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Abstract: Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic
diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent
in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized
that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated
for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes
and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment
with BLE (25–100 µg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up
to about 50% at 100 µg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen
species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies
demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant
genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum
levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased
the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results
suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant
system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.

Keywords: lentil; hepatoprotective effect; oxidative stress; Nrf2

1. Introduction

Liver diseases have become a major global public health problem, and severe liver
injury can overwhelm the self-regenerative capacity of the liver and can prove fatal [1].
Excessive oxidative stress plays a role in the pathogenesis of hepatic diseases such as alcohol-
related liver disease, non-alcoholic fatty liver disease, hepatitis, fibrosis, and cirrhosis and
can be induced by intrinsic factors and/or multiple xenobiotics such as alcohol and toxic
compounds [1–4].

Living organisms produce reactive oxygen species (ROS) and reactive nitrogen species
(RNS) via normal cellular metabolism [5]. Under normal healthy conditions, ROS and
RNS generated by various pro-oxidants including alcohol [6], acetaminophen [2,4], ethyl
carbamate [3], and fatty acids [7] are scavenged by various cellular enzymatic and non-
enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), glutathione
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peroxidase (GPx), glutathione reductase (GR), glutathione (GSH), and thioredoxin. These
cellular antioxidants possibly play an important role in the prevention of oxidative stress-
related diseases, such as liver disease [8]. However, oxidative stress occurs if the pro-
oxidants exceed the antioxidant capacity of the cells and is one of the main factors associated
with the development of hepatopathy through hepatocellular damage, including nucleic
acid damage, protein oxidation, lipid peroxidation, and mitochondrial failure [1].

Lentils (Lens culinaris) have recently been gaining increasing attention as one of the top
five superfoods. They are rich in protein and other essential nutrients, including folate, iron,
potassium, and dietary fiber. Reportedly, lentil extracts exert multiple pharmacological
activities in vitro and in vivo, such as antidiabetic, hypotensive, hypolipidemic, and cardio-
protective activities [9]. A study in our laboratory has also demonstrated the direct ROS
scavenging activity of phenolic extract from beluga lentil (BLE) [6]. Therefore, in this study,
we hypothesized that BLE protects hepatic cells from oxidative stress-induced death. Here,
we first investigated the hepatoprotective effects of BLE and the underlying mechanisms of
its action in H2O2-treated AML12 mouse hepatocytes. In vivo hepatoprotective effects of
BLE were further evaluated in an animal model of CCl4-induced acute liver failure.

2. Materials and Methods
2.1. Materials and Preparation of Lentil Extract

All chemicals were obtained from Sigma-Aldrich Chemical (St. Louis, MO, USA),
unless otherwise indicated. Polyclonal antibodies to Nrf2 (sc-722) and HO-1 (#374090) were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and Merck (Kenilworth,
NJ, USA), respectively. Monoclonal antibody against glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH; #2118) was purchased from Cell Signaling Technology (Danvers, MA,
USA). Cell culture reagents were purchased from Gibco-BRL (Rockville, MD, USA) and
Welgene (Gyeongsan, Korea). Beluga lentils were obtained from Zürsun Idaho Heirloom
Beans (Twin Falls, ID, USA). Ground beluga lentil seeds (100 g) were extracted three times
with 80% methanol containing 0.2% HCl (1 L) at room temperature for 24 h on an orbital
shaker at 150 rpm, and the supernatants were then filtered, concentrated under reduced
pressure, and lyophilized. The yield value of obtained extract was 13.25% (w/w).

2.2. Cell Cultures

AML12 mouse hepatocytes were purchased from the American Type Culture Collec-
tion (Rockville, MD, USA). AML12 cells were cultured in 5% CO2 at 37 ◦C in DMEM-F12
medium (Gibco-BRL) supplemented with 10% fetal bovine serum (Welgene), antibiotics,
insulin-transferrin-selenium (Gibco-BRL), and dexamethasone (40 ng/mL).

