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Abstract

Due to large-scale habitat losses and increasing pressures, benthic habitats in general, and

perhaps oyster beds in particular, are commonly in decline and severely threatened on

regional and global scales. Appropriate and cost-efficient methods for mapping and monitor-

ing of the distribution, abundance and quality of remaining oyster populations are fundamen-

tal for sustainable management and conservation of these habitats and their associated

values. Towed video has emerged as a promising method for surveying benthic communi-

ties in a both non-destructive and cost-efficient way. Here we examine its use as a tool for

quantification and monitoring of oyster populations by (i) analysing how well abundances

can be estimated and how living Ostrea edulis individuals can be distinguished from dead

ones, (ii) estimating the variability within and among observers as well as the spatial variabil-

ity at a number of scales, and finally (iii) evaluating the precision of estimated abundances

under different scenarios for monitoring. Overall, the results show that the can be used to

quantify abundance and occurrence of Ostrea edulis in heterogeneous environments.

There was a strong correlation between abundances determined in the field and abun-

dances estimated by video-analyses (r2 = 0.93), even though video analyses underesti-

mated the total abundance of living oysters by 20%. Additionally, the method was largely

repeatable within and among observers and revealed no evident bias in identification of liv-

ing and dead oysters. We also concluded that the spatial variability was an order of magni-

tude larger than that due to observer errors. Subsequent modelling of precision showed that

the total area sampled was the main determinant of precision and provided general method

for determining precision. This study provides a thorough validation of the application of

towed video on quantitative estimations of live oysters. The results suggest that the method

can indeed be very useful for this purpose and we therefor recommend it for future monitor-

ing of oysters and other threatened habitats and species.
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Introduction

The status and distribution of marine coastal habitats are under increasing threat by human

pressures, e.g. through coastal degradation and overexploitation [1–4]. For example, many

conspicuous habitats, such as seagrass meadows, kelp habitats and various types of biogenic

reef are considered to be threatened and in decline in recent regional, European assessments

[5, 6]. In order to halt this decline and achieve sustainable management of these environments

various measures, such as protective legislation [7, 8] and the designation of Marine Protected

Areas (MPAs) have been undertaken.

Oyster reefs and beds are globally one of the most endangered types of benthic habitat (e.g.

[1, 9–13]), forming ecologically and economically important ecosystems in temperate regions

all over the world. They provide a three-dimensional structure that serves as a nursery ground

for many species ([14] and references therein), [15], [16], including commercially important

fish species [17], provide shoreline stabilization [18] and improve the coastal water quality by

removal of suspended material ([19] and references therein). Oysters can also have a mitigat-

ing effect on eutrophication, but according to a review by Kellogg et al. 2014 [20], the overall

effect of oysters on nitrogen dynamics is complex and depends on environmental conditions.

A comprehensive assessment of the condition and distribution of oyster reefs and beds in

2009 estimated that as much as 85% of this habitat has been lost [9, 21]. In Europe, virtual

extinctions of native European flat oyster (Ostrea edulis) beds has been documented in many

areas, for example the Wadden Sea [22, 23] in Belgium, in all deep waters of the southern

North Sea [11] and in large areas in Galicia[24]. Major reasons for this include overfishing, dis-

ease, sedimentation, destructive fishing methods, increased pollution and introduction of new

species [9, 21] [25–27]. To increase the protection of this endangered habitat, oyster reefs and

beds have been listed as a conservation feature in the EU Habitats Directive [8] and, since

2003, the Oslo Paris Commission (OSPAR) identifies beds of O. edulis as a priority habitat

(updated in 2008 [11]). In addition to conservation initiatives, a number of restoration projects

and feasibility studies have been carried out in Europe [28, 29].

To assess the efficiency of management strategies and protective measures, quantitative

data on distribution and quality of species and benthic habitats are crucial. These can be used

for establishing environmental baselines and quantifying relative change attributable to

anthropogenic disturbance [2] [30, 31]. Although recent technological developments in

remote sensing allows monitoring of certain shallow habitats, such as vegetated soft-sediments

with satellites or drones, methods for studying and monitoring biodiversity can traditionally

be divided into (1) extractive techniques (e.g. trawling, grabbing and dredging), (2) techniques

based on acoustics and (3) methods based on underwater imagery [32]. Extractive techniques

have a long history in assessing fish populations and macro-benthos, but are less suitable for

use in sensitive habitats or areas of conservation concern [33, 34]. Acoustic techniques, on the

other hand, are non-destructive and very useful for rapid geo-physical mapping and prediction

of associated sessile benthos (e.g. [35, 36]). To verify biological predictions and ground-truth

seabed characterization made by acoustic methods, various image and video based methods

have frequently been used [37–40]. Such underwater imagery methods are non-destructive,

which makes them especially useful in biological sampling in sensitive benthic environments.

