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Detailed information about the relationships between structures and properties/activities of peptides as drugs and nutrients is useful
in the development of drugs and functional foods containing peptides as active compounds. The bitterness of the peptides is an
undesirable property which should be reduced during drug/nutrient production, and quantitative structure bitter taste relationship
(QSBR) studies can help researchers to design less bitter peptides with higher target efficiency. Calculated structural parameters
were used to develop three different QSBR models (i.e., multiple linear regression, support vector machine, and artificial neural
network) to predict the bitterness of 229 peptides (containing 2-12 amino acids, obtained from the literature). The developed models
were validated using internal and external validation methods, and the prediction errors were checked using mean percentage
deviation and absolute average error values. All developed models predicted the activities successfully (with prediction errors less
than experimental error values), whereas the prediction errors for nonlinear methods were less than those for linear methods. The

selected structural descriptors successfully differentiated between bitter and nonbitter peptides.

1. Introduction

Proteins are made from peptide fragments that are well
known for their nutrient, biological, and physiological roles
in the human body. Peptides modulate the health-connected
physiological process of the cardiovascular, nervous, im-
mune, and nutritional systems [1]. The investigation of prop-
erties and activities of peptides as therapeutic, bioactive
agents and nutrients as well as starting points for the develop-
ment of drugs and drug-related compounds is one of the most
interesting and demanding fields of food and drug sciences. It
allows researchers to compile data sets on their structures and

properties/activities. The results of these studies are useful
in the development of functional foods containing peptides
as active compounds and drugs [2]. Peptide bitterness is an
undesirable property that is frequently generated during the
enzymatic process to produce functional, bioactive protein
hydrolysates or during the aging process in fermented food
products [3]. Since many toxins are bitter, most mammalians
including humans are instinctively averse to bitter-tasting
substances in order to avoid toxin ingestion [4]. Most ther-
apeutic peptides cannot be administered orally because of
the poor biopharmaceutical performance of high-molecular-
weight peptide drugs which is due to poor oral absorption,
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formulation stability, and degradation in the gastrointestinal
tract. Studies on the origins of formulations and alternative
administrations to overcome the mentioned problems have
suggested different administration methods such as par-
enteral, oral, transdermal, nasal, pulmonary, rectal, ocular,
buccal, and sublingual drug delivery systems [5-8]. Taste
plays a crucial role in buccal and sublingual administration
systems. Bitter taste properties in relation with the structure
of the peptides in fermented food and protein hydrolyzates
have been studied. Findings have shown that hydrophobicity
is correlated with bitterness, and a hydrophobic interaction
is needed for the bitter receptors (T,Rs) to sense bitter-
ness, whereas the amino acid sequence has no effect on
bitterness [9, 10]. Moreover, introducing amino acids into
the hydrophobic chain intensifies bitterness, and blocking
both C and N terminals of peptides by acetylating increases
bitterness about ten times [4]. It is now generally accepted
that the side-chain hydrophobicity and the number of carbon
atoms of the hydrophobic side chain of the peptide’s amino
acids are correlated to bitterness rather than to overall
hydrophobicity [4, 9,11, 12]. In fact, the hydrophobic group of
the side chain offers a binding site for the bitter taste receptor.
Another binding site is a bulky basic group, including an «-
amino group. To provide such features, hydrophobic amino
acids at the C-terminal and basic amino acids at the N-
terminal are necessary. The bitter peptides are composed of
less than eight amino acids, and the bitterness increases as
the number of amino acids increases. Peptides composed of
eight or more amino acids do not differ in bitter potency, and
they form a spherical shape rather than a helix conformation
[4,9].

Beyond structure-activity studies, researchers have tried
to develop quantitative models to predict the bitterness of
peptides [3] and to evaluate the effect of the primary structure
on the potency of therapeutic peptides [1, 13]. These studies
were aimed at understanding the peptide structures respon-
sible for different activities (taste, ACE inhibition, antithrom-
botic, opioid and endopeptidase inhibitory, antimicrobial
activities, and immune modulator) and to accelerate the
studies about food-derived functional and bioactive peptides.

Different quantitative structure bitter taste relationship
(QSBR) models using various descriptors have been devel-
oped for di- and tripeptides [1, 3, 13-16]; the study of tetra-
and higher peptides is limited [3]. Some methods developed
to predict the bitterness of dipeptides used amino acid-
based descriptors, which resulted in models with acceptable
prediction capabilities.

Yin et al. [17] reported 28 developed models in the year
2010 for modeling dipeptide bitterness in comparison with
their own model which used E,-E; amino acid variables
(hydrophobicity (E,), steric properties or side chain bulk/
molecular size (E,), preferences for amino acids to occur in
a-helices (E;), composition (E,), and the net charge (E;))
to develop QSBR models using support vector regression
(SVM). Their model [17] successfully predicted (R* = 0.97)
the bitterness of 48 dipeptides (R* values calculated using
(A.6) of appendix). Table 1 (28 models taken from a reference
[17] + 2 other models) summarizes the developed models
for dipeptides along with their prediction errors (root mean
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TABLE 1: Details of previously developed QSBR models.

