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Abstract

Objective—We describe a novel human–machine interface for the control of a two-dimensional 

(2D) computer cursor using four inertial measurement units (IMUs) placed on the user’s upper-

body.

Approach—A calibration paradigm where human subjects follow a cursor with their body as if 

they were controlling it with their shoulders generates a map between shoulder motions and cursor 

kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from 

upper-body motions. We compared cursor control performance in a centre-out reaching task 

performed by subjects using different amounts of information from the IMUs to control the 2D 

cursor.

Main results—Our results indicate that taking advantage of the redundancy of the signals from 

the IMUs improved overall performance. Our work also demonstrates the potential of non-

invasive IMU-based body–machine interface systems as an alternative or complement to brain–

machine interfaces for accomplishing cursor control in 2D space.

Significance—The present study may serve as a platform for people with high-tetraplegia to 

control assistive devices such as powered wheelchairs using a joystick.
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1. Introduction

Damage to the spinal cord causes long-lasting and devastating loss of motion, coordination, 

weakness, and altered reflexes, usually below the level where the injury occurred. However, 

even when the injuries occur at a high level of the spinal cord, some residual motor and 

sensory capacity remains available. These functions serve as the means to control assistive 

devices such as tools, computers, and wheelchairs.

There are more than 150 000 users of powered wheelchairs in the United States (Edwards 

and McCluskey 2010). Despite progress in the field of assistive technologies, there are still 

major barriers that obstruct the effective and safe use of powered wheelchairs. The 

possibility of encountering difficulties and accidents is significantly higher for individuals 

with poor control of their upper body (Hunt et al 2004). One of the first challenges for them 

is to learn how to interact with the different available interfaces and how the vehicles 

respond to their actions. Sip-and-puff switches, and head-and-chin devices operate the 

commercially available devices and their controls for people without enough arm 

coordination to control a joystick (Ding and Cooper 2005). Other novel methods incorporate 

inertial measurement units (IMUs) on the head (Mandel et al 2007) or 

electroencephalography (EEG) (Iturrate et al 2009, Carlson and Demiris 2012) to convert 

individuals’ intentions into steering commands for a powered wheelchair.

The commercially available interfaces for this population —like the sip-and puff and the 

head-and-chin systems—operate with a discrete directionality, meaning that the user can 

only move in one direction at a time from a predefined ‘vocabulary’ (right, left, front, or 

back). They are commonly non-proportional, which means that no matter how much 

pressure a user exerts on their device, the wheelchair will always move at the pre-

determined speed. Moreover, these systems are obstructive to the head and mouth, so unless 

the users are moving in ‘locked’ mode where the wheelchair maintains a constant forward 

velocity, they must apply continued pressure and can’t engage in conversation or look 

around while they operate their vehicles.

A survey on the use of powered wheelchairs found that more than 50% of users report 

complaints with their wheelchair control (Fehr et al 2000). Forty per cent reported 

difficulties in steering and manoeuvring tasks, and 10% found it ‘extremely difficult or 

impossible’ to use their wheelchairs. Clinicians interviewed in the same study highlighted 

the importance of successful learning in order to overcome the barriers that limit the access 

to current assistive devices. However, current devices offer a fixed vocabulary of commands 

and the interactions are strictly constrained. This conventional approach places the burden of 

learning to operate the wheelchair entirely on the user.

Even in individuals with injuries to the cervical spinal cord, some motor and sensory 

capacities may remain available in the upper-body. While the commercially available 

systems do not provide a flexible approach to the user's surviving skills, researchers in 

brain–machine interfaces are promising the possibility to operate wheelchairs and other 

devices by recorded neural activities (Wolpaw and McFarland 2004, Lotte et al 2007, 

Rebsamen 2008, Chadwick et al 2011, Hochberg et al 2012). However, in so doing, the 
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brain-machine interface does not promote the use of what remains available in terms of 

residual body motions. Keeping an active body is critical for people with high-tetraplegia in 

order to avoid collateral effects of paralysis such as muscular atrophy, chronic pain, and to 

recover some of the lost mobility (Levy et al 1990, Topka et al 1991, Chen et al 1998, Chen 

et al 2002, Hesse et al 2003)

To overcome these limitations, assistive devices should not follow the current ‘one-size fits 

all’ approach. Instead, they should be client-based (Fehr et al 2000). It is crucial to develop 

the next generation of assistive devices that continuously adapt to each individual’s residual 

mobility and evolving skills. For this purpose, we have developed a novel approach for a 

body–machine interface that harnesses the overabundant number of signals from the cache 

of body movements that users are still capable to execute. This allows the users to take 

advantage of the natural ability of the motor system to reorganize the control of movement 

(Chen et al 2002) so as to achieve a qualitatively and quantitatively greater degree of 

integration between body and machine that has not been possible in the past.

In this report, we describe a novel method for a body—pmachine interface that aims at 

allowing people with high-level paralysis to communicate their intended actions using their 

individual motor capacities. In an experimental setup analogous to (Paninski et al 2004), 

unimpaired subjects wore four IMUs on the shoulder area and learned to control a cursor on 

the screen using a Kalman decoder (Welch and Bishop 1995).

A calibration procedure where subjects were instructed to follow a smoothly moving cursor 

on the screen as if they were controlling it with their shoulder motions allowed us to train a 

Kalman filter that decoded upper-body kinematics into cursor kinematics. Our methods 

build on previous work in brain–-machine interfaces (Brown et al 1998, Wu et al 2002) 

where spike trains recorded from cortical neurons guided the motion of a cursor on a 

computer screen. Here, we explore the control of the cursor using a non-invasive and 

intuitive approach that exploits the residual mobility that remains available to the paralyzed 

users of assistive devices. The redundancy in our algorithm comes from using as much 

information from the body as possible to estimate the cursor’s control. However, more 

information is not always better, as adding more noisy sensor data might actually degrade 

performance of the decoding algorithm.