Moreover, they generate permanent data-rich records that can be used in other studies or to

re-examine the results of the study at hand, provide useful information of species-habitat inter-

actions and have often proven cost-efficient [32, 41–45]. They are, however, less suitable in

very turbid waters [46] or when taxonomic identification at high level is required [43]. Under-

water imagery methods include (1) ROV and AUV techniques, (2) photo-quadrates, (3) diver-

operated video surveys, (4) drop-cameras and (5) towed video. Perhaps as a consequence of
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improved technological performance (battery life, information storage and improved resolu-

tion), methods based on towed video (extending from simple sleds only equipped with video

camera, to technically advanced flying arrays) have been increasingly used for surveys and

monitoring of coastal habitats and associated macrofauna [41, 42, 47–52]. This technology

provides cost-efficient method for mapping large areas while at the same time allowing for

quantifying cover and abundance of benthic habitats and species [32, 41–44, 49, 53, 54].

Quantitative assessments of molluscan habitats and abundances have commonly been per-

formed using dredge surveys in subtidal areas, [55–58], but other less destructive approaches

are developing, where a combination of a remote sensing method (e.g. aerial images, side-scan

sonar, hyperspectral remote sensing and imaging radar) and some kind of field sampling as

ground-truthing is commonly used [59–64] [65] in both inter- and subtidal areas. In addition,

Soniat [66] and Kennedy and Roberts [67] estimated oyster abundances using divers sampling

in quadrats or along transects. One particular challenge in the development of reliable under-

water imagery methods to study oysters and other epibenthic bivalves and gastropods, is to

distinguish living individuals from dead ones. Nevertheless, some studies using towed video

has shown that this is possible for sea-scallops [68, 69], Queen conchs [51] and subtidal reefs

of Crassostrea virginica [46].

In the northern part of the Swedish west coast, the native oyster, Ostrea edulis, is frequently

found at low abundances at depths 0–6 m, mostly in sand or shell gravel habitats. [70]. Due to

the complex morphology of the archipelago, oyster populations may be characterized as having

very patchy distributions. Although the size of the Swedish population is yet unknown, it is

considered viable, according to the Swedish Species Information Centre [71]. In terms of dis-

eases, Bonamia has never been found in Swedish waters, but Marteilia refringens has occasion-

ally been detected in samples of blue mussels (Mytilus edulis) since 2009 [72, 73]. The fishery

on the natural population is small-scale and consists of a targeted fishery, performed by a few

divers. Apart from a period in the mid-20th century, when an annual harvest of almost 50

tonnes was recorded, the average catch per year is approximately 10 tonnes [74]. However, the

demand for Swedish oysters is very high and the potential for increased oyster production are

therefor currently under investigation. Whether or not an expansion of the fishery on natural

oysters is ecologically sustainable is difficult to assess, since knowledge of the natural stock size

and its recruitment ability is inadequate.

The overall aim of this study was therefore to develop and test a method for non-destructive

sampling of Ostrea edulis, which can be used to quantitatively estimate local and regional

abundance and occurrence under a wide range of environmental conditions. For this purpose

we used a high-definition video camera mounted at a fixed height on a sled, which was pulled

at a slow speed along the bottom. By comparing the abundance of oysters in transects obtained

by field examination to those obtained by video, we (1) analysed how well abundances can be

estimated and how living oysters can be distinguished from dead ones. Furthermore, by

employing replicate video-observers and repeated observations within observers at a number

sites and transects we (2) estimated the importance and tested the significance of variability

within and among observers as well as spatial variability at a number of scales. Finally, these

estimates were used to (3) evaluate the precision of alternative scenarios of monitoring, i.e.

varying number of transects and total area investigated.

Materials and methods

Study area and sampling design

The method was evaluated at three sites in the archipelago around Sven Lovén Centre for

Marine Sciences at Tjärnö (58˚, 53’ N, 11˚, 8’ E; Fig 1A), on the west coast of Sweden. The area
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is characterised by fluctuating salinities, normally 20–30 psu in the surface water, temporary

ice-cover during December-March, small tidal differences, variability in wind and wave expo-

sure and a complex coastal morphology including numerous rocky islands, rocky and sandy

shores.