No. Descriptors Model qz (cv) R RMSE Ref.
1 MS-WHIM PLS 0633 0704 nd* [18]
2 ISA-ECI PLS Nd 0.847 nd [19]
3 z-scales PLS 0.713 0.824 0.26 [20]
4 GRID PLS 0.780 nd nd [21]
5 MHDV PCR 0.864 0919 018 [22]
6 MEEV (M3) MLR 0588 0773 034 [23]
7 MEEV (M4) MLR 0677 0734 034 [23]
8 SSIA-AM1 PLS 0.837 0.85 0.25 [24]
9 SSIA-PM3 PLS 0.829 0.888 0.22 [24]
10 SSIA-HF PLS 0.798 0.844 0.25 [24]
1 SSIA-DFT PLS 0.741 0.856 0.24 [24]
12 MARCH-INSIDE MLR 0.860 0.881 0.23 [25]
13 Constitutional MLR 0.820 0.846 0.26  [25]
14 Topological MLR 0.890 0.91 0.20  [25]
15 Molecular MLR 0.580 0.618 0.39 [25]
16 BCUT MLR 0.720 0.783  0.30 [25]
17 Galvez MLR 0.560 0.617 0.40 [25]
18 2D MLR 0.710 0.753 0.32 [25]
19 Randic MLR 0.512 0.559  0.42 [25]
20 Geometrical MLR 0.895 0.909 020 [25]
21 RDF MLR 0.814 0.851 0.25 [25]
22 3D-MoRSE MLR 0880 0914 020 [25]
23 GETAWAY MLR 0857 0.889 022 [25]
24 WHIM MLR 0.799 0.861 0.25 [25]
25 SZOTT PLS 0.736 0.908 0.20 [26]
26 VSW PLS 0.696 0.868 0.24 [16]
27 \% MLR 0.921 0.948 0.17 [15]
28 E MLR 0.888 0940 0.21 [27]
29 E SVR 0.912 0.962 0.12 [17]
30 Z-scores PLS 0.800  0.850 nd [3]
*No data.

square errors (RMSE) which were calculated using (A.1) of
the appendix).

Kim and Li-Chan (2006) [3] studied the QSBR of 224
di- to tetradecapeptides (2-14 amino acids peptides) using
multiple linear regression (MLR) and partial least square
(PLS) regression methods. They used total hydrophobicity,
molecular mass (log M), and residual numbers to develop
their regression models, and the amino acid z-scores, namely,
z,: hydrophobicity, z,: bulkiness/molecular size, and z;: elec-
tronic property, were calculated using the method developed
by Hellberg et al. [20] (individually or in combination with
the mentioned parameters) to develop a PLS model (Table 1,
number 30). They concluded that the developed models
for whole data sets and data subsets (comprising different
peptide length) were significant and improved for subsets [3].
Moreover, the combination of z-scores and studied variables
improved the correlation of predicted and observed values for
di- and tripeptides.

QSBR model development for three or more amino acid
peptides has not been studied as well as that of dipeptides.
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This work aims to build suitable models for predicting the
bitterness of 224 peptides and 5 amino acids on the basis of
their calculated structural parameters. Structural parameters
(0D-3D) were calculated using Dragon [28] software. The
selected parameters were used to develop linear and nonlin-
ear models, and the prediction capability and robustness of
the proposed models were studied using internal and external
validation methods according to the QSAR method valida-
tions guidelines [29] and references [30-33]. The impacts of
the selected parameters and structural features on bitterness
were evaluated according to the parameter definitions.

2. Materials and Methods

2.1. Data Set. A total of 229 experimental bitterness values
(224 peptides and 5 amino acids) determined by human
sensory evaluations were obtained from [3]. The details of
peptide sequences and the bitterness activity expressed as a
log(1/T) (T being the bitter threshold concentration (M)) are
summarized in Table 2. The ranges of bitterness were 1.0-5.7,
and the numbers of amino acids of the studied peptides were
2-14.

2.2. Calculated Descriptors. The 2D structures of all mole-
cules were drawn and converted to 3D structures using
the HyperChem 7 software. The completed model and the
molecular mechanics energy minimized molecules were used
as inputs for the Dragon 5.4 software [28]. The software
calculated 20 subsets of molecular descriptors, including
2D autocorrelation, 3D-MoRSE descriptors, centered frag-
ments, Burden eigenvalues, connectivity indices, constitu-
tional descriptors, edge adjacency indices, eigenvalue-based
indices, functional group counts, geometrical descriptors,
GETAWAY descriptors, information indices, molecular prop-
erties, Randic molecular profiles, RDF descriptors, topolog-
ical charge indices, topological descriptors, walk and path
counts, and WHIM descriptors. The structural parameters
calculated after discarding the constant and near-constant
values (1295 descriptors) were saved and further analyzed
using the SPSS 11.5, STATISTICA 7 and MATLAB 7.8 soft-
ware.

2.3. Outlier Detection. In order to identify possible out-
liers, two different methods of principal component analysis
(PCA) mapping and standard scores were used. According
to the nature of the outliers, which could be related to
the different mechanism of binding because of the different
structural features, recording errors, or inaccurate design of
samples, no single outlier detection approach could identify
all kinds of outliers [34]. In this study, two approaches, one
in descriptor space (PCA plot of scores) and the second
in response space (standard score), were used to check the
outliers before the main numerical analysis [35].

2.4. Training-Test Selection. The training set plays an impor-
tant role in developing the properties of the model, as the
more similar the molecules for training the model are, the
more accurate the expected results are. Thus, the selection

TABLE 2: Details of the observed-predicted (using MLR, SVM, and
ANN methods) bitterness and corresponding errors (IPD).

Peptide sequenceObserved MLR IPD SVM IPD ANN IPD

Training data set
R 1.60 120 251 181 134 190 185
F 1.70 1.86 93 183 75 186 95
p 1.90 187 16 236 243 216 135
L 1.70 1.82 69 182 73 186 94
\Y% 1.70 162 50 161 53 168 11

