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a b s t r a c t 

This study presents a methodology that focuses on detecting agricultural burned areas using Sentinel-2 

multispectral data at 10 m. We developed a simple, locally adapted, straightforward approach of multi-index 

threshold to extract post-winter agricultural burned areas at high resolution for 2019-21. Further, we design a 

new method for virtual sample collection using already validated fire location data and visual interpretation 

conditioned using strict selection criteria to improve sample accuracy. Sampling accuracy showed near-perfect 

agreement with an average Cohen’s Kappa value of 0.98. We retrieved monthly ABAs at a resolution of 10 m, 

and these products were validated against reference burned sample plots identified using visual interpretation of 

Planet (3m) satellite data. Overall, we found that our method performed well, with an F1 score of 83.63% and low 

commission (20%) and omission (7%) errors. When compared to global burnt area products, validation accuracy 

demonstrated an exceptional subpixel scale detecting capability. The study also addresses the complexity of 

residue burnings and burn signatures’ volatile nature by performing multilevel masking and temporal corrections. 

• A novel remotely sensed data aided virtual sampling approach to acquire burned and unburned samples. 
• An integrated method to extract smallholder agricultural burned area using Sentinel-2 multispectral data at a 

high resolution of 10 m 
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Specifications table 

Subject Area; Environmental Science 

More specific subject area; Remote Sensing of Environment 

Method name; Agricultural burned area detection using Sentinel-2 MSI multi index thresholding 

Name and reference of 

original method; 

Roteta, E., Bastarrika, A., Padilla, M., Storm, T., & Chuvieco, E. (2019). Development of a 

Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan 

Africa. Remote Sensing of Environment, 222 (November 2018), 117. 

https://doi.org/10.1016/j.rse.2018.12.011 

Resource availability; Sentinel-2 MSI: MultiSpectral Instrument, Level-2A 

Global PALSAR-2/PALSAR Forest/Non-Forest Map 

Esri 2020 Land Cover Downloader 

MOD14A1.006: Terra Thermal Anomalies & Fire Daily Global 1km 

MYD14A1.006: Aqua Thermal Anomalies & Fire Daily Global 1km 

FireCCI51: MODIS Fire_cci Burned Area Pixel product, version 5.1 

MCD64A1.006 MODIS Burned Area Monthly Global 500m 

Satellite Imagery and Archive | Planet 

Background 

We present a methodology adapted for Sentinel -2 MSI derived burn indices to detect agricultural

burned area (ABA) using the Google Earth Engine (GEE) platform. The existing global data products

significantly underestimate the agricultural burned area due to the diverse nature of agricultural 

fields and the spread of fire activities [1 , 21 , 29] . Small agricultural fires, which are frequent across

India’s smallholder terrain, have been proven to be missed by coarse resolution sensors, including 

MEdium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(MODIS), and Advanced Very High-Resolution Radiometer (AVHRR). Considering spatial and temporal 

resolutions of smallholder burning, Sentinel-2 with high resolution (10 m) can provide an optimal 

solution for the detection of ABA. 

Burned scar sampling, an essential factor for algorithm training and validation, is popularly done 

by selecting ground control points or visual interpretation, but both have limitations [13 , 14 , 22 , 25] . To

overcome the limitations of area coverage and visual prediction errors from ground control points 

and visual identification, respectively, we propose a novel approach of virtual sampling. Our study 

explored the potential of the Terra Thermal Anomalies & Fire Daily Global 1 km (MOD14A1.006) and

Aqua Thermal Anomalies & Fire Daily Global 1 km (MYD14A1.006) datasets combined with visual 

interpretation to overcome the field sampling limitations. The method used the standard MODIS 

Fire and Thermal Anomalies product to support the visual identification of burn scars for sampling.

The technique can help significantly to reduce the dependency on ground sampling. The approach 

generates high-resolution regional agriculture burnt area (ABA) products in GEE using Sentinel -2 MSI 

derived indicators and well-conditioned virtual sampling. These products can be utilized to address 

the uncertainties in the estimates of stubble burning emissions from mostly unexplored areas across 

Central India. 

Below we describe the data and methods used in this paper for sampling training and validation

data (Section 1), mapping burned area using Sentinel-2 imagery (Section 2), and validating our burned

area product (Section 3). Table 1 lists the datasets used and for which specific purpose. 