Three study sites, with O. edulis abundances typical for the area and diverse bottom condi-

tions, were selected for the study. At each site 3–5 transects, with a length of 20 meters, were

filmed and carefully examined in the field (Fig 1A and 1B). This study was carried out in strict

accordance with the”Permit on scientific research and collection of red-listed species in Kos-

terhavet National Park in the municipalities of Strömstad and Tanum” given by the County

Administration Board of Västra Götaland (Permit Number: 521-1553-2014). The target spe-

cies of the study, Ostrea edulis, is protected according to the OSPAR-convention. Therefore,

individual oysters collected in the field were immediately put back on the bottom after inspec-

tion without any further consequences to their survival or wellbeing.

Each transect was defined using a rope ladder made of two 20 m weighted rope (polypro-

pylene/polyester), with the dimension 9 mm, separated by 0.8 m long wooden sticks every

fourth meter, forming an area of 20 x 0.8 = 16 m2. To facilitate identification of individual oys-

ters, the ropes had a length mark every 0.5 m (Fig 2A).

Each transect was placed randomly on the bottom at approximately 1 m depth oriented

towards the deeper water, often transverse the shoreline. Sample transects were then filmed

using a high-definition (HD) GoPro Hero 2 camera (colour, 1080p) mounted on a sled 50 cm

above the bottom, oriented downward, giving a picture frame size of 0.45 x 0.8 m (Fig 2B). In

order to exactly cover the defined transects, the sled was manually pulled, using an attached

rope of 30 meters, meanwhile its position was monitored and adjusted by a snorkeler to keep

the path. To achieve image sharpness, the camera rig had to be moved sufficiently slow, with a

maximum speed of approximately 0.25 m s-1 (approximately 0.4 knots; subsequent use in a

Fig 1. Study location and experiment design. (A) Study location, (B) study site 1 (Lökholmen) with

schematic scale diagram of sample transects and sections and (C) experiment design.

https://doi.org/10.1371/journal.pone.0187870.g001
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large-scale survey of oysters in the area have shown that it is equally feasible and more efficient

to tow the sled directly from the boat using an electric outboard motor at the same speed).

After filming, a snorkeler performed a thorough and complete examination of all oysters

within the sample transect (defined by the rope ladder). Status of oysters, i.e. living or dead,

was determined by lifting up and closely examining all individuals and empty shells, until sta-

tus undoubtedly could be established. In addition, the snorkeler also noted the exact position

(both on the length, in meters from the starting point, and on the cross, i.e. in relation to the

transect borders) of all oysters and other potentially important characteristics of the individu-

als, such as approximate size, level of sedimentation cover or fouling, occurrences of oyster

clusters and other bivalve species.

Analysis of video-material

Two sets of data were collected from the video material: abundance of oysters at the scale of

spatial units (five 0.8 x 4 m sections within each transect) and information on the status of

individual oysters (i.e. living or dead). Results were then compared to the abundance and indi-

vidual status determined in the field. Additionally, the importance of various sources of vari-

ability, e.g. spatial variability and measurement errors were estimated.

To assess potential uncertainty in estimates of mean abundance associated with observer-

errors and spatial variability we designed a protocol which enabled us to quantify variability

within and among transects and within and among observers (Fig 1C). Thus, each 20 m video-

transect was cut into five 4 m sections with start and end points marked by the wooden sticks.

Each section was given an ID number and in order to ensure unbiased observations, the sec-

tions were joined together digitally in random order using iMovie (version 9.0.9) for OSX.

Each section was present in two copies in order to allow repeated readings of the same section.

The abundance of oysters in the individual sections was then separated into the following cate-

gories; “probably living”, “possibly living” or “dead”, based on estimations from pre-defined

set of criterion (Table 1; Fig 3). These criteria were established after thorough studies of how

oysters with particular attributes are likely to be categorized. All oysters on the video material

were counted and categorized by two independent observers.

To be able to assess how the accuracy of the method was affected by different environmental

conditions, we also estimated the substrate characteristics (soft bottom, sand, gravel, shell hash

or rock), algal cover (bear substrate filamentous algae and non-filamentous vegetation) and

Fig 2. Schematic drawing of the sample transects and the video sled. (A) Schematic drawing of the

dimensions of the sample transect and the location markers and (B) photo of the simple sled design and the

position of the video camera.

https://doi.org/10.1371/journal.pone.0187870.g002
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eelgrass occurrence. This was done by sub-sampling eight equally spaced frames from each

video-transect using iMovie (�50% of the transect). The cover of substrate classes and vegeta-

tion was estimated in each frame using 1/4 as the smallest unit.