GR 1.00 2.00 100.1 2.31 130.7 2.06 106.0
RR 2.11 238 129 2.69 274 2.84 347
PP 2.34 205 124 235 02 226 33
KP 2.52 239 5.0 328 301 320 26.8
PR 2.52 197 217 326 293 322 279
RF 2.60 268 30 281 81 276 6.0
RP 3.10 234 245 305 15 3.03 21
LI 2.40 207 138 212 115 2.01 164
KF 2.04 246 208 183 105 184 10.0
VF 2.52 246 25 232 80 236 63
VY 2.52 244 31 274 88 277 99
YG 2.52 237 61 248 17 239 53
YY 2.63 282 72 247 6.0 247 6.0
FI 2.83 262 76 232 18.0 2.06 272
IF 2.83 254 102 358 26.6 352 244
YF 3.10 270 129 331 6.8 329 6.2
VA 1.16 1.63 409 155 339 149 28.6
VG 1.19 1.34 129 156 30.8 136 14.3
PA 1.32 162 225 159 205 155 172
IE 1.37 213 555 230 682 212 547
IQ 1.49 1.91 283 197 325 193 297
IS 1.49 1.80 20.7 1.67 12.4 180 20.7
IT 1.49 211 413 2.08 39.6 2.03 36.2
SL 1.49 1.99 337 214 438 192 287
WE 1.56 2.63 68.6 270 73.0 2.65 69.6
IK 1.65 2.40 455 242 465 233 413
IA 1.68 177 55 164 23 166 11
AL 1.70 152 109 178 47 177 3.8
\A% 1.71 .59 69 170 05 163 438
LA 1.72 1.84 69 172 01 176 23
PY 1.80 209 159 193 73 202 121
GW 1.89 218 155 2.00 57 215 139
PL 2.22 198 109 221 0.2 195 12.0
PI 2.33 1.85 205 210 99 192 176
1P 2.40 206 141 225 63 203 153
YL 2.40 252 52 261 89 255 61
LY 2.46 279 134 289 173 276 12.2
w 3.05 284 69 286 63 276 95
FY 3.13 2.80 104 290 75 284 9.2
Lw 3.40 2.63 22.6 280 178 2.86 16.0
v 1.90 1.80 53 231 215 206 8.2
FV 2.23 255 144 229 28 206 74
VE 2.23 1.99 10.6 257 154 246 10.3
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Peptide sequence Observed MLR IPD SVM IPD ANN IPD Peptide sequence Observed MLR IPD SVM IPD ANN IPD

YP 1.70 251 478 172 10 157 79 PPG 2.04 222 86 235 154 216 5.7
PK 2.23 206 78 227 17 210 59 FFG 2.65 293 105 3.06 155 299 128
LD 2.23 219 17 226 13 209 6.2 ELL 3.40 291 145 273 197 282 170
AD 2.23 215 3.7 222 05 200 105 FFF 3.70 344 71 428 157 394 6.4
LE 2.52 215 146 233 75 213 155 EGG 2.83 206 272 271 42 261 79
GE 2.83 213 248 2.63 72 258 8.8 YGY 3.10 284 85 287 74 279 10.0
VL 211 2.04 32 247 169 237 124 YPF 3.52 3.03 139 318 9.6 3.04 137
GP 1.79 228 273 209 167 194 8.6 GGLG 1.60 192 198 155 33 134 16.2
FG 2.00 224 121 225 125 226 128 FGFG 3.52 294 164 355 1.0 356 12
PF 2.14 228 64 234 93 229 69 GPFF 3.80 321 156 319 160 315 170
GF 2.36 225 45 230 25 224 52 RPGF 3.80 339 109 341 102 336 116
GY 2.15 214 04 212 15 217 08 FGGF 3.92 3.08 215 332 153 32 183
LF 2.82 252 105 270 42 255 94 RPFF 4.40 382 132 442 04 424 3.6
FL 2.85 258 94 264 74 257 97 GLGG 1.70 1.84 82 170 02 174 23
GL 1.64 1.80 9.6 170 4.0 175 6.6 LGGG 1.90 198 41 226 189 192 0.8
LG 1.71 170 0.7 158 77 170 0.6 PFPP 2.34 314 343 239 19 241 28
1G 2.01 1.71 151 169 16.0 170 15.6 GPPF 2.52 288 142 256 17 247 19
GI 2.17 191 121 182 163 184 154 RRPP 2.7 314 164 3.00 112 311 153
LL 247 221 105 233 56 208 16.0 VYPF 3.52 346 16 297 157 3.05 135
1I 2.54 205 191 224 119 205 191 PFIV 3.52 312 1.5 328 69 333 55
IL 2.54 212 16.6 229 99 208 182 FFPR 4.00 387 32 379 52 387 33
RGP 1.90 251 318 166 124 183 3.9 FFPP 2.52 327 296 251 03 243 35
FGG 2.34 227 32 210 103 2.09 10.9 FFPE 2.76 356 28.8 3.49 263 355 28.6
GFG 2.52 235 6.7 225 109 210 16.5 GGFF 2.85 348 220 239 161 234 181
PPP 2.70 239 116 262 31 242 103 FFPG 2.90 338 16.6 337 163 335 15.6
GLL 2.83 237 164 233 176 2.07 26.7 LLLL 3.23 335 37 318 1.6 323 0.0
RPG 3.10 271 12.7 246 205 237 235 FFGG 2.52 320 270 241 44 231 82
LGG 1.00 1.68 676 175 75.0 167 671 RRPFF 4.70 415 1.7 469 03 463 14
GGL 2.00 1.99 04 200 02 192 41 GGGLG 1.90 228 199 234 231 2.08 94
LGL 2.30 238 33 243 58 234 17 GLGGG 1.90 215 129 177 70 169 10.8
LLG 2.30 235 21 239 40 231 03 LGGGG 1.90 216 13.6 251 323 249 311
PIP 2.85 237 167 371 301 351 232 GGVVV 211 2.84 346 221 4.7 202 45
LLL 2.92 270 75 3.06 48 294 09 FFPGG 2.83 358 26.6 318 124 318 122
GYG 1.70 172 13 2.63 545 242 422 PGPIP 311 325 46 326 48 319 26
GVV 2.34 2.05 12.4 298 273 3.07 313 RGPPF 2.63 345 312 295 122 289 98
\A'A% 2.34 238 1.8 176 249 164 298 PPFIV 2.92 330 129 264 96 269 79
PPF 2.63 248 57 338 284 338 285 RPGFF 3.51 382 8.8 398 134 3.86 99
YGG 2.63 260 13 267 16 246 63 RPGGFF 4.04 395 23 428 58 4.06 0.6
RPF 2.83 328 159 255 98 244 138 PFPGPI 3.36 363 81 365 87 356 6.0
FGF 2.92 285 24 324 11 329 125 RPFFGG 3.92 411 47 422 76 4.07 39
DLL 3.10 318 2.6 263 152 267 137 RGPPGF 3.52 331 59 355 09 343 26
GFF 3.23 3.04 59 314 28 3.08 47 RGPPFI 4.60 3.60 217 3.47 247 352 234
FPF 3.40 331 28 338 06 325 44 RGPFIV 4.30 384 10.7 383 109 376 12.6
GYY 3.40 3.02 112 315 74 3.06 99 RGGFIV 3.10 335 80 302 26 289 6.7
PFP 3.40 288 153 274 195 258 24.2 RGPPFF 4.23 4.04 46 413 24 398 59
YYY 3.70 345 6.8 373 07 357 35 RRPPGF 4.40 373 153 479 9.0 475 79
GGV 1.48 1.93 302 175 184 179 210 RRPPFF 5.15 413 199 508 14 540 49
PGG 2.34 1.69 276 202 13.6 200 14.6 GPPFIV 2.92 340 16.6 328 124 320 95
GGF 2.83 242 144 239 154 236 168 GGFFGG 3.70 4.02 88 372 04 355 4.0