2.3. Animals and Experimental Design

BALB/c mice (8 weeks old, male) were purchased from Orient Bio Inc. (Seoul, Korea).
Animals were housed in a climate-controlled environment (21 ± 2 ◦C under 40–60%
humidity) with a 12 h light/dark cycle and allowed to acclimatize to the facility for 7 days.
The mice were then separated into the following four groups using a randomized block
design method: normal control group (normal), CCl4 control group (CCl4), CCl4 with
100 mg/kg/day BLE (BLE100), and CCl4 with 400 mg/kg/day BLE (BLE400). The mice
were allowed free access to food and water and a control (10 kcal% fat) pellet diet (Cat.
No. D10001; Research Diets, Inc., New Brunswick, NJ, USA) was administered. The
mice were treated with BLE in saline by oral gavage for 2 weeks, and food intake and
body weight were measured every week. After BLE treatment for 2 weeks, all animals
from each group except for the normal group received a one-time intraperitoneal injection
of CCl4 (0.1 mL/20 g body weight, 1% in corn oil) [10]. Then, the mice were sacrificed
under anesthesia 24 h after injecting CCl4, and their serum and tissues were aseptically
removed. The serum was obtained by centrifuging at 4 ◦C (3000× g for 15 min) and then
immediately subjected to biochemical analyses. For histological examination, a whole lobe
of liver from each animal was fixed in 10% formalin, embedded in paraffin, processed into
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4 µm-thick sections, and subjected to hematoxylin and eosin staining. The rest of the liver
tissue samples were stored in a −80 ◦C freezer for further experiments. All animals were
maintained and used in accordance with the guidelines of the Institutional Animal Care and
Use Committee of the College of Medicine, Yeungnam University (YUMC-AEC2019-001).

2.4. Statistical Analysis

Statistical significance of differences between groups was analyzed using either Stu-
dent’s t-test (Sigma Plot 10.0; Systat Software Inc., San Jose, CA, USA) or one-way analysis
of variance with Duncan’s multiple test (statistical package for the social sciences, version
23.0, SPSS Inc., Chicago, IL, USA). The results are expressed as means with standard error
of the mean (SEM; n ≥ 3) for each group unless otherwise indicated, and a p value of less
than 0.05 was considered statistically significant.

All other materials and methods are described in the Supplementary Materials and
Methods section, and Figure 1 represents all the methodology used in this study.

Figure 1. A summary of the research methodology of the study. ALT: alanine transaminase; AST:
aspartate transaminase.

3. Results and Discussion
3.1. BLE Protects AML12 Cells against Oxidative Stress-Induced Cytotoxicity

BLE was prepared from ground beluga lentil seeds using 80% methanol containing
0.2% HCl, and the total polyphenol and flavonoid contents of BLE were 32.09 mg GAE/g
and 19.32 mg QE/g, respectively (Table 1). Prior to investigating the protective effect
of BLE on oxidative stress-induced cytotoxicity in AML12 cells, we first determined the
dose-dependent cytotoxic effects of BLE (0–400 µg/mL) on AML12 cells using MTT assay.
BLE at concentrations lower than 100 µg/mL had no significant cytotoxic effect on AML12
cells (Figure 2A), and thus 100 µg/mL was the highest concentration of BLE used for
all subsequent experiments on AML12 cells. To examine the protective effect of BLE
against oxidative stress-induced cytotoxicity, AML12 cells were pretreated with 25, 50, or
100 µg/mL of BLE for 24 h, and the media were then replaced with new media containing
H2O2 (7 mM). H2O2 treatment for 4 h caused a marked decrease (about 50%) in cell viability;
however, pretreatment with BLE (25–100 µg/mL) significantly preserved the viability of
the H2O2-treated cells (Figure 2B). As shown in Figure 2C, the levels of intracellular ROS
were significantly increased in cells treated with H2O2, compared with untreated control
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cells. However, pretreatment with BLE (25, 50, and 100 µg/mL) or reduced GSH (a positive
control) significantly decreased cellular ROS levels in H2O2-treated AML12 cells. These
data indicate that BLE protected AML12 cells from H2O2-induced cytotoxicity by reducing
ROS generation.

Table 1. Content of the total polyphenols and flavonoids in BLE.

Total Polyphenols
(mg GAE (1)/g Extract)

Total Flavonoids
(mg QE (2)/g Extract)

BLE 32.09 ± 0.37 19.32 ± 0.08
(1) Gallic acid equivalent. (2) Quercetin equivalent. All results are expressed as means ± SD.