Collection of training and validation data 

To collect ground truth data on burned and unburned pixels, we developed a novel virtual

sampling methodology ( Fig. 1 ) that uses active fire data sets to target likely regions with burning for

visual interpretation of Sentinel-2 imagery. The following sub-sections provide details of the datasets 

used and the sampling method that we developed for this study. 

Remotely sensed data assisted virtual sampling of agriculture burned and unburned pixels 

For the virtual sampling method, we used satellite products from MODIS 4 and 11-micrometre

radiances to create daily fire mask composites at 1 km resolution: MYD14A1.006 (Aqua Thermal

https://doi.org/10.1016/j.rse.2018.12.011
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Table 1 

An Overview of datasets used in this study. 

No. Dataset Usage Source 

1. Sentinel-2 MSI: 

MultiSpectral 

Instrument, 

Level-2A 

Burned Scar 

Identification, 

Quantification, 

Validation 

Sentinel-2 MSI: MultiSpectral Instrument, Level-2A 

2. Global 

PALSAR-2/PALSAR 

Forest/Non-Forest 

Map 

Forest and 

Non-forest Mask 

Global PALSAR-2/PALSAR Forest/Non-Forest Map 

3. ESRI LULC 2020 Mask Esri 2020 Land Cover Downloader 

3. MOD14A1.006: 

Terra Thermal 

Anomalies & Fire 

Daily Global 1 km 

Burned Scar 

Identification, 

Validation 

MOD14A1.006: Terra Thermal Anomalies & Fire Daily Global 1km 

4. MYD14A1.006: 

Aqua Thermal 

Anomalies & Fire 

Daily Global 1 km 

Burned Scar 

Identification, 

Validation, 

MYD14A1.006: Aqua Thermal Anomalies & Fire Daily Global 1km 

5. FireCCI51: MODIS 

Fire_cci Burned 

Area Pixel product, 

version 5.1 

ABA Comparison, 

Validation 

FireCCI51: MODIS Fire _ cci Burned Area Pixel product, version 5.1 

6. MCD64A1.006 

MODIS Burned 

Area Monthly 

Global 500 m 

ABA Comparison, 

Validation, 

Emission estimates 

and comparison 

MCD64A1.006 MODIS Burned Area Monthly Global 500m 

7. PlanetScope 4-band 

multispectral basic 

and orthorectified 

scenes 

ABA Validation Satellite Imagery and Archive | Planet 
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nomalies & Fire) and MOD14A1.006 (Terra Thermal Anomalies & Fire). These databases have been

reviously used to capture forest fires and agricultural residue burning [7 , 27 , 31] . Daily fire mask

omposites for 2019 from March to May were used to perform assisted sampling of S2A burnt pixels.

he time period is chosen following the winter crop harvest and associated burning of residues in our

tudy region. 

Both fire products are ideal for fire monitoring considering the short temporal resolution of fires

nd the temporal coverage (day and night) of MODIS products. Based on the Sentinel-2 repeat cycle

nd study area coverage, we generated seven-day composites of S2A datasets for March, April and

ay 2019 (more details about S2A imagery and pre-processing in Section 2.1). Similarly, seven-day

omposites were created from daily MODIS fire products for detecting burned scars. A false colour

omposite (FCC) of S2A data was created with short infrared, near-infrared and green bands (R:

WIR2, G: NIR, B: GRE) for better visual interpretation of burned areas. After analysing visualisation

arameters in GEE, maroon coloured burned patches were analysed for further sampling using

ctive fire products [11 , 13] . The S2A seven-day composite was overlaid with seven-day composites of

OD14A1.006 and MYD14A1.006 to match observed fire activities from the global active fire products

nd visually detected burned scars from S2A data. 

Fig. 2 gives an overview of the sampling strategy for detecting burned areas. We formulated

riteria to identify agricultural burned areas using visual interpretation. Burned scars from S2A seven-

ay composites overlapped with seven-day composites of MODIS fire products were considered for

ampling if all of the sampling criteria ( Fig. 1 ) were met. Since MODIS has a ∼50% probability of

etecting a fire with an area of at least 18 ha [30] , only burn scars with a minimum of 0.5 km 

2 ( ∼50

a) area were considered for sampling. We have not considered burn scars within 500 m of forested

rea to avoid the impact of forest fires on our products. Additionally, active fire pixels that overlapped

ith settlements bigger than 1 km 

2 , isolated power plants, factories with chimneys, mining structures,

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD14A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MYD14A1
https://developers.google.com/earth-engine/datasets/catalog/ESA_CCI_FireCCI_5_1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD64A1
https://www.planet.com/products/planet-imagery/
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Fig. 1. Remotely sensed data assisted virtual sampling of agriculture burned and unburned pixels. 