In this study we analysed the effect that adding more information in the observation vector 

of the decoding algorithm has on cursor control performance. We asked subjects in three 

different groups to perform a centre-out reaching task with a cursor controlled by 

movements of their shoulders. Each group had a different amount of information in the 

observation vector used for the calibration and decoding components of the Kalman 

algorithm. The first group (E) used the Euler angles of the IMUs placed on their shoulders to 

control the cursor. The second group (EV) used Euler angles and angular velocities. The 

third group (EVA) used Euler angles, angular velocities, and linear accelerations. We 

compared performance during the reaching task between the three different groups.

After assessing the role of multiple state components in the observation vector that the 

algorithm uses to drive the controlled cursor, we used the map that demonstrated the best 

Seáñez-González and Mussa-Ivaldi Page 3

J Neural Eng. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



performance for a second set of experiments. Subjects performed a reaching task where they 

were required to move the cursor to multiple targets in multiple positions, including trials 

without visual feedback of the cursor, and five additional targets that were not seen during 

training. We also placed subjects in a virtual wheelchair environment where subjects were 

instructed to perform real navigation tasks commonly used to assess wheelchair control 

ability (Archambault et al 2012).

Using an algorithm that exploits the abundance and redundancy of individuals’ residual 

motion might simplify the decoding problems faced by current brain–machine interfaces 

(Fehr et al 2000, Wolpaw and McFarland 2004, Lotte et al 2007, Chestek et al 2009, Kim et 

al 2011, Orsborn et al 2012). The current exponential decrease in IMU technology cost and 

size (Yole Developpement 2012) could allow users in the future to incorporate more than 

four sensors into the body–machine interface and increase the redundancy of the motion 

signals even further and potentially increase their control performance.

2. Methods

2.1. Experimental setup

Twenty-eight healthy subjects (16 female, 12 male, 24 ± 6 years old) gave their informed 

and signed consent to participate on this study, which was approved by Northwestern 

University’s Institutional Review Board. Subjects sat in front of an 18 × 18 cm computer 

display wearing a motion vest with Velcro® patches on the shoulder areas. Four IMUs 

(MTx, Xsens Technologies B.V., Enschede, Netherlands) were attached to the Velcro as 

shown in ‘figure 1’. The IMUs were connected to a CPU via an Xbus Master (MTx, Xsens 

Technologies B.V., Enschede, Netherlands) digital data bus system, and the combination of 

the 3D accelerometers and gyroscopes inside them allowed us to capture combinations of 

shoulder elevation, depression, adduction, and abduction. Data from the IMUs were sampled 

in real-time (Simulink, Mathworks) at a rate of 50 Hz.

2.2. Protocol

The main objective was to map the 24D signals from the body motions, measured by the 

IMUs, to the control of the 6D kinematics of the cursor on the screen. A calibration 

procedure provided us with this map via a Kalman filter (Welch and Bishop 1995) as 

applied by Wu et al (Wu et al 2002) in their brain–machine interface.

2.2.1. Calibration—Subjects were presented with a cursor that moved on the monitor and 

were asked to move their shoulders with the cursor, as if they were controlling it. They were 

instructed to ‘follow’ up and down cursor movements by moving their right shoulder up and 

down (elevation and depression respectively), and to follow right and left cursor movements 

by moving their left shoulder up and down respectively.

The 1 cm diameter cursor moved through a predetermined centre-out path with a cosine 

velocity profile so that the cursor’s position history while moving right /left followed the 

function:
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(1)

(2)

Here t = kdt with k = 1,… ,200 and dt = 0.02, so that the total duration of each cursor 

movement from the centre to the right direction and back lasted for a total of 4 s. A 6×6cm 

box enclosed the cursor’s movement range so that subjects knew when the cursor was going 

to reach the edge and come back to the centre, and they could plan to move their shoulders 

accordingly. Each of the four directions was reached six times for a total calibration time of 

96 s.

Cursor and body motion data were logged during the calibration phase. The position, 

velocity, and acceleration of the cursor were recorded at each time step k (every 20 ms) as 

the cursor’s state, i.e.  where sk∈ R6 × 1. The IMUs Euler angles, 

angular velocities, and linear accelerations were recorded as the body observation in a 24-

dimensional vector zk= {[2-Euler angles (roll, pitch) + 2-gyroscope + 2-accelerations]*4 

sensors} at each time step k as the subjects followed the cursor with their body. Both data 

were fed into a Kalman filter to learn the mapping between body motions and cursor 

kinematics.

2.2.2. Kalman filter algorithm—The main goal of the Kalman filter is to make an 

estimation of the cursor’s state, at every instant in time. The Kalman model assumes the 

cursor’s state at time k to be linearly related to the future state at time k + 1 via the stochastic 

linear function

(3)

where k=1,2,…,M, Ak ∈R6×6 is the matrix that linearly relates the cursor’s kinematics 

between successive time steps, wk represents the process noise term, which we assumed to 

have zero mean and to be normally distributed, i.e. wk ∼ N(0, Wk), Wk∈R6×6, and M is the 

total number of time steps.