To better understand potential errors at the level of individual oysters, a second set of data

that was collected from the videos, in which we compared the status assessment in the field to

the status determined from the video-transects. For this comparison we selected individual

oysters that could be unambiguously located both from field notes and the videos. The selected

oysters were numbered digitally on the video by one observer and their individual status were

determined by another. In order to estimate false positives and negatives equally well, we

selected approximately the same number of living and dead oysters (137 and 133 respectively).

Statistical analyses

The three aims of the paper were each addressed with separate statistical approaches. Two sets of

analyses were done to compare data collected in the field and from the videos. First, correlation

Table 1. Criteria description.

Category Definition

Probably living Distinct to moderate three-dimensional shell structure

Nuanced colouration

Two visible shells with a small gap.

Possibly living Slightly worn shells with some shell structure

Less nuanced colouration

Dead Single shells

Two visible shells with a large gap

Significantly worn shells without structure

White or bright shells

Description of criteria for distinguishing between probably living, possibly living and dead Ostrea edulis in

video-sequences.

https://doi.org/10.1371/journal.pone.0187870.t001

Fig 3. Still frame from the video recording. Still frame showing the field of view from the video camera

including three living (L) and one dead (D) oyster and the transect borders.

https://doi.org/10.1371/journal.pone.0187870.g003
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analyses were used to compare abundances determined in the field to those estimated from vid-

eos. Means estimated from the videos of each section for both observers were compared to field

determination of oyster abundance. Additional correlations were also done to explore possible

patterns of errors related to environmental conditions. Second, field and video measurements

were also assessed at the level of individual oysters. Thus, for a total of (137 living and 133 dead

oysters) classification success was summarised in a confusion matrix that cross-tabulated the

number of living and dead oysters from video estimations with the number of living and dead

oysters determined in the field. Classification success was examined by calculating correct classi-

fication rate, sensitivity, specificity and kappa [75].

The importance and significance of uncertainty of variability within and among observers

and that caused by spatial variability was assessed using a mixed linear model. In this model

the three sites were considered fixed because they were selected deliberately to contain popula-

tions of oysters. The levels of the factors “Observer”, “Transect” and “Section” were, however,

selected as representatives from a large population and were therefore considered random.

Note also that in the selected sampling design, the size of residual component represents the

variability between replicate readings made by the same observer. The significance of fixed

and random components of the linear model was tested using analysis of variance (ANOVA;

[76]) and the size of variance components due to random factors were estimated using

restricted maximum likelihood procedures (REML). The mixed linear model was analysed

using routines lm and lmer in R [77, 78].

The combined effects of different sources of uncertainty on precision of mean abundances

under different scenarios of monitoring were assessed using appropriate formulae for error-

propagation (e.g. [79–81]). Thus, in order to assess the uncertainty of mean estimates within

spatial units corresponding to a site defined as approximately a stretch of�100 m coastline

(the typical scale of the shallow bays in this coastal area), the number of transects (a), sections

(b), observers (c) and replicate readings (n) are combined with estimates of variability (s2
Tr , s2

Se,

Fig 4. The distribution of oysters among transects. Abundance of living and dead oysters in each transect at the three sites, determined in the

field. Transect 1–5 from Site 1, Lökholmen; transect 6–8 from Site 2, Långholmen; and transect 9–13 from Site 3, Gåsholmen.

https://doi.org/10.1371/journal.pone.0187870.g004

Estimating abundance of oysters

PLOS ONE | https://doi.org/10.1371/journal.pone.0187870 November 15, 2017 7 / 20

https://doi.org/10.1371/journal.pone.0187870.g004
https://doi.org/10.1371/journal.pone.0187870


s2
Ob and s2

e ) into an expression for overall sampling variability of the mean:

V �y½ � ¼
s2

Tr

a
þ

s2
SeðTrÞ

a � b
þ

s2
Ob

c
þ

s2
e

abcn
: ð1Þ

By varying the number of transects, sections, observers and readings, we assess expected

precision (SE) under a range of possible sampling designs (note that SE½�y� ¼
ffiffiffiffiffiffiffiffiffi
V½�y�

p
).

Results

General observations

A total of 503 Ostrea edulis were observed at the study sites. Of these, 265 were living individu-

als and 238 dead, according to field determination. The maximum number of living oysters in

a transect (16 m2) was 60 (3.75 m-2), while densities up to 12.5 m-2 (40 oysters) were found in

individual 3.2 m2 sections (Fig 4).