Figure 2. Protective effects of BLE against oxidative stress-induced cytotoxicity in AML12 cells. Cells
were treated with the indicated concentrations of BLE for 24 h (A). After 24 h treatment with BLE,
the media were replaced with new media containing H2O2 (B,C) and free fatty acids (D), and the
cells were incubated for another 4 h. Cell viability was determined by an MTT assay (B,D) and
intracellular ROS level was measured by flow cytometry (C). All results are expressed as means ±
SEM (n ≥ 3). * p < 0.05, ** p < 0.01, *** p < 0.005, and # p < 0.001 vs. the H2O2 or free fatty acids (FAA)
control.
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We further investigated whether BLE can protect AML12 cells from cytotoxicity in-
duced by free fatty acids (FFA; palmitic acid:oleic acid/1:1), which is a different type of
pro-oxidant known to induce hepatotoxicity [7,11]. As shown in Figure 2D, FFA (2 mM)
showed cytotoxicity in AML12 cells and pretreatment with 100 µg/mL BLE significantly
protected cells from FFA-induced toxicity, whereas <50 µg/mL BLE did not show a pro-
tective effect. In a previous study, we showed that the pretreatment of AML 12 cells with
50 and 100 µg/mL BLE significantly protected the cells from alcohol-induced toxicity [6].
Previous research has also reported that extracts from various lentil cultivars protect cells
from toxicity induced by different types of prooxidant, including Fenton’s reagent and
antiotensin II [12,13]. These results suggest that BLE has the ability to protect hepatocytes
from the cytotoxicity induced by a broad spectrum of pro-oxidants; however, there may be
some differences in effective dose depending on the type of pro-oxidants. In addition, BLE
may have the potential to prevent or treat liver disorders caused by different pro-oxidants,
including alcoholic fatty liver, alcoholic hepatitis, and non-alcoholic fatty liver.

3.2. BLE Upregulates the Expression of Antioxidant Genes, in Part, via the Activation of Nrf2 in
AML12 Cells

To investigate the underlying mechanism that contributes to the reduction in cellular
ROS by BLE in H2O2-treated AML12 cells, we first examined the effects of BLE on the
mRNA expression of eight antioxidant-related genes. We identified four genes, Gclc, Gclm,
Cat, and Gr, which had >2-fold increased expression in cells treated with BLE for 18 h when
compared with untreated control cells (Figure 3A). Gclc and Gclm are the genes involved
in GSH synthesis, and the increased mRNA levels of these two genes was consistent with
the level of total cellular GSH content in AML12 cells treated with 50 and 100 µg/mL
BLE (Figure 3B). It was also confirmed that the enzyme activity of Cat and Gr was also
significantly increased by BLE treatment (50 and 100 µg/mL) in AML12 cells (Figure 3B).
We further examined the effect of BLE on cellular GSH content and enzyme activity of
Cat and Gr in H2O2-treated AML12 cells. As shown in Figure 3C, H2O2 treatment for
1 h caused a marked decrease in GSH content; however, pretreatment with BLE (50 and
100 µg/mL), but not 25 µg/mL, significantly restored GSH content in H2O2-treated AML12
cells. The enzyme activity of Cat and Gr was also decreased in cells treated with H2O2,
compared with untreated control cells. However, pretreatment with BLE (25, 50, and
100 µg/mL) or reduced GSH (a positive control) significantly increased the enzyme activity
in H2O2-treated AML12 cells (Figure 3C). These results suggest that pretreatment with BLE
reduced intracellular ROS levels, in part, by increasing the total GSH content and enzyme
activity of CAT and GR in H2O2-treated AML12 cells.

In previous studies, lentil extracts have been shown to exhibit chemical- and cell-based
antioxidant activities against multiple types of ROS [13–15] and have also been shown to
modulate intracellular ROS levels and protect cells from ROS-induced cytotoxicity in many
different primary cells and cell lines, including primary cardiomyocytes (human and rat),
U373 human glioblastoma cells, and PC12 rat pheochromocytoma cells [13–15]. However,
none of the studies revealed their cellular antioxidant mechanisms, thus, to our knowledge,
this is the first report of lentil extract-mediated cellular antioxidant mechanisms in vitro.
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Figure 3. Effects of BLE on mRNA expression and activity of cellular antioxidant enzymes in
AML12 cells. Cells were treated with BLE (100 µg/mL) for 18 h, and mRNA expression levels were
determined by quantitative real-time PCR (A). Gapdh was used as an internal control. After 24 h
treatment with the indicated concentrations of BLE, GSH content and enzyme activity in cells were
measured (B). Cells were treated with the indicated concentrations of BLE for 24 h. The cells were
then incubated for another hour with new media containing H2O2, and GSH contents, Gr activity, and
Cat activity in cells were measured (C). All results are expressed as mean ± SEM (n ≥ 3). * p < 0.05,
** p < 0.01, and # p < 0.001 vs. the DMSO (A,B) or H2O2 control (C).