Due to subjects following the cursor with their body as if they were controlling it with their 

shoulders during the calibration phase, we assumed the body motion observation to be 

linearly related to the state at each point in time via the stochastic linear function

(4)

where zk∈RC×1 is the vector containing the IMUs’ observation at each time step k. C is the 

dimension of the observation vector (24 in this case, but will change for other groups as 

explained in 3.2.3. Familiarization). Hk∈RC×6 is the coefficient matrix that linearly relates 

the cursor’s state to the body motion, and qk is the measurement noise term, i.e. qk∼N(0,Qk), 

Qk∈RC×C.
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In principle, Ak, Hk, Wk, and Qk might change at each time step k. However, we made the 

common simplifying assumptions that they remain constant. Therefore, we can estimate 

each matrix from calibration data using least squares (for details, see (Wu et al 2002)). After 

the model’s parameters were estimated, the cursor’s kinematics and body motion were now 

encoded by equation (3) and equation (4) respectively, and subjects could now control a 

cursor by moving their shoulders.

2.2.3. Familiarization—After the calibration phase, subjects were randomly assigned to 

one of three groups to perform the rest of the experiment, so that each group had eight 

subjects. Each group had a different amount of information in their observation vector used 

to control the cursor. Subjects in the first group had only Euler angles in the observation 

vector (group E), subjects in the second group had Euler angles, and angular velocities 

(group EV), and subjects in the third group used Euler angles, angular velocities, and linear 

accelerations to control the cursor (group EVA). Subjects were then allowed to try the 

mapping in a familiarization phase for 1 min.

They were asked to move through their entire range of motion during the calibration phase. 

However, performing these types of movements for the whole duration of the experiment 

would cause exhaustion. Therefore, we reduced the effective range of motion by amplifying 

the measured motion signals by 300% for the rest of the experiment. This meant that 

subjects would have to elevate their right shoulder to 33% of their range in order to reach a 

target located 5 cm above the origin.

Typical joysticks have a mass spring damper system that allows them to come back to the 

resting position when no force is applied, so we implemented a filter to obtain a similar 

behaviour. The cursor’s position, or the x and y in the state, were modelled as forces acting 

orthogonally on a mass spring damper system described by the equation of motion

(5)

where  represents the cursor’s new, filtered position coordinates. Values for the 

mass, spring, and damper coefficients were tuned so that the system had a resulting damping 

ratio of

(6)

There was no specific goal for the familiarization phase, but the subjects were told to try to 

move the cursor up, down, left, and right several times, to check that they had control of its 

movements and check that they could bring the cursor back to the origin, and finally, to 

make sure that they could reach the four corners of the screen. The calibration procedure 

was repeated if a subject was not comfortable with the map.

2.2.4. Four-target reaching task—Twenty-four subjects performed the first reaching 

task. Once subjects familiarized themselves with the map, they performed five blocks of a 

centre-out reaching task. Subjects controlled a blue, 1 cm diameter cursor to reach four 
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targets 4 cm in diameter appearing in random order on the screen 5 cm below, above, to the 

right, or to the left of the origin. While this study was limited for practical purposes to a few 

reaching targets, the interface, after the calibration phase, allowed them to move in all 

directions and to reach all points of the computer display. Subjects were allowed a total of 6 

s to complete the task before the target disappeared. Subjects had to remain inside the 4 cm 

diameter origin target for 200 ms for a new yellow target to appear. The subjects were 

instructed to reach the targets as quickly and accurately as possible and remain inside them 

for 1 s. The targets turned green while the cursor was inside them and turned red after the 6 s 

‘deadline’, where the trial was logged as a failed attempt and the target returned to the 

origin.

Subjects performed 24 trials per block, with random target order comprised of exactly six 

trials in each direction. The experiment consisted of five blocks and there was a 1 min 

resting period between blocks. This protocol allowed us to chart an explicit learning curve 

for different performance measures for each of the 24 subjects.

2.2.5. Five-target reaching task—A group of four subjects performed a second 

reaching task using the map that resulted on the best performance for the Four-Target 

Reaching Task. After following the same Calibration and Familiarization procedures, 

subjects performed a set of five training blocks of centre-out reaching, with generalization 

blocks before and after training. The training and generalization task schedule is shown in 

table 1.

Training Trials consisted on subjects controlling a mouse pointer to reach five targets 2.22 

cm in diameter appearing in random order on the screen. Unlike the first reaching task 

where subjects had to move only one shoulder at a time to reach a target, the five target 

locations for this task required subjects to combine and coordinate shoulder motions in order 

to reach them. Subjects were allowed a total of 1 s to reach the target before it changed 

colour. However, contrary to the first reaching task, subjects had unlimited time after the 

target changed colour to make corrections and complete the trial by remaining inside the 

target for 1 s. Subjects performed 20 training trials per block, with random target order 

comprised of exactly five trials in each direction.

Blind Trials occurred in random order within the same block as the Training Trials in order 

to test if subjects formed an inverse model of the shoulder-to-cursor map, or if they were 

relying purely on visual feedback to control the cursor. The blind trials were to the same 

locations as the training trials, except that cursor feedback was removed for the first second 

of the trial. Subjects performed five blind trials per block, with random target order 

comprised of exactly one trial in each direction.

Generalization Trials occurred before and after the five blocks of training. These trials 

consisted on five additional targets that were not seen during training. The targets were a 

rotated and scaled version of the training targets (figure 7, bottom row). Target distances 

were scaled down by 75% in order to ensure that subjects would be able to reach them. The 

different target locations required subjects to make different combinations of shoulder 

motions than the ones used during Calibration and the ones used during training. In order to 
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prevent a training effect, subjects performed ten generalization trials per block, with random 

target order comprised of only two trials in each direction.