Comparison of video versus field observations

There was a strong correlation between the number of oysters per section estimated by video

and those counted in the field (Fig 5A and 5C; r2 = 0.93 for “probably living” and 0.64 for dead

oysters). Nevertheless, it was obvious that fewer individuals of both living and dead individuals

were observed by video analysis (Fig 5). Thus the category defined as “probably living”, which

was identified with a higher degree of confidence, recovered approximately 40% of the living

individuals (Fig 5A). If, however, these were combined with the individuals identified as “pos-

sibly living” the relationship is equally strong (r2 = 0.93) and 70–80% of the living oysters are

recovered. Therefore, these two categories were merged and hereafter referred to as “living”

(Fig 5B). As for the dead oysters, almost 50% were detected in video estimations (Fig 5C).

Potential causes of these discrepancies were explored. First, we plotted the error (calculated

as video abundance–field determination) as a function of oyster abundance (Fig 6A). Not sur-

prisingly, this analysis revealed that the absolute error increases with increasing abundances

but also that occasional instances occur at low densities when abundances are overestimated.

Nevertheless, we can also observe that the relative error is largely constant over the whole

range of abundances (Fig 6B). Second, we tested the hypothesis that oysters are not recovered

due to the fact that they are hidden under the vegetation (Fig 6B).

Although there were some tendencies for large errors at individual sections, we found that

vegetation cover, as defined in this study, could not fully explain the fact that the number of

oysters was underestimated. A third cause that was examined was the fact that oysters grow on

top of each other and therefore appear in clusters or that they are partially hidden by different

fouling species or by sediment. Particularly, small oysters growing on other oysters are not eas-

ily identified by video and could potentially cause errors. Nevertheless, the oysters available at

the market are well above the size-limits of this method (� 7 cm compared to approximately

� 4 cm, according to a subsequent, unpublished study by Sallén Lennerthson). According

to field examination, 23 clusters consisting of 2–3 oysters were found. This amounted to 48

living and 22 dead individuals, i.e. 18% of the total number of living oysters. In addition,

field examination noted that 14% of the individuals were largely covered by algae and/or

sediment.

At the level of individual oysters, a total of 270 individuals were assessed as living or dead in

the field and by video (Table 2). Of these 51% were actually living and 49% were dead as deter-

mined in the field. Assessments done by video resulted in exactly the same percentages but

detailed analyses show that 9% of those living were actually identified as dead (25 “false
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negatives”) by video and 10% of the dead ones were identified as living (26 “false positives”).

Thus the frequencies of these two types of errors seem to be balanced.

Using the confusion matrix data, we also calculated a set of performance statistics. Thus,

the correct classification rate was found to be 0.81. The sensitivity, which measures the

Fig 5. Correlations between field and video observations. The correlation between the abundance of

living oysters determined in the field and the abundance of (A) “probably living” oysters, (B) the sum of

“probably living” and “possibly living” oysters estimated by video. (C) shows the corresponding correlation for

dead oysters. (#Ostrea edulis per 4 m sequence). Video-estimates represent averages from two persons.

https://doi.org/10.1371/journal.pone.0187870.g005

Estimating abundance of oysters

PLOS ONE | https://doi.org/10.1371/journal.pone.0187870 November 15, 2017 9 / 20

https://doi.org/10.1371/journal.pone.0187870.g005
https://doi.org/10.1371/journal.pone.0187870


efficiency of correctly finding living oysters, was 0.82 and specificity, the rate of correctly clas-

sifying dead oysters, was 0.80. The kappa statistic is a measure of how well the observer can dis-

tinguish between living and dead oysters compared to chance. We calculated a kappa of 0.62,

which according to Landis and Koch’s [82] categorization is considered a substantial strength

of agreement especially when the sensitivity and specificity are close to equal and the preva-

lence is high [83].

Fig 6. Examination of errors. Errors in observed abundances of Ostrea edulis (i.e. video estimation–field

examination) as a function of abundance (A) absolute error, (B) relative error and (C) % vegetation cover.

https://doi.org/10.1371/journal.pone.0187870.g006
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Spatial variability and observer errors of video estimates

The analyses of video observations showed that there were significant spatial variability as well

as variability due to observers (Table 3).

The spatial variability was mainly due to differences among 4 m sections within transects

(Fig 7).

The variability among sites and transects within sites, however, was less important. Interest-

ingly the experiment also detected significant variability between observers (Table 3). The fact

that no interactive effects were detected suggests that this effect was largely consistent among

sites, transects and sections. Nevertheless, detailed graphical analyses of the consistency within

and among observers show that the observations done by different persons were as consistent

as those within observers (Fig 8).

Another aspect with strong implications for the utility of the technique and dimensioning

of a sampling programme is the size of the spatial and methodological sources of variability.

