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In situ synthesis 
of hierarchically‑assembled 
three‑dimensional ZnS 
nanostructures and 3D printed 
visualization
Taehwan Lim1, Seung Kwon Seol2,3, Hyo‑Jeong Kim4, Yang Hoon Huh4, 
Yeonwoong Jung5,6,7*, Hee‑Suk Chung8* & Jung Han Kim9*

Nanomaterials have gained enormous interest in improving the performance of energy harvest 
systems, biomedical devices, and high‑strength composites. Many studies were performed fabricating 
more elaborate and heterogeneous nanostructures then the structures were characterized using TEM 
tomographic images, upgrading the fabrication technique. Despite the effort, intricate fabrication 
process, agglomeration characteristic, and non‑uniform output were still limited to presenting the 3D 
panoramic views straightforwardly. Here we suggested in situ synthesis method to prepare complex 
and hierarchically‑assembled nanostructures that consisted of ZnS nanowire core and nanoparticles 
under  Ag2S catalyst. We demonstrated that the vaporized Zn and S were solidified in different shapes 
of nanostructures with the temperatures solely. To our knowledge, this is the first demonstration of 
synthesizing heterogeneous nanostructures, consisting of a nanowire from the vapor–liquid–solid 
and then nanoparticles from the vapor–solid grown mechanism by in situ temperature control. 
The obtained hierarchically‑assembled ZnS nanostructures were characterized by various TEM 
technologies, verifying the crystal growth mechanism. Lastly, electron tomography and 3D printing 
enabled the nanoscale structures to visualize with centimeter scales. The 3D printing from randomly 
fabricated nanomaterials is rarely performed to date. The collaborating work could offer a better 
opportunity to fabricate advanced and sophisticated nanostructures.

Nanomaterials are of intense interest due to their enhanced surface properties, thus the nanomaterials can be 
used for high-performance energy storage and redox reaction platform, in vivo targeting drug delivery, addi-
tives for mechanical strength enhancement, and plasmonic light direction  controller1–7. However, the manmade 
nanostructures preparation requires intricate fabrication steps to control the overall shape and precise position 
control of the nanomaterials on the targeting substrate. Correspondingly, there is an escalating need for novel 
visualization tools, which address rapid progress in developing various manmade nanoscale matters  nowadays8–12. 
For visualization, the intricate structural details of such nanoscale matters should be directly inspected and veri-
fied at length scales relevant to their intrinsic near-atomic dimensions. Simultaneously, the obtained structural 
information and knowledge must be readily translated at much larger scales where additional assisting charac-
terization tools are unnecessary for clarification and understanding.
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Many studies have been conducted to prepare nanostructures from various methods such as chemical vapor 
deposition (CVD), thermal evaporation, and thermo-solution  methods12–18. Then different types of nanostruc-
tures have been developed in the shape of the nanowire, nanoribbon, nanosheets, and nanoparticles. Although 
nanostructural fabrication technologies have been drastically developed, the prepared nanomaterials tend to 
agglomerate amongst the nanoscale structures, attenuating the intrinsic performance of the  nanomaterials19–23. 
Thus, heterogeneous structures, such as core/shell structure and surface modification, have been studied to 
maintain and further enhance the functionality of  nanomaterials16–18,24–27. Various nanostructures and their fab-
rication methods are continuously evolving in advanced heterogeneous structures, the methods however require 
complicated and exquisite processes. Transmission electron microscopy (TEM) is a typical tool to characterize 
near-atomic scale structures, capturing two-dimensional (2D) projected nanomaterials. The measuring tech-
nology helps the nanomaterials inspection to be more closely to atomic scales, hence the use of the technology 
would be a complementary strategy to fabricate advanced  nanostructures28,29.

Although the TEM measurement broadened the nanomaterial preparation technique, the conventional TEM 
measurement often needs very sophisticated sample preparation and instrument operations for accessing spatial 
areas of specific interest. Three-dimensional (3D) TEM tomography has emerged as a powerful characteriza-
tion tool owing to its unique ability to access structural details of nanoscale entities from all angles, which can 
grab details overlooked with the conventional  approach30–32. The tomography operates based on accumulating 
and reconstructing 2D TEM images from matters of interest that are systematically rotated at various tilt angles 
inside the TEM  device33–35. While its advantage for visualizing sophisticated structural details unattainable by the 
conventional tools is obvious, such information that is an accumulation of individual 2D TEM images assigned 
at specific tilt angles still presents a gap with truly 3D panoramic views. Also, grabbing and accessing the true 
3D structures of nanoscale entities is not quite straightforward with 3D TEM tomography solely, particularly 
for those not familiar with TEM crystallographic analysis.