2.2.6. Virtual navigation task—After completing all blocks the Five-Target Reaching 

Task, subjects were placed in a virtual environment developed by our laboratory using a 

commercial- grade, 3D gaming engine (Unreal Development Kit, Epic Games, USA). 

Controlling a virtual wheelchair in the simulated environment provided a safe environment 

where participants could learn and practice simulated driving tasks without the risks of 

collisions or serious accidents. The simulator was adapted to use the 2D output of the body–

machine interface as the virtual wheelchair’s joystick input. The custom environment 

reproduced a series of task features that mirrored those that the participant would need to 

perform in a real wheelchair. These tasks were a modified version of the Wheelchair Skills 

Test (version 4.1, http://www.wheelchairskillsprogram.ca).

As participants drove the virtual wheelchair along the environment, instructions appeared on 

the screen telling them where to go and what to do. A research assistant also provided 

feedback and guided the participant through the tasks. All subjects completed seven tasks 

one time. The tasks were done in the following order for all participants:

(1) Driving forward in a straight line, turning 90° counterclockwise, driving in a 

straight line, turning 90° clockwise, driving forward in a straight line, opening a 

door by pressing a proximity switch, and entering the doorway before the door 

closed after 10 s.

(2) Parallel parking between two wheelchairs and driving through an open doorway.

(3) Driving forward in a straight line, turning 90° clockwise, driving in a straight 

line, turning 90° counter-clockwise, driving forward in a straight line, opening a 

door by pressing a proximity switch, and entering the doorway before the door 

closed.

(4) Driving in slalom form between a set of three barrels and driving through an 

open doorway.

(5) Driving forward in a straight line, turning 90° clockwise, driving in a straight 

line, turning 90° counter-clockwise, driving forward in a straight line, opening a 

door by pressing a proximity switch, and entering the doorway before the door 

closed.

(6) Driving in a circle around a barrel with seven outside barrels as a barrier and 

driving through an open doorway.

(7) Driving forward in a straight line, turning 90° counterclockwise, driving in a 

straight line, turning 90° clockwise and driving forward in a straight line.

2.3. Analysis

Subject performance for each trial was quantified by four different measures.
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2.3.1. Performance measures—Error Frequency was defined, for each block, as the 

ratio of failed attempts to total allowed attempts (24 per block) i.e. a ratio of 0.8 would 

indicate that 80% of the trials in one block were not successfully completed. This measure 

indicated overall performance.

Movement Time was computed as the time between a target appearing on the screen and the 

target disappearing after 1 s of the subject being inside it (successfully completing the task). 

This measure indicates the speed with which a subject was able to complete the task.

Movement Variability was computed as the standard deviation along the axis orthogonal to 

the direction of the target. This was a measure of the extent to which the sample points lay in 

a straight line along that axis.

Path Length Ratio was defined as the sum of the Euclidian distance between time 

consecutive cursor points along the path of one trial, divided over the ideal distance for that 

trial. This measure indicated the ‘straightness’ or ‘effectiveness’ of the movement. A path 

length ratio equal to one would indicate that the subject moved ideally from the origin to the 

target.

All performance measures were averaged over all trials to obtain four values per block (one 

for each reaching direction) for each subject. This resulted in a total of twenty values per 

subject for the whole experiment. Together, these performance measures allowed us to elicit 

differences in the cursor’s path control within each subject, within a group, and between the 

three different groups. Other performance measures (average distance to target, average 

movement perpendicular error, maximum perpendicular error, dimen-sionless jerk) were 

also computed, but they were highly correlated to these four, so these four were enough to 

characterize movement and performance.

2.3.2. Statistics—A two-way mixed model analysis of variance (ANOVA) was performed 

on each performance measure with BLOCK (1–5) as the within participant factor and 

GROUP (E, EV, EVA) as the between-participant factor. Violations of sphericity were 

corrected by the Greenhouse-Geisser method. A post-hoc comparison using a Tukey 

correction was performed to test the null-hypothesis that the mean between groups at each 

block was the same. In order to determine if subjects from one group were better than 

subjects from another group after the five blocks, a post-hoc pairwise comparison using 

Bonferroni correction was performed to test the null-hypothesis that the mean between two 

groups at the fifth block was the same. These tests were repeated for each performance 

measure and allowed us to reject the null hypothesis at each block at p < 0.05.

A paired t-test was used to analyse a group’s overall improvement in performance. There 

was an average performance for each subject on the first and on the last blocks. We tested 

the null hypothesis that the mean difference between paired observations of the two blocks 

was zero. We repeated this test for each performance measure and it allowed us to reject the 

null hypothesis at p < 0.05.

2.3.3. Calibration time—We asked the question of how much calibration time is 

necessary for our subjects to perform well enough. Ideally, we could calibrate the Kalman 
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filter by having the subject move only once in each direction (or 16 s). In reality, subjects 

might need to move more than once in each direction in order to perform as well as if they 

moved the six times to each direction (or 96 s) as in the Calibration phase. We repeated the 

calibration of the filter (learning the mapping matrices) by using six different calibration-

phase durations: 16, 32, 48, 64, 80, or 96 s (note that it takes 16 s for the subject to move 

once to each of the four directions).

We tested each of the six maps on a testing set that consisted of the body-movement 

observations for the last 16 s of calibration data. We ‘fed’ those observations into the maps 

in order to make a prediction of the state, and we called this the reconstructed state. We then 

computed the correlation between the reconstructed state and the actual state. There was one 

correlation coefficient for each of the dimensions of the state (x, y, vx, vy, ax, ay). This 

allowed us to test the performance of the calibration for each of the six calibration times.