From this perspective, the spatial components of variability, particularly the small-scale vari-

ability among sections, are the dominating factors (Table 3). Thus, the variability among sec-

tions contributes to 90% (26.2) of the total variability. The second largest component is the

variability between replicate observations made by the same observer (1.6� 5%) followed by

that among transects within sites (1.1� 4%). Note that the significant variability between

observers amount to less than 1% (0.1). Thus, although previous sections have shown that the

video-method tends to under-estimate the true abundance of oysters in the field and although

there is some uncertainty associated with observer errors, the dominating source of uncer-

tainty in a sampling programme can be expected to be due to spatial variability.

Table 2. Identification of individual oysters.

Field examination

Living Dead Total

Video Living 112 (41) 26 (10) 138 (51)

Dead 25 (9) 107 (40) 132 (49)

Total 137 (51) 133 (49) 270

Confusion matrix of status of individually identified oysters observed in the field and by video (number of

oysters [%]). Correct classification shown in bold.

https://doi.org/10.1371/journal.pone.0187870.t002

Table 3. Analysis of variance and variance components.

Source df MS p VC

Observer, = Ob 1 18.3 0.03 0.1

Site, = Si 2 345.0 0.12 -

Transect(Si), = Tr(Si) 10 128.5 0.31 1.1

Section(Tr, Si), = Se(Tr, Si) 52 106.3 0.00 26.2

Ob*Si 2 0.8 0.74 0.0

Tr(Si)*Ob 10 2.7 0.07 0.1

Se(Tr, Si)*Ob 52 1.4 0.75 0.0

Residual 130 1.7 1.6

Analysis of variance of counts of Ostrea edulis sampled using video. Size of variance components (VC) for

all random sources estimated using REML.

https://doi.org/10.1371/journal.pone.0187870.t003
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Modelling precision of a sampling programme

The information on spatial variability and observer error can be used to assess the expected

sampling variance and uncertainty of a sampling programme in a typical location comparable

Fig 7. Oyster abundance according to video observations. Average number of oysters per section and transect, estimated from video

observations. Error bars represent variation within and among observers.

https://doi.org/10.1371/journal.pone.0187870.g007

Fig 8. Examination of observer bias. Correlations of abundances of living oysters estimated from video-analyses (A)

between two different observers and (B) between replicate readings within observers (# oysters per 4 m section).

https://doi.org/10.1371/journal.pone.0187870.g008
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to the sites of this study. Using Eq 1 and the estimates obtained from Table 3, we assessed the

overall standard error of a range of sampling scenarios (Fig 9).

Not surprisingly, the analyses show that the number of spatial units (transects and sections),

have a large impact on the precision of mean estimates. In contrast, having multiple observers

and repeated observations by the same observer has a marginal effect on the precision (Fig 9).

It is also clear that the somewhat arbitrary division of 20 m transects into five 4 m sections,

which allowed us to study small-scale variability, was not particularly relevant for the preci-

sion. This could not be assumed a priori but is a consequence of the domination variability

among sections. Nevertheless, by transforming all combinations of sections and transects in

Fig 9A into total sampled area, we can conclude that the precision is largely a function of the

total area sampled and is not affected by whether there are many small or a few large transects

(Fig 9B). Overall we can see that the standard error is roughly 1 m-2 if ten square meters are

sampled, while to reduce an error to approximately 30% of the mean assuming an average den-

sity of 1 m-2, sampling of one hundred square meters are needed. Furthermore, we can con-

clude that in the three sites we sampled in this study (50–80 m2), the standard error was

roughly 0.5–0.8 oysters m-2.

Discussion

The aim of this study was to evaluate a video-based method for estimating the abundance of

European oysters, Ostrea edulis, to estimate the relative size of any potential errors and to

develop useful recommendations about its use. We have shown that the method can be used to

distinguish living individuals from dead ones and to quantify occurrence and abundance of

oysters in heterogeneous environments. The method is not without errors. In comparison to

direct observation on the field, video analyses slightly underestimated the abundance of living

oysters by 20%. Eighty per cent of the living individuals were correctly identified but the corre-

sponding proportion of dead oysters identified as living. Estimates of abundance using video

analysis were largely repeatable within and among observers, and the spatial variability was

one order of magnitude larger than that due to observational errors. Finally, we showed that

the total area sampled was the main determinant of precision and that the sampling effort in

the field is more important than errors associated with number of repeated observations of the

videos. These results provide several insights into the design of efficient sampling programs

for European oysters and epibenthic organisms in general, but also about the available

Fig 9. Analysis of sampling precision. (A) Expected standard errors of estimated abundances (m-2) using

video for different sampling designs (a = number of transects, c = number of persons, n = number of

repetitions per person). (B) Expected standard errors as a function of area sampled.

https://doi.org/10.1371/journal.pone.0187870.g009
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methods upon which management and conservation of benthic populations and habitats can

be based.