Here we suggest a method to prepare a complex and heterogeneous nanostructure using an in situ synthesis. 
The nanowire-based core–shell structures have been suggested in various research fields, such as photovoltaic 
devices, biomedical implantable electrodes, energy harvesting active layers, thermoelectric additives, and light 
absorption and reflection  studies24,36–40. First, a hierarchically-assembled nanostructure was fabricated, con-
sisting of a zinc sulfide (ZnS) nanowire (~ 50 nm diameter) core, ZnS nanoparticles on the surface of the ZnS 
nanowire, and  Ag2S nanoscale catalyst on the tip of the ZnS nanowire. ZnS-based nanostructures fabrication has 
been widely studied with different dimensions due to its wide direct  bandgap41–43. This characteristic enables the 
ZnS-based nanostructures to be used as optoelectronic applications such as light emitting diodes (LEDs), elec-
troluminescent devices (ELDs), versatile sensors, and infrared  windows44–49. The hierarchically-assembled nano-
structures were prepared from simple, in situ synthesis by metal–organic chemical vapor deposition (MOCVD). 
Since the vapored or liquefied Zn and S can be solidified in the different shapes of nanostructures with tempera-
tures (VLS pathway), the Zn and S are assembled into nanowire under Ag catalyst and then nanoparticles on the 
surface of the nanowire by the temperature control from vaporized Zn and S (VS pathway). To our knowledge, 
this is the first demonstration to synthesize heterogeneous nanostructures by VLS then VS grown mechanism 
from in situ temperature control solely.

The assembled nanostructures were monitored by various TEM techniques then characterized by 3D TEM 
tomography. Further, the 3D TEM tomography was combined with 3D printing technology to visualize the com-
plex nanostructures. We suggest a collaborating characterization approach that directly visualizes 3D structural 
details of nanoscale entities and translates them to a much larger length (> 10  cm2) where their direct inspection 
is possible without additional characterization  efforts50–52. Furthermore, the successive nanostructure inspec-
tion by 3D TEM tomography and visualization by 3D printing promotes elaborate nanofabrication, resulting 
in the enhanced and modified performance of the  products53–55. Although many studies have been reported to 
materialize sophisticated structure using 3D printing from intentionally coordinating  work56–58, rare study has 
been performed to print nanostructures from randomly fabricated materials.

The results should open up a novel field that allows easy-to-fabricate heterogeneous nanostructures and 
investigates with high spatial resolution. This could ultimately have an impact on our understanding of the crystal 
structure growth mechanism that plays an important role in the final nanostructure properties.

Results
Hierarchically‑assembled ZnS nanostructures preparation. The hierarchically-assembled ZnS 
nanostructures were grown here following five steps that can be seen in Fig. 1a: (I) The ZnS powder evaporates 
at 900 °C, separating into Zn (vapor) and S (vapor) precursors. The Ag thin film of 10 nm thickness coated on 
the Si wafer minimizes the surface energy and forms spherical Ag droplets of a liquid phase, while the gase-
ous Zn and S precursors are dissolved into the Ag droplets. The reaction between Ag (liquid) and S (vapor) is 
thermodynamically favored. Hence,  Ag2S is formed first, and the continuously provided Zn and S are dissolved 
into the  Ag2S droplet in the ZnS  form59,60. (II) The temperature of the quartz tubing inside was decreased after 
20 min when ZnS was sufficiently dissolved into the  Ag2S droplet. Then the supersaturated ZnS is precipitated 
in a solid phase to form nanowires at the nucleation temperature. Then ZnS nanowire growth was monitored 
with temperatures at 800 °C (Fig. 1b) and 760 °C (Fig. 1c). The vapor–liquid-solid (VLS) growth process was 
suggested in the previous  studies61–65. (III) The growth of the highly supersaturated ZnS nanowires (Fig. 1d) was 
stopped under a temperature of 700 °C, which is defined as “eutectic temperature” here. The grown ZnS nanow-
ires clearly display the uniform length and diameter of the individual nanowire range of a few μm and a few tens 
of nm, respectively. (IV) The continuously provided Zn (vapor) and S (vapor) precursors were directly deposited 
on the nucleation in a solid mode to form ZnS nanoparticles around ZnS nanowires (Fig. 1e). This process was 
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controlled by a vapor–solid (VS) growth mechanism. (V) The growth of the nanoparticles was automatically 
terminated when the temperature was cooled to room temperature.