3. Results

3.1. Four-target reaching test

All subjects were able to successfully perform the reaching task. Reaching movements in the 

initial and final phases of training are reported in figure 2. A subject with typical 

performance for his group was chosen to represent each group in the figure. Movements are 

represented by the mean paths (dark lines) and their corresponding standard error (shaded 

area).

Performing the task was somewhat difficult for subjects in the E group for the first block of 

the reaching test. Trials to each direction were somewhat curved, and the standard error of 

movements was almost as large as the target diameter. In the following blocks, subjects in 

the E group continued improving their performance, and by the fifth (last) block their 

performance was notably better than the first block. The improvement in performance with 

practice was evident by the mean path becoming straighter and the standard error of the 

movement becoming smaller.

The task during the first block was not as difficult for subjects on groups EV and EVA. 

Subjects in both groups were able to move in a straight path in all four directions from the 

very first block. However, the standard error was larger for subjects on group EV than those 

on group EVA. Subjects in these groups continued improving their performance, and by the 

fifth (last) block their performance was noticeably better when compared to the first block. 

Their path linearity did not change dramatically, but they were able to considerably reduce 

the variability of their movements as shown by the standard error.

Subjects in all three groups were able to complete the reaching task and improve their 

control of the two-dimensional (2D) cursor on the screen. Subjects were able to move the 

cursor in a straight trajectory with their decoded map. The targets were considerably large in 

diameter, but the standard error of movements was usually smaller than the size of the 

target. These findings are consistent with the observations that subjects tend to generate 

rectilinear movements of a visually guided cursor under hand control (Hogan 1984, 

Flanagan and Rao 1995, Wolpert et al 1995).
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3.2. Performance measures

3.2.1. Five blocks of reaching task—All subjects were able to complete the five blocks 

of the reaching task. Differences in performance between blocks for the three different 

groups are shown in figure 3. There was an overall improvement in performance after 

practice for subjects in the three groups. However, the level of improvement was not 

consistent across the groups.

A reduction in error frequency across the five blocks was apparent for most subjects in all 

three groups (figure 3, row 1). This indicated that, with practice, subjects became more 

accurate and were able to control the target well enough to perform the task in the allotted 

time. There was a block effect on error frequency (p < 0.01). However, group differences 

did not depend on block (ANOVA interaction effect block*group p = 0.158). The between-

groups difference in error frequency was only statistically significant between groups E and 

EVA, as demonstrated by the results of the Tukey multiple comparison (p = 0.016). This 

value is shown on top of the line connecting both groups’ error frequency panels. 

Differences in error frequency between groups E and EV, and differences between groups 

EV and EVA were not significant (p = 0.063 and p = 0.785 respectively). It is important to 

notice that most subjects on group EVA had an initial error frequency of less than 0.1, so 

even though they reduced their error frequency to zero, there was not much change in their 

performance.

Subjects were allowed a total of 6 s to complete the task before the target disappeared, 

however subjects in all three groups learned to reach the target in much less time. With 

practice, the general trend of all three groups seemed to be to reduce the movement time 

(figure 3, row 2). By the fifth block subjects in all three groups had a shorter movement time 

than their first block. This indicated an improvement in the control and familiarization with 

the 2D cursor using their shoulders. There was a block effect on movement time (p < 0.01). 

However, group differences did not depend on block (ANOVA interaction effect 

block*group p = 0.398). The between-groups difference in movement time was statistically 

significant between groups E and EVA (p = 0.011). Differences in movement time between 

groups E and EV, and differences between groups EV and EVA were not significant (p = 

0.083 and p = 0.583 respectively).

A reduction in movement variability across the five blocks was also apparent for most 

subjects in all three groups (figure 3, row III). Subjects on group E had higher movement 

variability than subjects on groups EV and EVA for the first block. This result suggested 

that subjects learned to decrease the variability of their movements and converged to one 

movement strategy. Accordingly, they possibly learned to reduce movements that were 

unnecessary or caused the cursor to move in an undesired direction. There was a block effect 

on movement variability (p < 0.01). However, group differences did not depend on block 

(ANOVA interaction effect block*group p = 0.474). The between-groups difference in 

movement variability was only statistically significant between groups E and EVA (p = 

0.031). Differences in movement variability between groups E and EV, and differences 

between groups EV and EVA were not significantly different (p = 0.191 and p = 0.603 

respectively).
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As mentioned in the Reaching Test section, subjects moved towards a straighter trajectory of 

the controlled cursor. This was quantified by an overall reduction of path length across the 

five blocks of the experiment. There was a block effect on path length (p < 0.01). However, 

group differences did not depend on block (ANOVA interaction effect block*group p = 

0.220). Interestingly, the between-groups difference in path length was not statistically 

significant between any two groups. The difference between groups E and EVA was not 

significant (p = 0.118). Differences in path length between groups E and EV, and 

differences between groups EV and EVA were also not significant (p = 0.447 and p = 0.671 

respectively).

The results for the post-hoc pairwise comparison at block five can be seen in table 2. 

Significant differences in performance on the fifth block were observed mostly between 

groups E and EV and between groups E and EVA. However, there was not significant 

difference in performance at the fifth trial between groups EV and EVA.

3.2.2. Learning analysis—Most subjects were able to learn and improve their 

performance as evaluated by all four measures. Learning averages for each group are shown 

in figure 4. Each group’s bar represents the mean of the differences between the first and the 

last block for all subjects in that group. A positive value indicates an improvement in 

performance. The results of the paired t-test are shown by the p-value on the top of each 

plot. An asterisk and bold number indicate a significant learning for that group. The learning 

effect was not consistent between groups. Groups E and EV seem to show a stronger 

learning effect than group EVA. This was mostly due to a ceiling effect, because subjects on 

group EVA might have been at a ceiling of performance since the very first block.