While several studies have evaluated the precision and cost-efficiency of photo- or video-

based techniques for quantifying the cover of benthic species (e.g. [32, 43, 50, 84–86]), density

estimates of solitary organisms are more scarce (but see [42, 47, 51]). Any sampling method

has its strengths and weaknesses. In order to provide realistic estimates of population abun-

dances of solitary species using video, it is necessary that the majority of individuals can be

seen and distinguished from other species and objects. One challenge for studies on organisms

with calcareous exoskeletons is to distinguish between living and dead individuals. Our results

showed a strong correlation between oysters observed in the field and from videos (R2 = 0.93)

and correct classification of more than 80% among living and dead oysters. Similarly, Boman

et al [51] found a strong correlation between video observations and in situ observations of

Queen conch in high- and low-complexity habitats (R2 = 0.89 and 0.99 respectively). Grizzle

et al. [60] compared video estimates of possibly living Eastern oyster as total number of oyster

shells minus the number of obviously dead oysters in 0.25 m2 quadrats with corresponding

number of living oysters extracted by divers from the same 0.25 m2 area and found that the

correlation was weak (R2 = 0.34) at high oyster densities, but strong (R2 = 0.77) if all quadrats

exceeding 25 living oysters were excluded from the data set. This corresponds well to our

study, where the maximum oyster densities were around 13 individuals m-2. Giguère and Bru-

lotte [68] compared estimates of living sea-scallop sampled by towed video and dredge in sea-

scallop populations. They found that the proportion of dead scallops was equivalent, regardless

of sampling technique, and that video surveying outperformed dredging when it came to the

precision of density estimates. Boman et al [51] found that video observations consistently

underestimated the counts of dead queen conch compared to diver observations. Almost 40%

of the dead queen conchs were recovered, which is comparable to our study where 50% were

found. They pointed out shell degradation as the main explanation to this, since degraded shell

may be more difficult to distinguish from other molluscs or even from non-living structures

such as stones and rubble [51]. Depending mainly on pH and salinity, the half-lives of oyster

shells may vary between 2–10 years [87] or 1–20 years [88].

While we conclude that the video method is robust as a tool to estimate occurrence and rel-

ative abundances in these environments, some bias towards underestimation appears to occur

for absolute numbers of oysters. Despite lack of evidence of increasing bias at higher densities,

it is not unlikely that counts in such sites may actually represent a “minimum-estimate” rather

than an unbiased estimate of density. According to field observations, some oysters appeared

in clusters and some were notably covered with sediment and/or algae, which can explain part

of the bias. Furthermore, it may be advisable to optimise the use of the method by avoiding

sampling at times of high turbidity and by mounting a lamp on the sled if sampling at depths

>10 m.

Apart from these sources of bias, causing underestimation of abundances, it is also clear

that there are other sources of error affecting the precision of population estimates. As varia-

tion among and within observers has been documented in a wide range of surveys based on

visual techniques (e.g. [89–92]), it is essential to examine new sampling methods for their

robustness to observer error. Grizzle et al [60] used the mean of three independent observers

when counting live oysters, but did not present any data on variation among observers and

thus there is not enough information to assess or optimise the sampling protocol. In this study,

we found significant variability between the two observers. Although significant, it was sub-

stantially smaller than the variability within observers (VC� 0.1 compared to 1.6) and more

importantly, an order of magnitude smaller than that caused by spatial variability among tran-

sects and sections within sites (VC� 1.1 and 26.2 respectively). Consequently, analyses using
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methods for error-propagation (e.g. [79, 81]) showed that the sufficient spatial replication was

more important for the precision of mean estimates than repeated observations.

Furthermore, we developed an expression predicting the error of mean estimates as a sim-

ple function of total area sampled. Using this expression, it is possible to design sampling pro-

grammes with any desired precision at the scale of sites that contain populations of European

oysters. The required precision clearly depends on the purpose of the study [93], but as an

example the model predicts a standard error of approximately 0.3 oysters m-2 (i.e. with a rela-

tive error [SE / mean] of 0.3) when a transect of 120 m2 (�150 m) is sampled in a site similar

to the ones measured here. The time needed to collect data in the field depends largely on dis-

tances among sites but on-site, preparing equipment and video sampling of the 20 m transects

required about five minutes. Video analysis in the laboratory required about 5–15 minutes for

counting oysters and assessing whether they were alive or dead (an additional 10–15 minutes

was spent classifying environmental conditions). Thus, using the example above we estimate

that the abundance of oysters at a site can be accurately determined by spending approximately

30 minutes at the field site and another 0.5–1.5 hours in the lab. But to estimate the size of a

population in a larger geographic area, it is possible that large variability among sites means

that it may be wise to opt for a less extensive design at individual sites, in order to allow sam-

pling at a larger number of sites. Nevertheless, the methodology presented here provides a gen-

eral strategy for dimensioning and optimising programs for sampling (see also [81, 84]).

