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Abstract

Summary: Recent advancements in high-dimensional single-cell technologies, such as mass cytometry, enable lon-
gitudinal experiments to track dynamics of cell populations and identify change points where the proportions vary
significantly. However, current research is limited by the lack of tools specialized for analyzing longitudinal mass
cytometry data. In order to infer cell population dynamics from such data, we developed a statistical framework
named CYBERTRACK2.0. The framework’s analytic performance was validated against synthetic and real data,
showing that its results are consistent with previous research.

Availability and implementation: CYBERTRACK2.0 is available at https://github.com/kodaim1115/CYBERTRACK2.

Contact: shimamura@med.nagoya-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-dimensional single-cell technology, such as mass cytometry or
cytometry by time-of-flight, provides the ability to investigate the
expression patterns of pre-defined sets of surface and intracellular
proteins at single cell resolutions (Spitzer and Nolan, 2016).
Recently, longitudinal analysis using mass cytometry has yielded im-
portant information that cannot be obtained using conventional
analysis of static time points. In the field of cancer immunity, mass
cytometry analysis of tumor samples of the same patient at different
time points is increasingly being utilized to better understand re-
sponse and resistance to immune checkpoint blockade (Chen et al.,
2016; Greenplate et al., 2016). For example, longitudinal mass
cytometry analysis of paired peripheral blood biopsies from before
and after anti-PD-1 treatment has revealed that the frequency of a
certain monocyte subset was strongly associated with the patients’
responsiveness to the treatment (Krieg et al., 2018).

One of the main objectives of analyzing longitudinal cytometry
data is to identify the underlying dynamics of cell populations
and to track their temporal fluctuation. Recently, we proposed a
Topic Tracking Model-based statistical framework named
CYBERTRACK designed for analyzing longitudinal flow cytometry
data (Iwata et al., 2009; Minoura et al., 2019). Although it is a
powerful tool to discover cell population dynamics from such data,

it has some limitations. One limitation is that it cannot be used to
analyze mass cytometry data directly due to the high proportion of
zeros in the data, so it does not follow the assumed probability dis-
tribution in CYBERTRACK. A zero in the mass cytometry data indi-
cates that the number of metal isotopes was below the detection
limit of the instrument, as the amount of marker protein expression
in the cells was low. These zero values are typically substituted by
random numbers to avoid computational problems occurring from
cells having the same value. Although this approach is commonly
adopted for practical convenience, it underutilizes the information
the data possesses. Another limitation is that CYBERTRACK uses a
stochastic expectation-maximization (EM) algorithm, so it is not
suitable for detecting rare cell populations (Naim and Gildea,
2012). Like the EM algorithm, the stochastic EM algorithm often
misses very rare populations when they exist near large populations.
In these cases, it tends to lump rare populations and larger popula-
tions, possibly leading to a misunderstanding of the data. Because
studies using mass cytometry often aim to discover the dynamics of
rare cell populations that consists of <1% of the total population,
tools for correctly identifying such populations are extremely im-
portant. In order to address these problems; here, we present an
updated version of CYBERTRACK, CYBERTRACK2.0, for the
automatic clustering and tracking of proportionally mixed cell pop-
ulations in longitudinal mass cytometry data.
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2 Materials and methods

The improvements of CYBERTRACK2.0 are summarized as fol-
lows: (i) a new probabilistic model for generating mass cytometry
data based on a zero-inflated multivariate Gaussian mixture distri-
bution that can handle the high amount of zeros in mass cytometry
data. (ii) A new algorithm for detecting rare cell populations that
uses the stochastic EM algorithm combined with weighted iterative
sampling (Naim et al., 2014).

Figure 1 shows a conceptual view of CYBERTRACK2.0 analysis
flow. We provided an efficient and straightforward algorithm for
estimating parameters of the proposed model. A detailed explan-
ation of our model and estimation procedure is described in
Supplementary Material.

3 Results and discussion

Using simulation and real experimental mass cytometry data, we
validated the cell clustering, cell population tracking and change
point detection performance of CYBERTRACK2.0. First, we con-
ducted a simulation study by generating a synthetic longitudinal
mass cytometry dataset, which includes rare cell populations with
larger populations (from 1% to 30%) (Supplementary Figs S3 and
S4). Adding to it, we show that imputation of missing values (zeros)
by Gibbs sampling provides approximate mean expression levels
below detection limit of mass cytometry. Using this synthetic data,
we compared the performance of CYBERTRACK2.0 with the ori-
ginal version of CYBERTRACK and a Gaussian mixture model
(GMM). As a result, we confirmed that CYBERTRACK2.0 per-
forms better in clustering cells when compared to the other methods
(Supplementary Fig. S4).