3.3. State estimation accuracy depends strongly on calibration time

The correlation coefficients between the actual states and the reconstructed states, using 

different durations of calibration data, are shown in ‘figure 5’. As more data was available 

(or calibration time increases), the correlation coefficients for position, velocity, and 

acceleration increase. The reconstruction was always stronger for position than for velocity, 

and acceleration is the weakest. Even though there was a noticeable difference between 

training with 16 s and 32 s, there was not much improvement after performing the 

reconstruction with 48 s or more. These results indicate that subjects could effectively 

calibrate the filter in only 48 s. This calibration time would be considerably shorter than the 

current, state of the art, EEG motor imagery methods that take around two hours to calibrate 

(Carlson and Millán 2012).

3.4. Five-target reaching test

All subjects were able to perform successfully the reaching task to five targets on the screen 

using the EVA map. Reaching movements in the initial and final phases of training for one 

representative subject are reported in figure 6. Movements are represented by the mean 

paths (dark lines) and their corresponding standard error (shaded area).

Performing the task was a little more difficult for subjects doing the Five-Target Reaching 

Task than for subjects doing the Four-Target Reaching Task. Not only was the target half 
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the size for the Five-Target Reaching Task, but also subjects had to coordinate the 

movement of two shoulders simultaneously in order to reach them. In the first block, trials to 

each direction were curved and the standard error of movements was almost as large as the 

target diameter. However, subjects continued improving their performance during the 

following blocks, and by the fifth (last) block their performance was notably better than the 

first block. The improvement in performance with practice was evident by the mean path 

becoming straighter and the standard error of the movements becoming smaller.

Five blind trials (one per target location) were randomly introduced during each block. 

During blind trials, the visual feedback of the cursor’s location was turned off for the first 

second of the trial. From the first block, subjects moved in the correct general direction for 

each target during the first portion of their reach (figure 6, middle row). However, they did 

not get very close to the exact target location, and they had to make adjustments in position 

after the cursor’s visual feedback returned in order to get inside the targets and complete the 

trials. Subjects continued improving their performance during the following blocks, and by 

the fifth (last) block their performance was notably better than the first block. With practice, 

subjects were moving closer to a straight line towards each target and they got closer to the 

exact target location, so fewer adjustments in cursor position were needed after the cursor’s 

visual feedback returned.

Before and after the five blocks of training, subjects were asked to perform a set of ten 

generalization trials to five target locations that were not seen during training (figure 6, 

bottom row). The first generalization block was somewhat difficult for all subjects. Trials to 

each direction were curved and subjects overshot the target. There were several changes in 

movement direction, and several adjustments in position were needed in order to complete 

the task. At this point, subjects were not experienced with the map. The second 

generalization block, which happened after the five blocks of training, was not difficult for 

any of the subjects. Subjects were able to move in a much straighter trajectory towards each 

target, did not overshoot the targets, and needed minor adjustments in cursor position in 

order to complete the trials.

3.5. Virtual navigation task

All subjects were able to successfully perform the wheelchair navigation task in the virtual 

environment using the EVA map. Screenshots of the virtual environment and trajectories for 

all subjects are shown in figure 7. The dark dotted lines represent each subject’s trajectory 

within the map, and the red circles indicate locations where the subject’s simulated 

wheelchair collided with another object in the virtual environment.

Subjects’ trajectories were generally smooth and straight during open hallways and 90° turns 

(figure 7, plot E, tasks 1,3,5, and 7). There were no specific instructions on how to parallel 

park, besides getting the wheelchair to sit still inside the blue glowing circle in figure 7, plot 

A. Some subjects went directly forward and stopped there, while others parallel parked with 

a similar strategy as parking a car. They moved to be parallel with the front wheelchair, and 

then they backed up into the spot while turning. This was a more difficult strategy, as the 

camera point of view remained fixed on the back, so they could not see the wheelchair 

behind them nor the wall on their left.
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Opening doors and going through them was the most difficult task for all subjects. Subjects 

were required to activate a proximity switch by getting close to it (figure 7, plot B). The 

door took 7 s to open completely, remained opened for 10 s, and then took another 7 s to 

close. Doors with proximity switches were located at the start, at the end of tasks 1, 3, and 5. 

This is where most of the collisions happened. Every subject experienced a collision in a 

proximity switch door at least twice throughout the virtual navigation task.

The 4th task, or the slalom task, was not too difficult for subjects (figure 7, plot C). Subjects 

were required to navigate through three barrels by moving in an ‘S-like’ path. Only one of 

the subjects collided against one of the barrels by turning too sharply (figure 7, plot G).

Navigating in a circle around a barrel was not too difficult for subjects (figure 7, plot E). 

Subjects were required to go around the barrel without touching the barrels on the sides. All 

subjects were able to go around the barrel smoothly. However, one of the subjects collided 

against the barrels surrounding it (figure 7, plot H).

Requiring subjects to perform different tasks allowed them to practice in a safe and 

controlled environment. These results demonstrate the validity of using a body–machine 

interface with a Kalman filter to control a 2D cursor on a screen and to control a simulated 

powered wheelchair.