GGP 2.04 195 4.4 260 273 251 231 KPPFIV 3.82 356 6.8 342 104 351 82
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Peptide sequence ~ Observed MLR IPD SVM IPD ANN IPD Peptide sequence Observed MLR IPD SVM IPD ANN IPD
GGRPFF 4.04 407 06 398 15 3.83 51 GPG 1.70 2.09 232 211 240 201 181
PVLGPV 3.30 325 1.6 326 12 321 28 KPK 2.52 297 177 2.82 11.8 3.02 199
FPPFIV 3.52 3.66 4.0 418 18.8 4.09 16.3 VYP 2.52 297 177 287 139 290 15.0
RGPPGGV 2.48 3.07 239 293 182 296 19.2 GGGL 2.34 226 32 239 21 210 10.0
RGPPGFF 4.40 3.97 9.7 4.04 83 393 10.7 RPFG 3.41 347 1.8 337 11 334 19
RGPPFFF 5.00 445 111 4.62 76 4.47 10.6 RGFF 3.80 3.69 30 395 4.0 383 0.7
VIIPFPG 3.60 4.08 13.3 349 31 35 28 GGLGG 1.90 229 206 193 17 192 09
VIFPPGR 4.10 433 55 387 56 383 6.6 GGGGL 2.65 221 16.6 240 95 217 179
RGPPGIG 2.78 3.49 255 3.41 227 343 235 PGPGPG 2.60 310 192 314 20.6 3.09 19.0
RGPPGGF 3.08 325 54 317 3.0 310 0.8 PFPIIV 3.90 343 12.0 355 9.0 3.40 127
YPFPGPI 3.80 4.09 77 421 10.7 4.05 6.6 VIFPPG 2.68 3.80 41.8 371 384 3.66 36.6
RPPPFFF 4.70 473 0.6 441 6.2 422 10.2 RGPPFIV 4.30 3.86 10.3 3.75 12.7 3.78 121
VIPFPGR 4.15 413 05 438 56 423 19 VYPFPPG 3.52 406 154 4.09 161 395 122
PFPGPIP 3.60 354 1.6 4.00 11.2 398 10.7 RGPFPIIV 5.40 414 233 440 185 414 234
RGPPGFG 3.68 356 31 347 57 349 52 RGPGPIIV 4.81 3.84 203 4.26 115 388 192
RGPFPIV 3.95 385 25 392 0.7 388 19 RRPPPFFF 5.70 478 16.2 476 165 4.69 176
RPFFRPFF 5.00 511 22 496 09 5.03 0.6 VIIPFPGR 3.85 454 18.0 447 161 451 171
RGPKPIIV 4.08 387 50 421 32 383 63 VYPFPPIGNH 4.30 446 3.7 448 41 438 18
VYPFPPGI 3.82 423 10.7 4.21 101 4.15 8.7 GGRGPPFIVGG  4.40 421 43 421 44 411 6.6
RGPEPIIV 4.51 3.87 142 412 8.7 3.80 15.8 Validation data set
RGPPGGFF 4.11 3.37 18.0 3.28 20.1 3.28 20.3 IN 1.49 211 419 212 424 2.01 3438
GGRPFFGG 4.40 430 23 392 108 3.81 133 WW 3.60 299 169 318 1.7 3.05 153
RGPPGGGFF 3.95 4.05 2.6 424 74 4.09 35 GV 1.74 222 278 219 258 2.08 19.8
GGRGPPFIV 4.10 395 36 435 61 430 49 FPK 2.52 310 229 294 16.7 314 24.7
RGPPFIVGG 4.31 4.06 57 4.04 63 401 71 FPP 2.34 2.65 133 256 9.6 2.62 121
FFRPFFRPFF 5.15 549 6.7 4.21 182 4.06 211 PGP 2.04 256 254 257 260 241 18.0
PVRGPFPIIV 5.40 416 229 4.82 10.8 4.18 22.6 VIF 2.89 278 38 279 36 282 23
VYPFPPGINH 4.30 448 43 451 49 438 2.0 RPPFIV 4.10 3.74 87 361 120 3.65 11.0
VYPFPPGIGG 3.52 420 19.2 3.08 12.4 3.00 14.9 RGPPFGG 3.23 337 45 323 01 334 33
VYPFGGGINH 3.64 396 8.7 4.01 101 3.88 6.6 RGPPFIIV 4.30 412 41 420 24 399 72
RPFFRPFFRPFF 5.00 544 89 5.04 08 522 4.4
RGPPFIVRGPPFIV  4.40 492 11.8 3.87 12.0 3.75 14.8
PVLGPVRGPEPIIV 483 436 97 511 59 448 72 of the training and test sets is one of the most important
Test data set steps in model development and should be done so that
RG 211 197 64 229 84 20l 46 each set reflects the original data set as much as possible. K-
means clustering is one of the most frequently used methods
AV 116 171 476 159 374 158 363 of data set splitting. This procedure identifies relatively
ID 137 2.07 514 2.07 512 197 439 homogeneous groups of molecules (each observation has the
vD 190 194 22 236 245 215 134 pearest distance to the mean of the cluster) based on selected
Lv 223 189 151 L75 216 182 184 properties (biologic activities and structural parameters).
VI 223 190 147 199 109 196 121 Using this method, we divided the data set into 10 clusters,
FP 277 254 83 265 43 246 111 and three subsets (i.e., training, test, and validation sets) were
FF 301 275 86 289 40 282 65 selected from them. The validation set was excluded from the
AF 181 241 334 255 407 239 318 study before the descriptor selection step, and the test set was
PGR L60  2.65 654 2.60 623 2.65 659 excluded before the model development step.
RRR 2.40 3.55 48.0 3.52 46.8 3.55 478
FIV 283 277 21 268 52 271 42 2.5. Descriptor Selection. In order to reduce the dimension
GGY 283 244 138 255 97 245 135 of the variable matrix, a correlation analysis was carried
out, and both the highly correlated and constant variables
GRP 310264 148 254 1181 2,64 150 were excluded. A ho%ne}ideveloped MATLAB toolbox was
YYG 3.20 310 32 317 09 311 29 . . e .
employed that considered the following criteria for excluding
KPF 340 318 64 314 76 31l 85 a variable: [1] the intercorrelation with other descriptors
GLG 2.00 1.58 21.3 157 215 169 15.7