Nrf2 acts as a transcriptional activator of antioxidant genes by binding to antioxidant
response elements that are present in the regulatory regions of a range of antioxidation-
related genes [16,17]. Thus, the effects of BLE on the expression and nuclear translocation
(activation) of Nrf2 were investigated. The protein expression of Nrf2 was dramatically
increased following treatment with BLE (25, 50, and 100 µg/mL) or sulforaphane (SFN;
an Nrf2 activator) for 6 h in AML12 cells (data not shown). Immunostaining also showed
that treatment with 100 µg/mL BLE or SFN for 6 h induced the nuclear translocation
(activation) of Nrf2. In contrast, Nrf2 remained in the cytosol in the untreated control
cells (Figure 4), indicating that BLE activated Nrf2 in AML12 cells. These results suggest
that Nrf2-mediated the upregulation of antioxidant genes and that subsequent increase in
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cellular antioxidant activities is one of the mechanisms underlying the protective effect of
BLE against ROS-induced cytotoxicity in AML12 cells.

Figure 4. Effects of BLE on activation of Nrf2 in AML12 cells. Cells were treated with the indicated
concentrations of BLE or sulforaphane (SFN) for 6 h, and endogenous Nrf2 was detected by indirect
immunofluorescence staining with anti-Nrf2 antibody (×400 magnification).

3.3. Protective Effects of BLE against CCl4-Induced Acute Hepatotoxicity in BALB/c Mice

CCl4 has been widely used to induce acute and chronic liver injury in vivo, and injury
caused by CCl4 is characterized mainly by excessive production of ROS, which eventually
leads to hepatocellular damage [18]. Here, we examined whether BLE (100 and 400 mg/kg)
can attenuate CCl4-induced acute hepatotoxicity in BALB/c mice. First, we observed that
the weight gain and food intake in the BLE-treated groups significantly decreased (Table S2).
Intraperitoneal injection of CCl4 led to a significant increase in the activity of serum alanine
transaminase (ALT) and aspartate transaminase (AST). Pretreatment with 400 mg/kg BLE
for 2 weeks significantly reduced serum levels of ALT, but not AST, and 100 mg/kg BLE
did not show any significant changes in serum ALT and AST levels (Table 2). We also
examined the effect of BLE on the levels of serum lipid profiles in CCl4-treated mice, and
the result showed that only triglyceride (TG) levels were significantly increased by CCl4
treatment, which was significantly reduced by BLE (Table 2).

Table 2. Effects of BLE on serum levels of ALT, AST, and lipids in CCl4-treated BALB/c mice.

Normal CCl4 BLE100 BLE400

ALT
(U/L) 73.15 ± 30.80 c 9472.38 ± 2755.53 a 10,420.50 ± 5724.78 a 4860.90 ± 2041.11 b

AST
(U/L) 493.63 ± 334.75 b 5158.45 ± 2333.14 a 6829.04 ± 2995.22 a 6010.76 ± 1140.44 a

T-Chol
(mg/dL) 141.50 ± 19.07 ns 130.50 ± 20.13 132.43 ± 42.26 116.43 ± 20.28

TG
(mg/dL) 169.50 ± 51.99 ab 245.63 ± 81.19 a 145.29 ± 81.40 b 148.43 ± 46.97 b

HDL-C
(mg/dL) 105.73 ± 14.15 ns 89.73 ± 12.15 99.43 ± 26.66 76.39 ± 30.46

LDL-C
(mg/dL) 8.85 ± 1.78 ns 11.05 ± 4.04 10.36 ± 3.52 17.93 ± 15.28

ns: not significant. All results are expressed as means ± SD (Normal, n = 4; CCl4, n = 8; BLE100 and BLE400,
n = 7). Different letters are significantly different among groups, according to ANOVA with Duncan’s multiple
range test (p < 0.05).

To further assess the protective effects of BLE on CCl4-induced hepatotoxicity,
histopathological examination of the liver tissues was performed. Liver weight did not
vary significantly between the groups, and treatment with CCl4 and/or BLE did not cause
hepatic fatty changes (data not shown). The CCl4-treated group showed a significant
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increase in the degree of injury as well as the levels of necrotic and inflammatory cell
infiltration compared with the normal group. However, unlike changes in serum ALT and
TG levels, the BLE-treated groups showed no significant changes in the levels of hepatic
injury, necrosis, and inflammatory cell infiltration (Figure 5 and Table S3). However, the
degree of injury was slightly lower in the BLE-treated groups than in the CCl4 group, but
the difference was not statistically significant. These differences were probably due to
severe hepatic damage and high animal-to-animal variation caused by the high dose of
CCl4 [19], and therefore, it may be necessary to retest the hepatoprotective effects of BLE in
a milder liver injury model.

Figure 5. Effect of BLE on liver histology in CCl4-treated BALB/c mice. (A,E) Normal; (B,F) CCl4;
(C,G) BLE100; (D,H) BLE400. Histologic sections were made from liver tissues and stained with
hematoxylin and eosin. Representative images were collected at high magnification ((A–D) ×200;
(E–H) ×400). The long arrow and the asterisk indicate hepatic injury (ballooning degeneration) and
necrosis, respectively, and the short arrow indicates inflammatory cell infiltration.