 

 

 

 

 

 

 

 

 

 

 

and unmasked water bodies were excluded to avoid impacts from non-agricultural fires and water 

pixels. Pixels with active flame or covered by smoke were also excluded to eliminate the effect of

smoke and fire on associated spectral indices. MOD14A1.006 and MYD14A1.006 fire products provide 

nine classes, with classes 7-9 denoting fire pixels based on low to high fire confidence, respectively.

We only considered fire pixels with high confidence (classes 8 and 9) to detect burned pixels of

S2A images. To ensure that the sampled burned pixels belonged to agricultural land, we restricted

our sampling to pixels that showed a double hump-shaped phenology in the Normalized Difference

Vegetation Index (NDVI) time series across two cultivation seasons [28] . We calculated the NDVI time

series for all study years using S2A data. 

Sample polygons were created to make a feature collection in GEE for further analysis. Due to GEE

limitations, approximately 100 such polygons with burned samples were collected per composite for 

2019. Due to insufficient active fire pixels during the first half of March 2019, we did not consider the

first two S2A composites for sampling. We collected 1160 burned sample polygons over the sampling

period (March-May 2019), with approximately 40 burned pixels for each polygon. 

Harvested or ploughed croplands tend to show comparable spectral characteristics to burned areas 

[13 , 22] . To address this, unburned open field samples in proximity to the burned samples were

collected by visual interpretation of S2A images. In addition, unburned samples from unharvested 

croplands, vegetation, settlements, bare riverbanks and unmasked water bodies were also collected. 

Other non-burnable features, including topographical shadows, rocky surfaces and transportation 

routes (roads, railways) were also considered in the unburned sample. Approximately 40 polygons 

from each subclass were extracted to ensure their proper representation in the sample dataset. 

We maintained the pixel number in each polygon to be the same as that of the burned samples

(approximately 40 pixels/polygon), and 3246 unburned sample polygons were created over the 

sampling period. 
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Fig. 2. Remotely sensed data assisted virtual sampling strategy for burned areas. (a) FCC image (R:B12,G:B8,B:B3) showing 

burned scars.(b)FCC overlaid with MYD14A1 and MOD14A1 fire location data. (c) Suitable sampling sites under MYD14A1 and 

MOD14A1 tiles. (d) and (e) Sample plots selection based on sampling criteria. 
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Accuracy assessment of sampling strategy 

We performed image classification on all S2A seven-day image composites using the burned 

and unburned samples that we collected and assessed the accuracy of the sampling strategy. The

smileRandomForest algorithm developed by GEE was applied to train a decision forest classifier. 

The unburned samples were further divided into harvested/open field, vegetation and non-burnable 

classes to increase the classification accuracy and to identify the pixel classes that are most likely

to get misclassified as burned. In GEE, we performed hyperparameter tuning with each sample set

to select the optimal number of decision trees and limit the number to 200. A 60% threshold was

applied to randomly choose sample polygons for training and validation of the classifier. All the three

subclasses of unburned samples were processed as a single unburned class for further analysis. 

Detecting agricultural burned signatures using satellite imagery 

Satellite dataset and pre-processing 

We used the Sentinel-2, Level 2A (S2A) product offered by the European Space Agency (ESA)

for ABA detection. The data were freely available on the GEE platform. Level 2A data were surface

reflectance, bottom of the atmosphere corrected products computed from associated Level-1C data 

using the algorithm Sen2Cor [16] . The data were provided as 100 × 100 km 

2 tiles with UTM/WGS84

projection [18] . The spatial resolution difference between bands (10 m for spectral bands ’B2-B4 ′ 
and ’B8 and 20 m for spectral bands ‘B6’, ‘B7’, ‘B8A’, ‘B11’, ‘B12’), was resolved by the GEE’s scaling

algorithm that resamples spatial resolution during data export [5] , and we exported all bands and

indices at 10 m resolution. The S2A images were filtered for those that had less than 10% of cloud

cover, and we used the ’QA60 ′ band at 60 m spatial resolution to mask the remaining cloud and cloud

shadows. Removing cloud shadows is particularly important given that they have a similar spectral 

signature as burn scars across fire indices. We additionally visualized all images and excluded those

images with haze-covering burned scars. In total, 3,522 S2A tiles were processed to produce our final

dataset. 