higher than 0.99; [2] the correlation with activity lower than
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FIGURE 1: Procedure of descriptor selection, QSBR model development, and validation processes.

intercorrelated descriptors; and [3] the frequency of repeated
values for a descriptor (lower than 10% of cases).

After this step, a genetic algorithm-partial least square
(GA-PLS) algorithm [36] was used to select the most signif-
icant variables. GA-PLS (a combination of genetic algorithm
and PLS regression) was also developed and utilized as a
variable selection method in QSAR and QSPR studies by
Leardi [36] and applied for QSAR studies [37, 38]. The
MATLAB 7.8 software was used to run the GA-PLS method
developed by Leardi. The variables were divided into sub-
groups (containing up to 200 variables), and each subgroup
with the corresponding log 1/T values (Y) was introduced to
the algorithm as input. The output (containing descriptors
scoring based on the cross-validated percentage of explained
variance) was produced after 100 runs. As the results of the
GA-PLS were a bit different for each run, the top 50% scores
of each subgroup were combined with the next 100 variables,
and this step was repeated up to the final step. A comparative
study was done in this study to check the capability of GA-
PLS for descriptor selection in comparison with common
methods (i.e., PLS and stepwise). Results showed that GA-
PLS was able to extract more significant descriptors. The only
drawback of this method was the scoring differences between
different runs, which could be solved using the mentioned
procedure (i.e., selection of 50% of each run instead of limited
descriptors [37]).

Twenty percent of high score variables of the final step
were selected as the most significant variables and were fur-
ther studied by stepwise regression and bivariate correlation
analysis in which the selected variables using stepwise regres-
sion were investigated concerning their intercorrelations. The
less intercorrelated variables were selected for the final model
development process. The complete procedure of descriptor
selection is summarized in Figure 1.

2.6. Model Building. Linear and nonlinear models were
developed using the selected descriptors. The details of the
model development and validation process are discussed in
the next sections.

2.7. Linear Model Using Multiple Linear Regression (MLR).
The selected parameters were used for developing QSBR
equations using the multiple linear regression correlation
(MLR) method, and the goodness of fit and statistical sig-
nificance of the models were evaluated using R* (coefficient
of determination), F (variance ratio), and the MPD (mean
percentage deviation) values calculated using:

MPD = @ Z Ypred, - Yexp.(mean) (1)
N YeXPA(mean)

The relative frequency of individual percentage deviations
(IPD) was studied in order to define the model prediction
capacity for each data point. The IPD was calculated using

Y, -Y.
IPD = 100 pred. exp.(mean) ) (2)

exp.(mean)

In order to compare the MPD values with the relative
standard deviations (RSD) between experimental bitter val-
ues measured by different research groups (inter laboratory
relative standard deviations (ILRSD)), the ILRSD values for
the available data were computed using

Y,

exp.

Y

exp.(mean)

Y,

exp.(mean)

100

ILRSD = —
N ©)




BioMed Research International

2.8. Nonlinear Models Using Support Vector Regression (SVR)
and Artificial Neural Network (ANN). In the next stage, the
selected descriptors were used to derive non-linear models
using SVR and ANN. To construct an ANN, the Levenberg-
Marquardt algorithm [39] was used by nftool toolbox of
MATLAB 7.8 software to train the network. Selected descrip-
tors and the bitter activity of training sets were introduced
as input and output values, respectively. The training set was
randomly classified for training, validation, and test sets in
order to avoid overfitting, and then networks were trained.
SVR, another non-linear model, constructs a hyperplane in
a multidimensional space that provides minimum error by
employing a non-linear Kernel function. Some parameters
such as capacity parameter (C); € are related to type of noise
in the data, and y is related to radial base function (RBF),
which is the most common type of Kernel functions. The
SVM model and optimization of parameters were done using
STATISTICA 7 software.

2.9. Model Validation. The developed models were evaluated
using the leave-many-out (LMO) cross-validation method.
The g values were calculated using (A.8) of the appendix.

2.10. Chance Correlation. To check the possibility of a chance
correlation, 10 times shuffled activities were correlated to
the variables, and the produced regression coefficients were
compared with the developed model regression coeflicient.

2.11. External Validation of Proposed Models Using the Exter-
nal Test Set. A set of statistical criteria [30, 31] was employed
to analyze 36 data points of the test set:

(1) R* > 0.6,

where R? is the coefficient of determination between the
predicted and observed values.