4. Discussion

Our results demonstrate that the Kalman filter decoding of upper-body motions is 

appropriate for assistive device applications requiring 2D control. Experimental results in 

brain–machine interfaces with this well understood probabilistic approach have shown its 

superiority to other traditional linear filtering methods (Wu et al 2003, Wu et al 2004). The 

Kalman filter does not require long time windows in which to collect data, it is simple to 

train, and the real-time implementation is trivial. Additionally, the Kalman filter provides a 

clear statistical interpretation (Welch and Bishop 1995), an explicit generative model, an 

incremental estimate of the state that improves over time, and an estimate of the uncertainty 

in the state (Wu et al 2002).

Different methods have recently been proposed for people with high tetraplegia to control 

their powered wheelchairs. EEG methods provide an alternative when all mobility has been 

lost—as in locked-in syndrome or advanced multiple sclerosis (Iturrate et al 2009, Carlson 

and Millán 2012). However, these methods are computationally expensive, have low 

bandwidth, require long training and familiarization phases, and demand high concentration 

from the user. While the rate of information transmission of non-invasive brain computer 

interfaces ranges from 0.05 to 0.5 bits s−1 (Wolpaw et al 2000, Townsend et al 2010), a 

recent study estimated that body motions may operate at about 5 bits s−1 (Townsend et al 

2010). IMUs mounted at the back of the head to convert head movements into steering 

commands can provide a satisfactory alternative when some neck motion remains available 

(Mandel et al 2007). However, interactions are limited to the head only and fail to promote 

upper-body coordination when users might still have significant residual motion capability.
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Calibration time is an important factor that influences whether people adopt a technology or 

not. Current brain–-machine interfaces take from 4 min in ECoG to a couple hours in EEG 

to properly calibrate. We investigated what would be the minimum calibration time that 

subjects could work with, without negatively affecting the performance of the decoding. As 

expected, the reconstruction of the testing set improved as the duration of the calibration set 

increased. There was a noticeable difference between calibrating with 16, 32, or 48 s. 

However, there was not much improvement in the reconstruction after calibrating with more 

than 48 s of data. It is important to note that the speed of the moving cursor during the 

calibration was relatively slow, and it took 16 s for the cursor to move once to each of the 

four directions. It is possible that increasing the speed of the cursor could decrease the 

calibration time further.

Subjects were able to generalize to targets that were a rotated and scaled-down version of 

the ones presented during training. These targets required subjects to make different 

combinations of shoulder motions. Even though the generalization targets were a scaled-

down version of the training targets, subjects did not overshoot them. Moreover, subjects 

were able to perform the reaching trials even when the visual feedback of the cursor was 

removed. These results suggest that, after practice, subjects had a great understanding on 

how the magnitude of their shoulder movements affected the magnitude of the cursor 

movements. Our results are in agreement with studies suggesting the formation of an 

internal model between body and cursor motions (Wolpert et al 1998, Todorov and Jordan 

2002, Emken et al 2007, Berniker and Kording 2008, Casadio et al 2010).

All four subjects were able to navigate the virtual environment in the simulated wheelchair 

after training in a centre-out reaching task. These results demonstrate the feasibility of the 

body-machine interface using IMUs on the shoulder to control a virtual wheelchair. Earlier 

studies have demonstrated that the skills acquired while practicing the control of a virtual 

wheelchair are at least partially retained and ‘generalized’ when controlling an electrically 

powered wheelchair (Cooper et al 2002, Holden 2005). However, it is important to note that 

subjects did experience collisions between the simulated wheelchair and other objects in the 

environment. This highlights the importance of practice until subjects reach a high level of 

performance before they drive a real wheelchair. It is important to minimize the likelihood 

of accidents and collisions while driving an electrically powered wheelchair.

4.1. Clinical implications

Subjects in all groups were able to learn to control the cursor using IMUs on their shoulders. 

They all successfully completed the reaching task, but performance varied between the 

groups. Subjects in the EVA group outperformed subjects in the EV and E groups in all of 

the performance measures. Our findings confirm the ability of the motor control system to 

exploit motor redundancy for reorganizing motor coordination (Chen et al 1998, Gréa et al 

2000, Casadio et al 2010, Casadio et al 2011). However, a significant learning effect was 

not observed for subjects on group EVA. Learning happened mostly for groups E and EV. 

These results might suggest that subjects who use all available body kinematics information 

may reach a ceiling in performance early in the experiment.
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We analysed the effect that adding more kinematic information in the observation vector of 

the decoding algorithm had on cursor control performance. Adding too much information in 

the procedure could add unwanted noise and be detrimental to the control of the cursor. Our 

results demonstrate that this was not the case, and they suggest that algorithms with greater 

redundancy (and perhaps more sensors) are desired for BMI decoding.

Having the ability to monitor motor function is highly desirable in order to automate 

adaptation of therapy based on patients’ needs and improvements (Krebs et al 2003, 

Reinkensmeyer et al 2004, Choi et al 2009, Li et al 2009, Kan et al 2011). Adaptive online 

algorithms have been shown to be useful in many scenarios including motor control (Mak 

and Wolpaw 2009, Townsend et al 2010, Cunningham et al 2011). Our system also allows 

adapting and updating our models with data collected during subject-controlled trials, 

instead of keeping them fixed after the calibration phase.