We masked land covers that are not associated with agriculture but can affect burned area

detection using several datasets. To mask forests, water and flooded vegetation, we used the ESRI

2020 Global Land Use Land Cover product (10 m) [8] . A subset for Madhya Pradesh (MP LULC 2020)

was extracted from the global dataset to create a mask for water, tree and flooded vegetation classes.

We also applied an additional water mask using the water class from the Global PALSAR-2/PALSAR 

Forest/Non-Forest Map, provided by the Japan Aerospace Exploration Agency Earth Observation 

Research Center (JAXA EORC), for 2017. In addition, the Modified Normalized Difference Water Index 

(MNDWI) threshold was also used to mask water pixels. The water pixel threshold was determined

by random sampling of waterbodies from S2A images. 

Spectral indices and image transformation 

Due to the diverse nature of agricultural fields and the spread of fire activities during the

study period, several indices designed explicitly for burned area detection were analysed along with 

chlorophyll, moisture and brightness indices ( Table 2 ). Three bands from the visual spectrum (VIS:

’B2, B3 and B4 ′ ), a near-infrared band (NIR: ’B8 ′ ), three red edge bands (RE: ’B6 ′ , ’B7 ′ and ’B8A’), a

short wave infrared short reflectance band (SWIR1: ’B11 ′ ) and a short wave infrared long reflectance

band (SWIR2: ’B12 ′ ) were used to compute indices needed to detect burned area. Charcoal and ash

sensitive indices like Normalised Burn Ratio (NBR), Normalised Burn Ratio 2 (NBR2), Burn Area Index

(BAI), Sentinel 2 specific Burn Area Index (BAIS2) and Mid-Infrared Burn Index (MIRBI) were used

to identify the burned scars immediately after the fire event [ 4 , 10 , 15 , 17 , 24 , 26 ]. NDVI was also used

to exclude false-positive signatures from ash settlement on unburned fields [19] . We used Tasseled

Cap Transformation (TCT) derived Brightness, Greenness, and Wetness indices to integrate a more 

extensive range of spectral information [23] . After calculating the spectral indices, we extracted their

values for all 4406 sample polygons for further analysis. 
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Table 2 

List of spectral indices and image transformation techniques used in this study. 

Index Full Name Abbreviation Equation Reference 

Normalized Difference 

Vegetation Index 

NDVI ρNIR −ρRED 

ρNIR + ρRED 
[24] 

Burn Area Index BAI 1 

( ρNIR − 0 . 06) 
2 + ( ρRED − 0 . 1) 

2 [17] 

Sentinel-2 Burn Area Index BAIS2 ( 1 −
√ 

ρRe 2 ×ρRe 3 ×ρNIRn 

ρRED 
) × ( ρSWIR 2 −ρNIRn √ 

ρSWIR 2 + ρNIRn 
+ 1 ) [4] 

Normalized Burn Ratio NBR ρNIR −ρSWIR 2 

ρNIR + ρSWIR 2 
[10] 

Normalized Burn Ratio 2 NBR2 ρSWIR 1 −ρSWIR 2 

ρSWIR 1 + ρSWIR 2 
[15] 

Mid-Infrared Burn Index MIRBI 10 × ρSWIR 2 − 9 . 8 × ρSWIR 1 + 2 [26] 

Sentinel-2 Tasseled Cap 

Transformation: Brightness 

Index 

TBI 0.3510 × ρBLUE + 0.3813 ×ρGRE E N + 0.3437 

×ρRED + 0.7196 × ρNIR + 0.2396 

×ρSWIR 1 + 0.1949 ×ρSWIR 2 

[ 23 ] 

Sentinel-2 Tasseled Cap 

Transformation: Greenness 

Index 

TGI -0.3599 × ρBLUE - 0.3533 ×ρGRE E N - 0.4734 

×ρRED + 0.6633 × ρNIR + 0.0087 ×ρSWIR 1 - 

0.2856 ×ρSWIR 2 

[ 23 ] 

Sentinel-2 Tasseled Cap 

Transformation: Wetness Index 

TWI 0.2578 × ρBLUE + 0.2305 ×ρGRE E N + 0.0883 

×ρRED + 0.1071 × ρNIR - 0.7611 ×ρSWIR 1 - 

0.5308 ×ρSWIR 2 

[ 23 ] 
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lass separability assessment 