The hierarchically-assembled ZnS nanostructures display that each ZnS nanowire was decorated by consider-
able amounts of nanoparticles with size < 10 nm, which generate the thickness of 50–100 nm (nanoscale) and the 
length of ~ 1 μm, respectively (Fig. 1f). XRD measurement corroborated the crystal structure of the as-obtained 
ZnS nanostructures, corresponding to hexagonal 2H wurtzite phase ZnS with lattice constants of a = b = 3.836 Å 
and c = 6.277 Å, which is quite different from those obtained from ZnS nanowire (Fig. S2).

Hierarchically‑assembled ZnS nanostructures characterization. Various TEM studies demon-
strated the ability to inspect a detailed morphology of the complex and random nanostructures. A typical bright 
field (BF) TEM image of the hierarchically-assembled ZnS nanostructure revealed distinctly irregular nano-
particles attached to the surface of the ZnS nanowire (Fig. 2a, low-magnification images in Fig. S3). The  Ag2S 
catalyst was shown as a dark elliptical form on the end of the hierarchically-assembled ZnS nanostructure. TEM 
elemental mapping analysis of individual hierarchically-assembled ZnS nanostructure displayed that Zn and 
S elements are dominant in nanowire and nanoparticles (Fig. 2b). Ag signals are strongly detected at the tip of 
the nanostructure with the dense S element signals. The EDS mapping results support the finding that the ZnS 
nanowire was grown from the VLS method using the  Ag2S catalyst then ZnS nanoparticles were grown around 
the nanowire from the VS method (Fig. S4).

The hierarchically-assembled ZnS nanostructure was further inspected using the high-resolution TEM (HR-
TEM) images, examining the detailed crystal structures of both ZnS nanowire and nanoparticles (Fig. 2c); this 
shows highly crystallized lattice fringes for both the ZnS nanowire and nanoparticles. The lattice image deter-
mined the interplanar spacing of 0.314 nm perpendicular to the ZnS nanowire axis that was exactly the [0001] 
lattice plane. The ZnS growth was in the [0001] direction of the wurtzite ZnS. The ZnS nanoparticles also showed 
a [0001] lattice plane with an interplanar spacing of 0.314 nm, and ZnS growth was in the [0001] direction.

The FIB technique performed cross-sectioning of the ZnS nanostructures. High-resolution annular dark-
field STEM (HR ADF-STEM) image of the specific area marked with a red square (Fig. 2d) was well-matched 
with hexagonal ZnS regarding Z-contrast between Zn and S (Fig. 2e). The right inset displayed the fast fourier 
transformation (FFT) with [0001] zone axis. The diffraction spots are indexed to wurtzite ZnS, confirming that 
the hierarchically-assembled ZnS nanostructures are single crystalline. The strain field between nanowire and 
nanoparticle by GPA tool (Fig. 2f) displayed the overlapped strain mapping for εxy, and the mapping data clearly 
showed that strain is not induced (less than 1%) between nanowire and nanoparticle.