Although not reported in detail here, the number of ‘re-calibrations’ needed during the 

course of the experiment was noticeably different for each group. All subjects moved and 

changed their posture during the length of the experiment. This caused the sensors to have a 

different resting (or zero) reading, and the subjects’ resting position caused the cursor to 

drift from the origin of the screen. We asked subjects to pay attention to this detail and let us 

know when they felt their resting position was no longer in the origin. At these occurrences, 

we ‘zeroed’ the signals so that their current position was in the origin. This was a recurring 

problem (about one ‘re-calibration’ per block) for subjects on group E, but was not a 

common occurrence (about one ‘re-calibration for the complete session) for subjects on 

group EVA. Subjects on group E were only using the angles of the sensors to move their 

shoulders, so changes in posture had a noticeable effect on the origin. When angular 

velocities and linear accelerations were used for the map, maybe their posture had changed, 

but their instantaneous velocities and accelerations were not changing and thus the cursor 

had a greater tendency to remain close to the origin. In more recent experiments, we have 

subjects performing blocks on different days. We mark the position of the sensors on the 

vest for each subject and we place the sensors accordingly. Subjects are able to perform the 

reaching task from the first trial. We envision users of our system getting up in the morning, 

putting on the vest with the IMUs in the marked position, ‘zeroing’ the signals once, and go 

through their day with the same map.

4.2. Limitations

Establishing the optimal sensor kinematics of the decoding algorithm was the main focus of 

this study. In order to reduce variability introduced by different body-to-cursor maps, the 

design of our experiment instructed specific movements in the calibration phase for all 

subjects. In the application of this BMI, subjects will have the ability to choose their own 

movements to control each of the directions of the cursor. Although some movements will 

be easier for some subjects than for others, we expect our observations of taking advantage 

of redundancy to carry over regardless of the chosen map.

This study demonstrated promising results on 2D cursor and virtual wheelchair control by a 

BMI on unimpaired subjects. However, one should not simply assume these findings could 

be extrapolated with people with paralysis. People with poor control of their body might not 
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be able to control the velocity and acceleration of their movements as smoothly as 

unimpaired subjects. Our next step is to conduct experiments on spinal cord injured 

participants to confirm our observations.

5. Conclusion

This study provides us with the platform for people with higher spinal cord injury to control 

a virtual cursor and a virtual wheelchair. The use of IMUs on the shoulder area can 

potentially replace the current sip-and-puff and head-and-chin systems for people with some 

motor and sensory capacity remaining on the upper-body. The control of the cursor can be 

easily turned into the control of a joystick that in turn controls a powered wheelchair. This 

type of control would allow for an interface that is not obstructive to the head or the mouth 

and has a proportional, continuous directionality control. This body–machine interface is 

able to adapt to each individual’s residual mobility, and could keep evolving together with 

the user’s skills while promoting learning through upper-body coordination. With successful 

training, users could improve their independence by enhancing their movement capabilities 

that survived the injury.
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Figure 1. 
Experimental setup. The subject sits in front of a computer monitor wearing a vest with four 

IMUs attached to the shoulders.
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Figure 2. 
Average movement performance. Movements for representative subjects in each group on 

their first (left) and last (right) blocks. The dark lines represent the mean for all trials in the 

same direction for that block, and the shaded area shows the standard error. The grey circles 

are the 4 cm diameter targets that subjects had to reach to.
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Figure 3. 
Subject performance for five blocks. Each subject’s mean performance (dark line) and 

standard error (shaded area) is shown for each of the five reaching blocks. A different line 

type representing each subject and each group is shown in a different coluor. The results for 

the ANOVA are shown by the p-value on top of the line connecting two plots.
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Figure 4. 
Learning effect. The bars show the mean difference between the first and the last blocks for 

each group. A positive value indicates an improvement in performance, and a negative value 

indicates performance degradation. The error bars represent the standard error. The results 

of the paired t-test are shown by the p-value on the top of each plot, with an asterisk 

indicating a significant learning for that group.
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Figure 5. 
Reconstruction of calibration times. The correlation coefficients for each of the dimensions 

of the state are shown for each of the six calibration times. The lines represent the mean 

between all 24 subjects, and the shaded areas indicate the standard error.
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Figure 6. 
Movement performance for training, blind, and generalization trials. Movements for one 

subject on the first (left) and last (right) blocks. Top: the dark lines represent the mean for all 

training trials in the same direction for that block, and the shaded area shows the standard 

error. Middle: the dark lines represent the raw paths for each target during the blind trials 

within the first and the last blocks. Bottom: the dark lines represent the raw paths for each 

target during the generalization blocks. Note that these do not include a standard error 
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shaded area, because there were only two trials per target. The grey circles are the 2.22 cm 

diameter targets that subjects had to reach to.
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Figure 7. 
Virtual wheelchair navigation by Kalman filter using a non-invasive body–machine 

interface. Top: subjects controlled the wheelchair’s joystick position (green circle) in order 

to move around. Besides navigating the map without hitting the walls, subjects were 

required to perform tasks such as parallel parking (A), opening doors by pressing the door 

proximity switch (B), slalom through a set of three barrels (C), and going around in a circle 

around a barrel (D). Bottom: driving paths in the virtual reality environment are shown for 

three subjects (E–G). The white lines represent the walls. The black dotted lines represent 

the subjects’ paths. The triangles indicate the position and orientation of the camera for the 

pictures on the top. The numbers indicate the starting point for each of the required tasks. 

The red circles represent collisions between the simulated wheelchair and another object in 

the virtual reality environment.
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Table 2

Group pairwise comparisons at block five.

Measure (I) Group (J) Group

Two sample t-test
significance
(Bonferroni)

E EV 0.01*

Error frequency E EVA 0.02*

EV EVA 1.00

E EV 0.02*

Movement time E EVA 0.01*

EV EVA 1.00

E EV 0.04*

Movement Variability E EVA 0.01*

EV EVA 1.00

E EV 0.17

Path length E EVA 0.11

EV EVA 1.00
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