of Multi-Strain Probiotics with Other Biologically Active Molecules

Some probiotics are prepared as synbiotics (prebiotics) along with other active sub-
stances for maximum physiological effects. Ingestion of synbiotics made of multi-strain
probiotics (containing L. acidophilus strain T16, L. casei strain T2 and B. bifidum strain T1)
and 800 mg inulin (HPX) by gravid women with gestational diabetes mellitus decrease the
rate of caesarean section and hyperbilirubinemia and hospitalization of newborns [156].
Administration of synbiotics (containing multi-strain probiotics and prebiotics) may allevi-
ate some digestive system conditions, sepsis, and death in preterm babies [157] (Table 3).
Treatment of vaginal candidiasis in patients is enhanced by administering azoles along-
side multi-strain probiotics comprising L. acidophilus, L. rhamnosus, S. thermophilus, and L.
delbrueckii subsp. Bulgaricus [158] (Table 3). This study further reiterates the potentials of
multi-strain probiotics combination for treatment and deterrence of recurrence of vaginal
candidiasis, especially in cases of azole-resistant mycosis. In poultry, co-administration of
a specific multi-strain probiotic mixture and zinc to broiler increases the final body weight,
feed efficiency, total goblet cells, and ileal villus height unlike in the control group [159].
Similarly, short-term administration of multi-strain probiotic-synbiotics to laying chickens
infected with Salmonella typhimurium (S. typhimurium) positively modulated the caecal
microbiota but had no marked effect on shedding of S. typhimurium [65] (Table 3).

Table 3. Use of multi-strain probiotics along with other substances.

Synbiotics Actions Host References

L. acidophilus strain T16, L. casei strain T2) and B. bifidum strain T1
plus 800mg inulin (HPX)

decreased the incidence of cesarean
section rate and newborn’s
hyperbilirubinemia and
hospitalization

Human
(pregnant
women)

[156]

L. acidophilus, L. rhamnosus, S. thermophilus, and L. delbrueckii
subspecies Bulgaricus plus fluconazole

Enhance the treatment of Vaginal
candidiasis caused Candida albicans humans [158]

L. plantarum, L. acidophilus, L. delbrueckii subspecies bulgaricus,
B. bifidum, L. rhamnosus, E. faecium, S. salivarius subspecies
thermophilus, Aspergillus oryza, and Candida pintolopesii plus Zinc

Enhances growth performance, better
feed utilization, increase in villus
height in the duodenum and ileum

Chicken
(broiler) [159]

Synbiotics A: Enterococcus sp., Pediococcus sp., Bifidobacterium sp.,
Lactobacillus sp. plus fructooligosaccharides Synbiotic B:
L. acidophilus, L. casei, L. salivarius, L. plantarum, L. rhamnosus,
L. brevis, B. bifidum, B. lactis, S. thermophilus, prebiotic inulin
(chicory root extract), protease, amylase, cellulase, hemicellulase,
lipase, papain and bromelain

Modulate the caecal microbiota
without any effects on Salmonella
Typhimurium shedding

Chickens
(layers) [65]

Probiotics; (L. rhamnosus, L. casei L. plantarum B. animalis)
prebiotics (383 mg of fructooligosaccharides and 100 mg of
galactooligosaccharides)

Improved gastrointestinal
complications, sepsis, and mortality
in premature infants

Preterm
infants [157]
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4. Conclusion and Future Consideration

Several studies suggest using multi-strains probiotics to prevent and treat different
kinds of conditions from non-infectious to infectious diseases. Most of these studies
emphasized probiotics in diets and have shown several derived benefits from such admin-
istrations. The potential of individual probiotic organisms to act in synergy or additively
when in a mixture, holds a grand promise for future use in treating various diseases.
Based on this review, probiotic organisms could secrete various substances that can in-
hibit the multiplication of pathogenic microbes, which is vital for future considerations
because of the safety in its consumption and the associated health benefits. The current
global challenges associated with the rise and spread of antimicrobial resistance by sev-
eral pathogens had provoked the need for suitable alternatives to the current antibiotics,
thus, indicating the need for further development of probiotics because of its potential
in producing several bioactive compounds like lectins, bacteriocins, bioactive proteins,
and antibacterial peptides that are inhibitory to pathogenic antibiotic-resistant bacteria
and some fungi. The production of these essential bioactive peptides could be harnessed
for further development into bio-additives to be used instead of the whole-cell probiotics
formulations. In animals, feed supplementation with probiotics has proven helpful by
improving growth performance and weight gain, meat quality, and humoral immunity
and decreasing pathogenic microbes’ shedding. The use of probiotics could gradually
outshine the prophylactic applications of antimicrobial drugs for growth enhancement in
animals, thereby decreasing the spread of antimicrobial-resistant pathogens. Furthermore,
this review had also shown that probiotics could be used in combination with prebiotics as
symbiotics to give maximum benefits for better physiological effects. Therapeutic use of
probiotics in a mixture with other compounds such as zinc and some antimycotic agents
could exert more effects compared to the usage of those substances alone.

Finally, to maximize all the benefits associated with probiotics consumption, research
should determine the specific mechanisms of actions of probiotics microbes for more spe-
cific applications in respective disease conditions. There is also the need to study and
understand each probiotics strain’s best combination because some bacteria act synergisti-
cally, some additively, and some antagonistically. Additionally, the bioactive substances
produced by some probiotics could be extracted to formulate supplements for use in specific
conditions where individuals showed some reactions to the consumption of the whole-cells
preparations. The harvesting and harnessing of the bioactive substances produced by
individual constituents of mixed probiotics could also solve the challenges associated
with the inconsistency of viable cells when live microbes are used. That will also enable
large-scale production for commercialization. Finally, further studies in this direction could
be an essential factor in the future research and development of multi-strain probiotics.
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