(2) (R* - R})/R* < 0.1 and 0.85 < K < 115 or (R* -
R}?)/R* < 0.1and 0.85 < K' < 1.15,

where R; is the coefficient of determination obtained using
predicted values relative to a regression line fit for experimen-
tal values and required to pass through the origin, and R;’
is the corresponding coefficient obtained using experimental
values relative to a regression line fit for predicted values and
required to pass through the origin. K and K’ are the slopes
of regression lines through the origin for fits for experimental
and predicted data, respectively.

(3) IR - Ry < 0.3.

In addition, another criterion proposed by P. P. Roy and
K. Roy [32] was considered as

2 2
(4) R2, = R¥(1 - \[R* - R2),

in which R?, > 0.5 indicates the good external predictability
of the QSAR models.

3. Results and Discussion

3.1 Outlier Detection. According to standard score analysis,
there is no outlier. The PCA map of scores showed that most
of the data points fell into the acceptable data space, and there
is no outlier in the studied data set.

3.2. Training-Test Selection. The selected training, test, and
validation data sets are listed in Table 2 along with the
computed accuracy criteria. The activity ranges for training,
test, and validation sets were 1.00-5.40, 1.16-5.70, and 1.49-
5.40, respectively. The number of data points for the training,
test, and validation sets was 181, 36, and 10, respectively.

3.3. Descriptor Selection. A total of 1292 descriptors were cal-
culated using Dragon 5.4 software. This number was reduced
to 244 descriptors after correlation analysis was performed
using a home-developed toolbox. The remaining descriptors
were analyzed using the GA-PLS method, and the best scor-
ing descriptors (descriptors included in Table 3) were selected
for further analysis using stepwise regression and bivariate
cross-correlation studies (the intercorrelation between the
selected descriptors was less than 0.9). After excluding the
nonsignificant descriptors, the remaining descriptors were
checked to find the possible intercorrelation, and the final
descriptors were selected using a stepwise regression method
(see Table 4). The final six selected descriptors were again
checked for intercorrelation. Six descriptors are suitable for
the construction of a QSAR model [40].

3.4. Evaluation of the Selected Descriptors. SPAN belongs
to the size descriptors which evaluate the dimension of
the molecule and often calculate it from the molecular
geometry. This descriptor is a suitable size descriptor for
macromolecules [41], and its selection for the studied data
set with the developed method showed the method to be
suitable for descriptor selection. The correlation study results
(Figure 2) showed that bitterness increased upon the
enhancement of the SPAN (Figure 2(a)). This finding is in
agreement with previous findings [1-13] which suggested a
significant correlation between peptide size and bitterness.
The investigation of the correlation of peptide subsets with
this descriptor showed less correlations in comparison with
the whole dataset. Therefore, SPAN can be regarded as a
general descriptor rather than a specific one for peptide
subsets. Thus, SPAN can be used in the primary steps of
peptide bioactive compound discovery to recognize bitter
compound fractions.

Mean square distance (MSD) index (Balaban) [28, 41]
contributes negatively to bitterness (Figure 2(b)). MSD de-
creases with the increasing of molecular branching in an
isomeric set [41]. Furthermore, it decreases with an increase
in the number of atoms. This is in agreement with the findings
on the increase in bitterness following an increase in the
number of amino acids in the studied peptides. The lower
correlation coefficient between peptide subsets by MSD in
comparison with the total dataset showed that MSD is
a general bitterness indicator rather than a subset bitterness
descriptor.



TABLE 3: GA-PLS selected descriptors along with descriptive for
training data set (181 peptides).

Name Range Minimum Maximum Mean Std. deviation
rdf025p  112.70 4.07 116.77 30.90 21.13
morl5u 3.81 -1.90 1.91 0.18 0.65
eeig08x 4.21 -0.24 3.97 2.16 1.21
morllm 213 -1.21 0.92 -0.15 0.40
rdf025v  108.21 4.00 112.20 29.52 20.28
morl5e 3.73 =157 2.16 0.26 0.70
mor2lm  3.86 -3.93 -0.08 -0.90 0.64
belp7 1.88 0.00 1.88 1.18 0.42
rdf075m  144.42 0.00 144.42 16.28 24.18
mor3lp 1.85 0.14 1.98 0.54 0.36
ggi6 3.87 0.00 3.87 0.77 0.74
morllv 2.54 -1.00 1.55 0.10 0.40
mor3lv 1.59 0.11 1.70 0.45 0.31
ncs 29.00 1.00 30.00 7.26 5.50
til 6217.22 —87.25 6129.97  255.45 699.86
e3s 0.64 0.00 0.64 0.21 0.10
gmti 1318857.00  347.00 1319204.00 81064.04 173637.51
vepl 8.18 2.61 10.78 5.28 1.63
atslp 2.88 1.81 4.68 312 0.60
smtiv ~ 775601.00 341.00  775942.00 4840738 103187.64
behv6 2.84 0.96 3.79 2.82 0.53
alogp 8.07 -2.81 5.26 0.38 1.45
rtp-a 25.63 4.90 30.53 13.02 5.31
c002 18.00 0.00 18.00 413 3.38
j3d 10.70 2.41 13.10 5.35 2.46
idmt  1426115.69 182.31 1426298.00 75860.86 184400.59
mats2m  0.32 -0.16 0.16 0.04 0.06
morllp 2.80 -1.29 1.51 0.05 0.43
mats2v 1426115.69 182.31 1426298.00 75860.86 184400.59
hats8u 0.70 0.00 0.70 0.33 0.13
smti 477598.00 168.00 477766.00 29053.36  63311.78
mor05u  36.43 -38.23 -1.80 -10.14 6.51
hats8e 0.68 0.00 0.68 0.34 0.13
mats2e 0.31 -0.15 0.15 0.03 0.06
llu 53.45 2.41 55.86 12.98 9.33
rbn 46.00 1.00 47.00 11.61 8.03
hém 1.81 0.00 1.81 0.34 0.36
rdf080e  387.99 0.00 387.99 39.41 61.82
rtv_a 23.23 3.99 27.21 11.50 4.82