Class separability [22] is a reliable measure to test the ability of a spectral index to separate burned

rom unburned pixels. We calculated the parametric separability index using the M-statistic [9] as

ollows: 

M = 

| μB − μUB | 
σB + σUB 

(1)

here μB and μUB represent the mean value of burned and unburned classes and σB and σUB

epresent the corresponding standard deviations. M values lower than one indicate poor class

eparability, whereas values higher than one indicate good separability. It is common to have a few

rees in the middle of a field, which are generally unaffected by burning. Since it was not always

ossible to avoid within field trees when delineating burned polygons, we applied a mean NDVI

hreshold to remove pixels with vegetation that interfered with class separability. Since we observed

hat pixels representing trees had NDVI values greater than the mean NDVI value for each image in

he composite, we masked all pixels that had an NDVI value greater than this mean value. Indices

ith M values greater than one were selected for further analysis. We then analysed the spectral

istribution of all four indices (BAI, BAIS2, NBR and TBI), showing M values greater than one over the

wo classes, Sampled Burned (S B ) and Sampled Unburned (S UB ), to design the threshold conditioning

sed in subsequent analysis. Further, we excluded NBR from further analysis due to its insufficient

lass separability despite having an M value higher than one. 

urn threshold conditioning 

To avoid overlapping pixels and outliers, we set a fixed threshold range for burned and unburned

lasses to enhance separability. We used the Sampled Burned (S B ) class limits to detect the burned

rea from S2A images. Burned scars were separated from the background (unburned areas), assigning

he 5th and 95th percentile values of each index as upper and lower thresholds. The threshold values

ere fixed after considering the spectral distribution (spread of curve, overlapping between classes,

utliers etc.) of both sampled classes. The pixel was classified and extracted as burned if it satisfied

ll of the conditions of the respective threshold combination. Due to the resemblance in detection

rinciple of BAI and BAIS2, we designed three multi-band combinations and examined their individual

nd combined ability to detect agricultural burned scars. To test the individual performance of BAI and

AIS2, we designed two threshold combinations, T1: BAI and TBI, and T2: BAIS2 and TBI. The third

hreshold combination, T3: BAI and BAIS2, was used to test the combined performance of all selected
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Fig. 3. Burned threshold conditioning and extracting burned pixels using T1 threshold condition. 

 

 

 

 

 

 

 

 

indices. We created an additional combination T4 with all three indices to see if TBI can improve

T3 performance by bridging the spectral distribution gap between the two indices. The threshold

combinations are shown in Fig. 3 . 

Threshold combinations were applied separately to all 7-day S2A composites of 2019 used for 

extracting burned and unburned polygons. The results were transformed into binary images (burned: 

foreground, unburned: background), and the combined outputs were compared to identify the optimal 

threshold criteria to be used to develop S2A-ABAMP201921 products for 2019 to 2021 post-winter 

burning season. 

Threshold assessment 

All threshold combinations were assessed using the algorithm smileRandomForest (RF) [6] . The 

same set of burned and unburned sample polygons was used to train a decision forest classifier.

RF was used to classify binary images generated after each threshold application. The error of

commission (C E ) was used as a determinant of the performance of the threshold condition. The C E 

represents the fraction of false positives (i.e. pixels predicted as burned but not actually burned).

Since the burned sample pixels used for training the classifier belonged to a binary image, a high C E 

indicates the low performance of the threshold to extract burned areas from S2A images. The C E is

calculated as follows: 

C E = 

FP 

( TP + FP ) 
(2) 

where, FP and FN are false positives and false negatives, and TP are true positives for the given class. 

Omission error (O E ), a measure of false negatives, is calculated as follows: 

O E = 

FN 

( FN + TP ) 
(3) 

In addition to C E and O E, the F1 score was also calculated, which measures a test’s accuracy. The

F1 score is the harmonic mean of precision and recall and is more reliable than overall accuracy [12] .