Due to large-scale habitat losses and increasing pressures, benthic habitats in general, and

perhaps oyster beds in particular, are commonly in decline and severely threatened on regional

and global scales (i.e. [1, 6]). Appropriate and cost-efficient methods for mapping and monitor-

ing of the distribution, abundance and quality of remaining oyster populations are fundamental

for sustainable management and conservation of these habitats and their associated values [9,

21]. In particular, the need for data on spatial distribution and extent of habitats and species,

prompted by the demands in various new policy contexts (e.g. within marine spatial planning

and status assessments according to a EU directives such as the MSFD and the WFD), requires

that new, innovative approaches, with a potential for large spatial coverage are used (e.g. [81]).

This is partly in conflicts with earlier focus on detailed time-series at a few selected monitoring

sites, which is typical of traditional monitoring. The development of remote sensing methods,

such as acoustics, satellites, radar techniques or even the use of photography using drones, are

promising for approaches for assessing extent and distribution of benthic habitats in the marine

environment [35, 38, 94–97]. These methods, however, need to be complemented with detailed

data collected in situ which can be used to parameterise, calibrate and validate empirical models

based on remote sensing data [37, 40, 59, 63]. Observations using towed video, allowing species

identification and estimation of local abundance and cover, appear to be very useful here.

For beds of the native European oyster, Ostrea edulis, which is included in the OSPAR list

of threatened and/or declining habitats [11] it is particularly important that sampling is con-

ducted in a non-destructive way. In this study we have demonstrated strengths and weaknesses

of using towed video for this purpose and we conclude that it can indeed produce reliable esti-

mates of absolute and relative abundance of populations of living oysters. By evaluating the

size and potential consequences of various types of errors we have also provided an example,

which can be used as a general template for prediction and optimisation of precision in similar,

future studies.
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62. Cognie B, Haure J, Barillé L. Spatial distribution in a temperate coastal ecosystem of the wild stock of

the farmed oyster Crassostrea gigas (Thunberg). Aquaculture. 2006; 259(1):249–59.

63. Le Bris A, Rosa P, Lerouxel A, Cognie B, Gernez P, Launeau P, et al. Hyperspectral remote sensing of

wild oyster reefs. Estuarine, Coastal and Shelf Science. 2016; 172:1–12.

64. Nieuwhof S, Herman PM, Dankers N, Troost K, van der Wal D. Remote sensing of epibenthic shellfish

using synthetic aperture radar satellite imagery. Remote Sensing. 2015; 7(4):3710–34.

65. Ross PG, Luckenbach MW, Wachapreague V, McKay L. Population assessment of eastern oysters

(Crassostrea virginica) in the seaside coastal bays. Final Report Virginia Coastal Zone Management

Program, College of William and Mary, Wachapreague. 2009.

66. Soniat TM, Cooper N, Powell EN, Klinck JM, Abdelguerfi M, Tu S, et al. Estimating sustainable harvests

of eastern oysters, Crassostrea virginica. Journal of Shellfish Research. 2014; 33(2):381–94.

67. Kennedy R, Roberts D, editors. A survey of the current status of the flat oyster Ostrea edulis in Strang-

ford Lough, Northern Ireland, with a view to the restoration of its oyster beds. Biology and Environment:

Proceedings of the Royal Irish Academy; 1999: JSTOR.

68. Giguère M, Brulotte S. Comparison of sampling techniques, video and dredge, in estimating sea scallop

(Placopecten magellanicus, Gmelin) populations. Journal of Shellfish Research. 1994; 13(1):25–30.

69. Stokesbury KD, Harris BP, Marino MC, Nogueira JI. Estimation of sea scallop abundance using a video

survey in off-shore US waters. Journal of Shellfish Research. 2004; 23(1):33–41.

70. Lindegarth M. HD, Thorngren L., Bergström P. och Lindegarth S. Ostron (Ostrea edulis) i Kosterhavets

nationalpark: kvantitativa skattningar och modellering av förekomst och totalt antal. County Administra-
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