Bitterness increases with the enhancement of E3s
(Figure 2(c)). E3s is one of the accessibility directional
WHIM indices which is weighed by atomic electrotopological
states [28, 41]. Indeed, this descriptor defines size, shape,
polarizability, and the conformational properties of the stud-
ied molecules together. Its correlation with the bitterness is
weaker than MSD and SPAN descriptors, but its removal
from the model decreases the correlation coefficient signif-
icantly. It is not a strong identifier for utilization in drug
development processes.
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TABLE 4: Intercorrelation of final descriptors.

log(1/T) SPAN Morllv MSD HATS8u G3p E3s
log(1/T) 100
SPAN 0.79 1.00
Morllv 0.34 0.09 1.00

MSD -0.81 -0.78 -0.20 1.00

HATS8u -0.56 -0.52 -0.25 0.38 1.00

G3p -0.63 -0.64 -013 0.64 0.30 1.00

E3s 0.41 0.22 031 -038 -016 -0.25 100

G3p, the 3rd-component symmetry directional WHIM
index (weighed by polarizability) [28, 41], showed a negative
correlation with bitterness (Figure 2(d)). Along with E3s,
these descriptors contribute to the electrical properties of the
molecule. G3p decreases with the increase in the number of
amino acids. In fact, more bitter compounds possess larger
G3p values. Similar to the SPAN and MSD descriptors, the
correlations with subsets are less than the general dataset,
and this descriptor can be regarded as a general identifier.
HATS8u (Figure 2(e)) belongs to the GETAWAY descriptors.
These descriptors are molecular descriptors derived from
the molecular influence matrix (MIM) [12, 28]. HATS,
indices known as spatial autocorrelation based descriptors,
encode information nonstructural fragments [28, 41]. They
are suitable for describing differences in a congeneric series
of molecules. The effective position of substituent and
fragments in molecular space and information about the
molecular size and shape can be encoded by unweighted
HATS indices. Moreover, they are independent of molecule
alignment.

In summary, GETAWAY descriptors encoded local infor-
mation while WHIM descriptors related to the holistic
information of the molecules; thus, their joint uses are
advised. HATS8u decreases with an increase in molecular
size. The negative relation of this descriptor with bitterness is
in agreement with the findings about the size and bitterness
relation.

3D-MoRSE descriptors (3D molecule representation of
structures based on electron diffraction) are derived from
infrared spectra simulation using a generalized scattering
function [28]. Morllv, weighed by van der Waals volume,
belongs to these descriptors which can be regarded as an
indicator of size, mass, and volume of the molecules. By
decreasing the size of the peptide, the Morllv values tend
toward zero (Figure 2(f)). In fact, the absolute values of
Morllv decrease by the decrease in size of the molecule. The
absolute quantity of it worsens the model, and it should be
used in the model in the present form including negative
and positive values for different peptides. The only similar
trend was observed for alogp values of the peptides. The
negative Morllv values belong to the molecules with neg-
ative alogp values (less hydrophobic peptides). 3D-MoRSE
descriptors cannot encode the lipophilicity of the molecules.
The overall correlation of bitterness to this descriptor is posi-
tive [28].
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FIGURE 2: Correlation of selected descriptors with bitter activity (R” is coefficient of determination and is calculated using (A.6) of the

appendix).

3.5. Model Building Using Linear Model (MLR). The selected
descriptors were used to develop six MLR equations contain-
ing 1-6 descriptors. The adjusted R* showed that all descrip-
tors improved the model fitting, the R* values accurately
depicted the fitting improvement, and the best-fitted model
could be rewritten as follows:

log (%) — 5.45(+0.63) + 0.10 (+£0.02) SPAN

+0.32 (+0.09) Mor11v

- 7.88(£1.25) MSD

— 1.55 (+0.30) HATS8u

- 539 (+2.1) G3p + 0.92 (+0.35) E3s,

R* =081, F = 125.73,

S.EP.=0.08,  MPD =13.7(13.2),

ND = 181,
(4)

where S.E.P. stands for standard error of prediction and ND
shows the number of data points. The MPD for test and
validation sets were 18.1 (+15.5) (N = 36) and 16.9 (+12.6)
(N = 10), respectively. The relative frequency analysis of
the prediction errors showed that more than 50% of data can
be predicted by the prediction error of less than 15%, which
is acceptable for biological measurements, where the mean
ILRSD for bitter activities of 19 dipeptides were measured by
different research groups and were 12.1 (+10.7)%. In addition,
the IPD frequency trend (Figure 3) is similar for training
and test sets. The MPD for the peptides by log(1/T) values
less than 2.0 was 24.3 (+22.2) and for the peptides with
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FIGURE 3: IPD frequencies (IPD < 15, IPD = 15-30, and IPD > 30)
of the training (top), test (middle), and validation (bottom) sets for
MLR, SVM, and ANN models.

log(1/T) more than 2.0, it was 11.1 (+7.9). The highest IPD
value (100.0%) in the training set was calculated for GR
(log(1/T) = 1.00), and in the test set, it was calculated for
PGR (IPD = 65.4% and log(1/T) = 1.60). In other words,
the developed model was not able to predict the bitterness of
less bitter peptides, and the selected descriptors are specific
for the evaluation of the bitter peptides’ interactions with the
receptor.

LOO cross-validation was done using the PLS toolbox of
MATLAB software. The g* value and RMSE were 0.76 and
0.44, respectively. The g* values for LMO cross-validation are
reported in Table 3. The ranges of q* values were 0.61-0.88,
which was in an acceptable range compared with R* values.

BioMed Research International

TABLE 5: Leave-many-out cross-validation results for MLR model.