The F1 score is calculated as follows: 

F1 = 

T P 

T P + 0 . 5 ( F P + F N ) 
(4) 

where, TP is a true positive, FP is a false positive, and FN is a false negative. 
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Fig. 4. Study area S2A mosaic overlaid with a monthly composite of fire location, April 2019. RGB bands for S2A mosaic at the 

bottom. 
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urned area map 

The T1 threshold combination was applied to all S2A images with cloud cover less than 10 %

ver the study area to create monthly agriculture burned area maps for the post-winter burning

eason from 2019 to 2021. An additional cloud filter was applied to the images with shadows over

urned scars to avoid false-positive signatures from cloud shadow edges. The traditional way of

xtracting burned area by two consecutive image subtraction methods was not followed, considering

he short-lived burned signature from agriculture fields. Instead, the threshold was applied to all

vailable images, and 5-day composites were created for temporal extraction of burned areas. A

ontinuous three-month temporal correction (see [3] Supplemental Materials: Figure S2) was applied

y masking burned area of each 5-day composite (t n ) using burned areas detected by the previous

-day composite (t n-1 ) to avoid repeat extraction of long-lasting burned signatures given that the gap

etween the two composites was not more than 10 days. 

alidation of the ABA product 

Validation for the S2A-ABAMP201921 product was performed using PlanetScope images from

lanet as independent satellite products. We used the 3 m resampled near-daily four-band (RGB

nd NIR) corrected imagery from all PlanetScope sensors. Near daily images were provided with

adiometric, sensor, and geometric corrections with a tile footprint of approximately 25.0 × 23.0

m 

2 [20] . The validation data at higher spatial and temporal resolution (3 m, ∼daily) than S2A

10 m, 5-days) were used as previous studies have recommended using high spatial and temporal

esolution data for validation [2] . A total area of 28,159.76 km 

2 was processed to validate the final

2A-ABAMP201921 10 m product for 2019-2021. 



10 M.V. Deshpande, D. Pillai and M. Jain / MethodsX 9 (2022) 101741 

Fig. 5. (a) S2A false colour composite (FCC) of reference site. (b) to (j) Performance of different indices in distinguishing burned 

and unburned areas. The colour bar represents (a) the band combination of FCC and (b) to (j) observed min and max values. 

(k) Mean M values from all composites used for the sample collection over the study period in descending order of their 

performance. 

 

 

 

 

 

 

 

 

 

We accessed imagery using the free tier for academic use. Validation was performed using images

with the same acquisition dates as our S2A data to avoid temporal mismatch (see [3] Supplemental

Materials: Table S1). The virtual sample collection methodology explained in section 3.1 was used 

to derive approximately 30 reference burned and unburned polygons for each PlanetScope image. 

We subsetted the S2A imagery to match the spatial extent of each PlanetScope scene, and the T1

threshold condition was applied to each subset. The final S2A-ABAMP201921 subset was converted to 

a binary image with burned foreground as 1 and unburned background as 0. The RF classifier was

built using the PlanetScope reference polygons as training samples and then was used to classify the

binary image. We also validated each global burned area product using the same validation dataset

for 2019. Error statistics were reported for the study area and period (2019-2021). Availability and

temporal distribution of reference data are not uniform across the study period, with 17 reference

images for 2019, 2 reference images for 2020 and 4 reference images for 2021. Figure S1 (see

[3] Supplemental Materials) shows the validation sites and image distribution over the study area. 
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Fig. 6. Histogram of spectral signatures from burned (S B ) and unburned (S UB ) classes using different fire indices. 
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etection of burned areas 

Fig. 4 represents the monthly composite of S2A overlaid with monthly composites of MOD14A1.006

nd MYD14A1.006 for April 2019, indicating fire activity over the study area. The accuracy of the

ampling strategy was assessed by performing the accuracy assessment as described in Section 1.2.

he average Cohen’s Kappa value is found to be 0.98, (with negligible omission and commission

rrors of 0.0041 and 0.0039, respectively). Fig. 5 showcases the performance of selected indices with

he sample FCC. As expected, none of the indices is able to discriminate between water and burned

rea. We find that burn indices such as BAI, BAIS2, NBR, NBR2, and MIRBI cannot distinguish between

urned areas and wet surfaces (river banks, river islands). However, the TassCap brightness (TBI) and

etness index (TWI) are found to be useful ( Fig. 5 .) with M values above 1. We select TBI from

assCap indices due to its higher class separability than TWI (M value 2.2 vs 1.4). Fig. 6 shows

he spectral behavior of all sample pixels over the sampling period for all four indices. TBI shows

 comparatively clear separation of both classes normally distributed with a single prominent peak

mong the four. Only TBI shows the unimodal distribution with both classes. BAI and BAIS2 show

omewhat contrasting behavior with the distribution of S B and S UB signatures. However, BAI shows

 more apparent separation than BAIS2; the latter shows a lesser spread with the S B class. Based on

ur above results, we select BAI, BAIS2 and TBI for threshold conditioning. 