Hierarchically‑assembled ZnS nanostructures visualization. 3D tomography analysis of the hierar-
chically-assembled ZnS nanostructure with a lacey carbon grid was performed inside the TEM, obtaining better 
insight into the specific nanostructure. Several sets of tilted BF TEM images were collected at tilt intervals of 
multi-degrees from − 75° to 75° using the rotation holder (rotation video can be seen in Movie S1). These elec-
tronic tomographs reconstructed 3D objects from 2D projection images taken at different viewing angles and 
are made into 3D objects from combined 2D images through the following four processes (Fig. 3): (1) Series of 
2D images acquired of the hierarchically-assembled ZnS nanostructure at the different viewing angles. (2) 2D 
projected images combined into an image stack ordered by viewing angle. (3) Tilt series is aligned, and a recon-
struction algorithm is applied to produce a 3D reconstruction of the nanostructure (Movie S2 for tomography 

Figure 1.  Hierarchically-assembled ZnS nanostructures preparation. (a) Schematic diagram of the 
hierarchically-assembled ZnS nanostructures growth mechanism. TEM images of ZnS nanowires with 
temperatures (II → III); (b) 800 °C and (c) 760 °C. (d) SEM image of ZnS nanowires at eutectic temperature 
(III). (e) Nanoparticles growth initiation (III → IV) confirmed by TEM image. (f) SEM image of ZnS 
nanostructures (V). Both insets in (d) and (f) displayed a single nanowire and nanostructure from high-
magnification SEM images (scale bar: 100 nm).
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and Movie S3 for 3D visualization). (4) The hierarchically-assembled ZnS nanostructure was output using 3D 
printing.

Five representative BF images of the hierarchically-assembled ZnS nanostructures tilted at − 70°, − 35°, 0°, 
35°, and 70° were displayed in Fig. 4 top. The shape and location of the nanoparticles are revealed in the recon-
structed volume of 3D printed in Fig. 4 bottom. The 3D printed nanostructures provided a length scale that 
is  105 magnified than the pristine nanostructures. A crucial aspect of electron tomography is segmenting the 
features of interest from the 3D reconstructions and quantitatively describing their properties. Lastly, visualiza-
tion accuracy was confirmed by the comparison between TEM measured images and magnified optical images 
(Fig. 5). The comparison demonstrated that the visualization successfully reproduced the nanoscale measure-
ment to centimeter scale artifact, enabling the complicated nanostructures to be easily observed then ultimately 
modified by the visualization feedback.

Discussion
The hierarchically-assembled ZnS nanostructures were prepared by VLS and VS growing methods. Vaporized 
Zn and S dissolved in liquefied  Ag2S catalyst then formed ZnS nanowire under saturated temperature. The 
vaporized Zn and S were directly attached around the ZnS nanowire under eutectic temperature (700 °C) and 
formed ZnS nanoparticles. The in situ method controlled by temperature solely should open up the numerous 
possibilities of fabricating heterogeneous hierarchically-assembled nanostructures. Various TEM measurements 
demonstrated the hierarchically-assembled ZnS nanostructures and crystal growth direction directly. In addi-
tion, 3D tomography helped the nanostructures to reveal their specific features. Lastly, the nanostructures were 
visualized by the 3D printing technique on large scales (> 10  cm2). This study would enable the nanostructure 
fabrication to be more precise, resulting in high-performance nanomaterial products.

Figure 2.  Structural analysis of the hierarchically-assembled ZnS nanostructures. (a) A BF TEM image of 
hierarchically-assembled ZnS nanostructure. (b) HR ADF-STEM images of the nanostructure and EDS element 
maps (yellow: Ag, green: Zn, red: S). (c) HR-TEM image of a single ZnS nanostructure showing the c-axis 
growth and single-crystalline nature. (d) BF TEM and (e) HR ADF-STEM images obtained from a cross-section 
of hierarchically-assembled ZnS nanostructures (inset: corresponding FFT pattern). (f) The strain field of (e) 
that was calculated by using GPA.
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Methods
ZnS nanostructures preparation setup. The hierarchically-assembled ZnS nanostructures were pre-
pared in horizontal quartz tubing with a gold furnace system (see Fig. S1). First, a Si (100) wafer (1.0 cm × 3.0 cm) 
was cleaned in acetone and sonicated for 10 min. Then Ag film (10 nm thickness) as a catalyst was deposited 
on the cleaned Si wafer for 10 s via ion sputtering. Next, 0.1 mg zinc diethyldithiocarbamate (97%, ZnS powder, 
Sigma-Aldrich) was poured into an alumina boat placed upstream of the quartz tubing. The Ag coated Si wafer 
was located downstream of the quartz tubing. After reducing the pressure of the quartz tubing inside to 0.1 torr, 
a mass flow controller (MFC) was used to set a 100 sccm (standard cubic centimeter per minute) flow of Ar gas 
(99.999% purity). The pressure of the quartz tubing inside was maintained at 5.0 torr using the pressure control 
system. When the gold furnace temperature reached 900 °C with a rate of 1 °C/s, the quartz tubing, including the 
alumina boat upstream and the Ag coated Si wafer downstream, moved inside the furnace.