Subset R Ridj q

1 0.80 0.79 0.88
2 0.80 0.79 0.87
3 0.80 0.79 0.86
4 0.80 0.80 0.82
5 0.80 0.80 0.82
6 0.81 0.80 0.75
7 0.81 0.80 0.78
8 0.82 0.81 0.76
9 0.82 0.81 0.84
10 0.82 0.82 0.61

TABLE 6: Chance correlation results.

Shuffled Y R’ Shuffled Y R?
Y1 0.01 Y6 0.02
Y2 0.07 Y7 -0.02
Y3 0.01 Y8 0.03
Y4 -0.02 Y9 0.01
Y5 0.01 Y10 0.00

The ranges of corresponding R* and adjusted R* for the
desired subsets were 0.80-0.82 and 0.79-0.82, respectively
(see Table 5). Chance correlation (Y randomization) analysis
was done using 10 times shuffled bitter activity, and the results
(R* = 0.01-0.10) rejected the possibility of fortune correlation
(see Table 6).

3.6. Model Building Using Nonlinear Models (ANN and SVM)
and Comparison with the Linear Model (MLR). The six
selected descriptors were introduced to ANN as input values
and the bitter activity as output data, and the networks were
developed using the Levenberg-Marquardt algorithm [38].
The number of hidden layers was three. In addition, SVM
models were developed using STATISTICA 7 software. Using
the training set, three parameters of SVM were optimized by
10-fold cross-validation. The optimized values of C, ¢, and y
were 91, 0.07, and 0.06, respectively. The MPD values of the
proposed models for training, test, and validation sets were
13.8,16.8, and 16.9 for MLR; 13.0, 16.0, and 15.0 for SVM; and
13.1, 16.1, and 14.8 for ANN, all of which are in acceptable
ranges, and there is no significant difference between these
subsets. The IPD frequencies (Figure 3) revealed that both
SVM and ANN methods produced more accurate results,
especially for the test sets. The plots of experimental versus
predicted values (Figure 4) confirmed the discussed results.

3.7. External Validation of the Proposed Models. Statistical
criteria of external test sets are depicted in Table 7. The
results show that the proposed models using linear and
nonlinear models passed the proposed statistical criteria in
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TABLE 7: Statistical parameters for test sets of MLR, SVM, and ANN
models.

Statistical criteria MLR SVM ANN
R*>0.6 0.723 0.739 0.767
(R*-R})/R* < 0.1 0.001 0.002 0.004
0.85 <K < 1.15 0.999 1.010 0.989
|R2 - R’ <03 0.109 0.113 0.106
R > 0.5 0.704 0.712 0.722

the literature, and they are robust and valid for external
prediction.

3.8. Comparison with Previous Model. The only similar
study was published by Kim and Li-Chan [3]. They used
the amino acid three z-scores along with three parameters
(total hydrophobicity, residue number, and log mass value) to
develop a PLS model. A comparison of the newly developed
model with their model is summarized in Table 8. It should
be noted that the aim of this paper was to develop a general
model rather than different models for different subsets, and
reported correlation coeflicients belong to the general model
which was computed for subsets. The comparison of the
corresponding R values showed that the developed model
could represent the bitter activity variance of three and more
peptides better than the PLS model, while for dipeptides

the PLS model produced more accurate results. Developed
SVM and ANN models resulted in more accurate results for
the total data set compared with both the PLS and MLR
models (Tables 1 and 5; Figure 4).

4. Conclusion

General MLR, SVM, and ANN models were developed to
predict the bitterness of 229 peptides and amino acids.
The capability of the MLR model to reveal the impact of
each descriptor on bitter activity was its main advantage,
where more accurate predictions by SVM and ANN made
them suitable models for precise predictions. Obviously,
individual models (i.e., models developed for each peptide
subset) produced less prediction errors, but considering
the convenience of application of the general models, such
models are preferred during the primary stages of peptide
production and evaluation. The developed models can be
used in nutraceutical and pharmaceutical industries.

Appendix

2
Z (Ypred‘ - Yexp.(mean))
N

RMSE = (A1)

>

where N denotes the number of data points and Y, .4 and
Y., are the predicted and observed log1/T (T is the bitter

exp



12 BioMed Research International
TABLE 8: Developed MLR model statistics for subsets of peptides compared with a previously developed model.

Data set i Develoged model Previous model

ND R Radj R RMSE R (PLS) R* (PLS)
Dipeptides® 76 0.51 0.47 0.72 0.41 0.63 0.40
Dipeptidesb 45 0.62 0.56 0.79 0.44 0.91 0.83
Dipeptides* 47 0.59 0.53 0.77 0.42 0.85 0.72
Three peptides 51 0.65 0.60 0.81 0.38 0.71 0.50
Tetrapeptides 23 0.72 0.62 0.85 0.48 0.90 0.81
Pentapeptides 12 0.89 0.80 0.94 0.37 0.88 0.77
Hexapeptides 20 0.65 0.48 0.80 0.47 0.75 0.56
Heptapeptides 16 0.79 0.68 0.89 0.38 0.95 0.90
Octa-tetradecapeptides 24 0.57 0.42 0.76 0.44 — —
Whole data set? 227 0.80 0.79 0.89 0.46 0.81 0.66
Test and validation sets 46 0.76 0.73 0.87 0.56 — —
Training set 181 0.81 0.81 0.90 0.43 — —

? Average of experimental values was used when there were different values in different references.

PExperimental data were taken from different references.
“Experimental data were taken from [3].

4The R values for whole data set using SVM and ANN methods are 0.90 and 0.91, respectively.

threshold concentration (M)) values

SSke

MSSp,, = %’ (A.2)
SS

MSSpes. = Zd—fR (A3)

where SS is sum of squares, MSS is mean square, Reg. is
regression, Res. is residual and cv is cross validated

MSSTotal = MSSReg. + MSSRCS’ (A4)
MSS
= ¢ (A5)
MSSRes.
MSS
R =1 - e (A.6)
MSSTotal
M 0.5
R:<1—&> , (A7)
MSSTotal
2 2 MSSRes cv
g =R} =1 —Rescv (A.8)
MSSTotal
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