Fig. 7 shows the extracted burned area using different threshold conditions. It can be seen that

hose threshold combinations other than T1 face limitations due to the narrow spectral distribution

or BAIS2. Low C E ( ∼17%) and high F1 score ( ∼90%) for T1 indicate better effectiveness in extracting

urned area. A continuous three-month temporal correction is applied to the extracted agricultural

urned area, which helps to reduce the repetitive extraction and overestimation of burned area (see

3] Supplemental Materials: Figure S2). 

alidation of S2AABAMP201921, MCD64A1 and FireCCI51 using PlanetScope imagery 

The accuracy assessment results after comparing S2A-ABAMP201921, with validation data from

lanetScope imagery are shown in Table 3 . A high C E of 38.31% is observed in 2020, followed by 2021

28.88%) and 2019 (10.73%); these C E show an inverse relationship with the number of reference data

vailable. On the other hand, O E show the opposite pattern, with low values in 2021 (0.8%) and 2020
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Fig. 7. Performance of threshold conditions in burned area detection. (a) S2A false colour composite (FCC) of reference site. (b) 

to (e) performance of threshold conditions (T1-T4). The yellow circle indicates the false-negative signatures for (T2-T4) against 

the T1 conditioning. (f) RF-based threshold assessment using burned and unburned training samples. The error of commission 

(C E ) is used as a performance measure of threshold condition to provide training pixels for the RF model. F1 score is used to 

measure model performance for burned areas detected by thresholding. T1 shows a low C E and high F1 score indicating an 

acceptable threshold condition. 
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Table 3 

Estimated validation accuracy of S2A-ABAMP201921 (2019-21). 

Product Commission Error (C E ), % Omission Error (O E ), % F1 score, % 

S2A-ABAMP201921 (2019) 10.73 0.013 94.24 

S2A-ABAMP201921 (2020) 38.31 0.1 76.07 

S2A-ABAMP201921 (2021) 28.88 0.8 82.76 
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0.1%). O E for 2019 was very small (0.013%), indicating high accuracy. F1 scores for 2019 (94.24%) and

021 (82.76%) indicate good agreement, whereas for 2020, F1 scores are moderate (76.07%). Overall,

hese results indicate a fair agreement between reference data and the BA product, considering the

vailability of the validation dataset. The validation results are found to be encouraging, with relatively

ow O E and C E and a high F1 score, even when using limited validation data. 

aveats 

Our approach has a limitation as the products can be influenced by water pixels and cloud

hadows, which look similar to burn scars (see [3] Supplemental Materials: Figure S3), during

hreshold conditioning. We used multiple methods to mask water pixels, but removing small and

easonal water bodies required careful visual interpretation of imagery. Future work would benefit

rom identifying additional ways to remove such small and seasonal water bodies, which would

educe false-positive signatures in our ABA product. Considering the impact of cloud shadows, we

ttempted to minimise the impact of cloud cover and cloud shadows by excluding cloudy images,

ut doing so reduced the temporal resolution of satellite data. Future work may improve on this by

dentifying accurate ways to remove cloud and cloud shadow pixels instead of removing entire scenes.

iscussion 

The study adopts a popular strategy of using long-lasting burned signatures to map burned areas

 13,33,34 ]; however, very few studies have attempted to use complimentary multispectral indices

o detect burned areas [ 13,34 ]. Each index provides different information; hence considering all

ndices together improves the class separability. In particular, our approach to identify false-positive

ignatures is better than approaches using traditional burned indices. Specifically, the combined use

f BAI, a charcoal sensitive fire index, and TBI, a proxy index for detecting fire-affected surfaces,

inimizes false positives better than methods that rely on only fire index [13 , 22] . Further, our

ethod is much simpler than other algorithms using multiple decision trees ( [22] and [13] ), but is

ore focused on detecting burning in agricultural systems by removing burning that occurs on other

andcover types (e.g., forests). The emissions from residue burning over MP for post-winter 2019 were

stimated using the agricultural area detected using our method and the results were compared with

he GFED4.1s emission inventory [3] . 
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