Structural characterizations. The morphologies and microstructures of the as-synthesized products 
were systematically characterized. The crystalline structure characteristics and the morphology of the synthe-

Figure 3.  Schematic illustration of TEM tomography data acquisition, 3D reconstruction, and 3D printing 
result.
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Figure 4.  Various tilt angles BF images of a tomographic series (top) and photographs of the 3D printed 
(magnified over  105 scales) hierarchically-assembled ZnS nanostructures (bottom).

Figure 5.  Magnified optical images (right) to confirm the visualization from the nanoscale measurement (left); 
(a) tip and (b) surface of the hierarchically-assembled ZnS nanostructure.
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sized hierarchically assembled ZnS nanostructure were investigated using an X-ray diffractometer (XRD, Bruker 
D8 advance), field-emission scanning electron microscopy (FE-SEM, Hitachi-8230), and Cs-corrected trans-
mission electron microscopy (Cs-TEM JEOL ARM200F) operating 200 kV. The chemical composition of the 
hierarchically assembled ZnS nanostructure was analyzed using an energy dispersive X-ray spectrometer (EDS, 
Oxford Aztec 80 T) attached to the Cs-TEM. A focused ion beam (FIB, FEI NOVA200) was used to observe 
the cross-section of the hierarchically assembled ZnS nanostructure. A geometric phase analysis (GPA) script 
installed on a Gatan Digital Micrograph was used to calculate the strain generated at the interface between the 
ZnS nanowire and the ZnS nanoparticle.

TEM tomography and 3D printing. TEM tomography was performed using the automated tilt-series 
acquisition software TEMography on a Cs-TEM operated at 200 kV. The first step in TEM tomography is record-
ing TEM images while tilting the sample over a wide range of angles in small increments. For the ZnS nanowires 
coated with nanoparticles, JEOL rotation holder was employed to collect bright field (BF) images in a Cs-TEM. 
The tilt of the JEOL rotation is motor-driven from 0 to 360°. 160 BF images were collected for each reconstruction 
at 1° tilt intervals in a tilt range of − 80° to + 80°. Here lacey carbon grid, which was used as a template for TEM 
analysis, was included to visualize the whole nanostructures more sophisticatedly. Composer (TEMography.
com) performs complete automatic acquiring of sequential tilted TEM images series essential for tomographi-
cal 3D image reconstruction. Algorithms corresponding to inherent problems, such as correction of shifted 
position when specimen tilted and maintenance of focus, are applied automatically. After data acquisition, all 
BF TEM images are aligned with respect to a common origin and tilt axis. In the next step, a 3D reconstruc-
tion of the imaged sample is computed using specialized algorithms such as filtered back-projection (FBP) and 
the simultaneous iterative reconstruction technique (SIRT). The 3D reconstructed result and Amira software 
(ThermoFischer Scientific) provide the basis to visualize the ZnS nanostructure morphology. The hierarchically-
assembled ZnS nanostructure forms were fabricated by a 3D printing approach with the polylactic acid (PLA) 
filament. The used custom-made 3D printing system consisted of a fused-filament-fabrication (FFF) head with 
a 300 μm nozzle, a movable printing bed on a three-axis, and an optical monitoring module; the monitoring 
module consisted of an optical lens (10 ×) and a charge-coupled device (CCD) camera (Blackfly USB3 FLIR). 
The template of the hierarchically assembled ZnS nanostructure form was obtained with TEM tomography and 
exported as stereolithography (.stl) file into TEMography (Visualizer-kai, Japan). The 3D structures, which were 
formed in .stl format, were fabricated in a layer-by-layer 3D printing manner. After printing, the support part 
that maintained the shape of the printed structures during the printing process was removed.

Data availability
All the data produced by this study are included in this published article.
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