In addition, using pseudo-longitudinal data generated from
ground truth mass cytometry data, we compared clustering perform-
ance of our model with FlowSOM and PhenoGraph (Levine et al.,
2015; Van Gassen et al., 2015). We show that clustering perform-
ance of CYBERTRACK2.0 is better or comparable to these state-of-
the-art methods (Supplementary Figs S7 and S8). These simulation
studies validated that CYBERTRACK2.0 has high clustering per-
formance. Furthermore, the ability of CYBERTRACK2.0 is not
restricted to clustering; our method produces reasonable estimates
for the zero-inflated multivariate Gaussian mixture distribution, and
accurately tracks cell population dynamics, and can detect change-

points (Supplementary Fig. S6). Also, zero replacement by Gibbs
sampling provides imputed data for other downstream analysis. For
detailed information on the simulation study, see Supplementary
Material.

Next, we validated the performance of CYBERTRACK2.0 using
two real longitudinal mass cytometry datasets on cancer immun-
ology and hematopoietic development (Krieg et al., 2018; Palii
et al., 2019). Overall, the cell populations detected using our
method were in agreement with the well-known cell lineages. An im-
portant result is that it could capture major to very rare cell popula-
tions, verifying the effectiveness of using our method in practical
situations. In cancer immunology data, CYBERTRACK2.0 illus-
trated the enrichment of HLA-DRþ myeloids in patients responsive
to anti-PD-1 treatment (Supplementary Figs S9–S11). Furthermore,
analysis by CYBERTRACK2.0 discovered that the treatment trig-
gers different dynamics among HLA-DRþ myeloid clusters, which
may lead to more precise characterization of this potential prognos-
tic marker population (Supplementary Figs S9–S11). For the hem-
atopoietic development data, CYBERTRACK2.0 was able to
systematically analyze dynamic emergence of cell lineages from
hematopoietic stem and progenitor cells to erythrocytes and mega-
karyocytes (Supplementary Fig. S14), consistent with the original re-
port (Palii et al., 2019). For detailed explanation of these results, see
Supplementary Material.

In summary, we proposed CYBERTRACK2.0, a novel statistical
framework for longitudinal mass cytometry data analysis. It is based
on topic tracking model and zero-inflated multivariate Gaussian
mixture distribution to deal with the previously unsolved problems,
such as (i) clustering of cells with longitudinal constraints and (ii)
utilization of zeros in mass cytometry data. In addition, weighted it-
erative sampling was implemented in our method to maximize the
chances of detecting rare cell populations of interest. Furthermore,
users can use data imputed by CYBERTRACK2.0 for other down-
stream analysis such as pseudotime estimation or batch effect re-
moval. We believe that CYBERTRACK2.0 is a powerful tool for
researchers aiming to obtain biological or clinical insights from lon-
gitudinal mass cytometry data.

Funding

This research was supported by JSPS Grant-in-Aid for Scientific Research

under grant No. 18H04798, 19H05210, 20H04841, and 20H04281. It was

Fig. 1. Conceptual view of CYBERTRACK2.0. Our method takes longitudinal mass cytometry data as an input. Inference process of CYBERTRACK2.0 is based on stochastic

EM algorithm for zero-inflated GMM, which consists of (i) replacing zeros by Gibbs sampling from underlying distributions and (ii) estimation of cluster parameters. As an

output, CYBERTRACK2.0 provides information on cell clustering, cell population tracking, and change-points in overall mixture proportion. It can impute missing values in

mass cytometry data by Gibbs sampling from estimated probability distributions. Also, it implements modified weighted iterative sampling algorithm to find very rare cell

populations

CYBERTRACK2.0 1633

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa873#supplementary-data


also supported by the Japan Agency for Medical Research and Development

(AMED) under grant No. JP19dm0107087h0004, JP19km0405207h9904,

and JP19ek0109281h0003. The super-computing resources were provided by

Human Genome Center, the University of Tokyo.

Conflict of Interest: none declared.

Data availability

Our codes are available at https://github.com/kodaim1115/

CYBERTRACK2. Pseudo-longitudinal data was generated from data pro-

vided at https://flowrepository.org/id/FR-FCM-ZZPH. Mass cytometry data

on cancer immunity is available at https://flowrepository.org/experiments/

1124. Mass cytometry data on hematopoiesis is available at https://flowrepo-

sitory.org/id/FR-FCM-ZYPT.
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