To study the in vivo mechanisms of action of BLE (400 mg/kg), we examined the
mRNA expression levels of antioxidant genes in liver tissue. As shown in Figure 6A, only
the gene expression of Gpx2 and Sod1 showed significant differences after treatment with
BLE (400 mg/kg), which was somewhat different from the in vitro results. The mRNA
expression of Gpx2 and Sod1 was dramatically decreased in the CCl4 group compared
with the normal group, but in the BLE400 group, the expression levels of these two genes
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increased significantly and returned to the normal levels. The enzyme activity of Gpx2 was
also significantly increased in the BLE400 group, compared with that in the CCl4 group
(Figure 6B). Moreover, the activity of Sod1 showed a different pattern from the mRNA
expression, and there was no change in activity following BLE treatment (Figure 6C). These
results suggest that the protective effect of BLE against CCl4-induced acute hepatotoxicity
in BALB/c mice may have been mediated by the increased activity of Gpx2 induced by the
treatment with 400 mg/kg BLE, a mechanism different from that observed in H2O2-treated
AML12 cells.

Figure 6. Effects of BLE on mRNA expression and activity of cellular antioxidant enzymes in liver
tissues of CCl4-treated BALB/c mice. Liver homogenates were prepared as described in the Section 2.
mRNA expression levels were determined by quantitative real-time PCR (A). Gapdh was used as
an internal control. Enzyme activities in liver homogenates were measured (B,C). All results are
expressed as mean ± SEM (Normal, n = 4; CCl4, n = 8; BLE400, n = 7). * p < 0.05 vs. the CCl4
group. Different letters are significantly different among groups, according to ANOVA with Duncan’s
multiple range test (p < 0.05).

A recent study showed that red lentil extract (200 mg/kg) significantly decreased
serum level of AST, ALT, and alkaline phosphatase and the activity of hepatic antioxidant
enzymes such as SOD and catalase in sodium arsenite-treated Wistar rats, but the extract at
100 mg/kg did not restore all these serum markers and antioxidant enzymes [20]. Although
there is a difference in the animal models and the hepatotoxic agents, these results are
somewhat similar to our data, suggesting that the lentil extract can exhibit a more significant
hepatoprotective effect at a dose of 200 mg/kg or more in animal models.

Reportedly, polyphenol-rich plants and polyphenolic compounds, such as flavonoids,
carotenoids, and phenolic acid, exhibit protective effects against oxidative stress-induced
hepatotoxicity by either the direct scavenging of ROS or the modulation of endogenous
antioxidant defense system [21–23]. More recently, a study was conducted to elucidate the
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profile of phytochemical constituents in 20 different lentil cultivars and their antioxidant
activities, and the results revealed that the content of total tocopherols and total carotenoids
were 37–64 µg/g dry weight (DW) and 5.3–28.1 µg/g DW, respectively [24]. The results
also demonstrated that the combination of tocopherols and carotenoids showed good
correlation with 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (r = 0.6688).
However, the phytochemical constituents and biological activities of beluga lentil have
not been well studied. In our previous study, we demonstrated that the total phenolic
and flavonoid contents of BLE (Table 1) did not differ significantly from those of other
lentil cultivars such as red, green, and French lentils [6]. We also demonstrated that no
significant difference was found in the protective effects of the four extracts against H2O2-
and alcohol-induced cytotoxicity in AML12 cells (data not shown). Taken together, these
results suggest that the phytochemical composition of beluga lentils is likely to be similar
to that of other lentils. However, considering the difference in ROS scavenging activities by
cultivar [6], it is also expected that there might be some differences in chemical composition,
such as pigments that make up seed coats including anthocyanins [25].

4. Conclusions

In summary, this study demonstrates that BLE exerted protective effects against
oxidative stress-induced cytotoxicity in AML12 cells by increasing cellular antioxidant
capacity. In addition, BLE partially protected against CCl4-induced hepatotoxicity in a
mouse model. This is the first study to demonstrate the hepatoprotective effects of beluga
lentil and its underlying mechanisms, and the results of this study suggest that beluga
lentil represents a potential source of natural hepatoprotective agents.

Supplementary Materials: The following supporting information can be downloaded online, Table S1:
Sequence of the primers used for qPCR; Table S2: Effects of BLE on body weight and food intake in
BALB/c mice; Table S3: Effects of BLE on histopathological changes in liver tissues of CCl4-treated
BALB/c mice.
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