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Detailed information about the relationships between structures and properties/activities of peptides as drugs andnutrients is useful
in the development of drugs and functional foods containing peptides as active compounds. The bitterness of the peptides is an
undesirable property which should be reduced during drug/nutrient production, and quantitative structure bitter taste relationship
(QSBR) studies can help researchers to design less bitter peptides with higher target efficiency. Calculated structural parameters
were used to develop three different QSBR models (i.e., multiple linear regression, support vector machine, and artificial neural
network) to predict the bitterness of 229 peptides (containing 2–12 amino acids, obtained from the literature).Thedevelopedmodels
were validated using internal and external validation methods, and the prediction errors were checked using mean percentage
deviation and absolute average error values. All developed models predicted the activities successfully (with prediction errors less
than experimental error values), whereas the prediction errors for nonlinear methods were less than those for linear methods. The
selected structural descriptors successfully differentiated between bitter and nonbitter peptides.

1. Introduction

Proteins are made from peptide fragments that are well
known for their nutrient, biological, and physiological roles
in the human body. Peptides modulate the health-connected
physiological process of the cardiovascular, nervous, im-
mune, and nutritional systems [1]. The investigation of prop-
erties and activities of peptides as therapeutic, bioactive
agents and nutrients as well as starting points for the develop-
ment of drugs and drug-related compounds is one of themost
interesting and demanding fields of food and drug sciences. It
allows researchers to compile data sets on their structures and

properties/activities. The results of these studies are useful
in the development of functional foods containing peptides
as active compounds and drugs [2]. Peptide bitterness is an
undesirable property that is frequently generated during the
enzymatic process to produce functional, bioactive protein
hydrolysates or during the aging process in fermented food
products [3]. Since many toxins are bitter, most mammalians
including humans are instinctively averse to bitter-tasting
substances in order to avoid toxin ingestion [4]. Most ther-
apeutic peptides cannot be administered orally because of
the poor biopharmaceutical performance of high-molecular-
weight peptide drugs which is due to poor oral absorption,
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formulation stability, and degradation in the gastrointestinal
tract. Studies on the origins of formulations and alternative
administrations to overcome the mentioned problems have
suggested different administration methods such as par-
enteral, oral, transdermal, nasal, pulmonary, rectal, ocular,
buccal, and sublingual drug delivery systems [5–8]. Taste
plays a crucial role in buccal and sublingual administration
systems. Bitter taste properties in relation with the structure
of the peptides in fermented food and protein hydrolyzates
have been studied. Findings have shown that hydrophobicity
is correlated with bitterness, and a hydrophobic interaction
is needed for the bitter receptors (T

2
Rs) to sense bitter-

ness, whereas the amino acid sequence has no effect on
bitterness [9, 10]. Moreover, introducing amino acids into
the hydrophobic chain intensifies bitterness, and blocking
both C and N terminals of peptides by acetylating increases
bitterness about ten times [4]. It is now generally accepted
that the side-chain hydrophobicity and the number of carbon
atoms of the hydrophobic side chain of the peptide’s amino
acids are correlated to bitterness rather than to overall
hydrophobicity [4, 9, 11, 12]. In fact, the hydrophobic group of
the side chain offers a binding site for the bitter taste receptor.
Another binding site is a bulky basic group, including an 𝛼-
amino group. To provide such features, hydrophobic amino
acids at the C-terminal and basic amino acids at the N-
terminal are necessary. The bitter peptides are composed of
less than eight amino acids, and the bitterness increases as
the number of amino acids increases. Peptides composed of
eight or more amino acids do not differ in bitter potency, and
they form a spherical shape rather than a helix conformation
[4, 9].

Beyond structure-activity studies, researchers have tried
to develop quantitative models to predict the bitterness of
peptides [3] and to evaluate the effect of the primary structure
on the potency of therapeutic peptides [1, 13]. These studies
were aimed at understanding the peptide structures respon-
sible for different activities (taste, ACE inhibition, antithrom-
botic, opioid and endopeptidase inhibitory, antimicrobial
activities, and immune modulator) and to accelerate the
studies about food-derived functional and bioactive peptides.

Different quantitative structure bitter taste relationship
(QSBR) models using various descriptors have been devel-
oped for di- and tripeptides [1, 3, 13–16]; the study of tetra-
and higher peptides is limited [3]. Some methods developed
to predict the bitterness of dipeptides used amino acid-
based descriptors, which resulted in models with acceptable
prediction capabilities.

Yin et al. [17] reported 28 developed models in the year
2010 for modeling dipeptide bitterness in comparison with
their own model which used E

1
–E
5
amino acid variables

(hydrophobicity (E
1
), steric properties or side chain bulk/

molecular size (E
2
), preferences for amino acids to occur in

𝛼-helices (E
3
), composition (E

4
), and the net charge (E

5
))

to develop QSBR models using support vector regression
(SVM). Their model [17] successfully predicted (𝑅2 = 0.97)
the bitterness of 48 dipeptides (𝑅2 values calculated using
(A.6) of appendix). Table 1 (28 models taken from a reference
[17] + 2 other models) summarizes the developed models
for dipeptides along with their prediction errors (root mean

Table 1: Details of previously developed QSBR models.

No. Descriptors Model 𝑞2 (CV) 𝑅2 RMSE Ref.
1 MS-WHIM PLS 0.633 0.704 nd∗ [18]
2 ISA-ECI PLS Nd 0.847 nd [19]
3 𝑧-scales PLS 0.713 0.824 0.26 [20]
4 GRID PLS 0.780 nd nd [21]
5 MHDV PCR 0.864 0.919 0.18 [22]
6 MEEV (M3) MLR 0.588 0.773 0.34 [23]
7 MEEV (M4) MLR 0.677 0.734 0.34 [23]
8 SSIA-AM1 PLS 0.837 0.85 0.25 [24]
9 SSIA-PM3 PLS 0.829 0.888 0.22 [24]
10 SSIA-HF PLS 0.798 0.844 0.25 [24]
11 SSIA-DFT PLS 0.741 0.856 0.24 [24]
12 MARCH-INSIDE MLR 0.860 0.881 0.23 [25]
13 Constitutional MLR 0.820 0.846 0.26 [25]
14 Topological MLR 0.890 0.91 0.20 [25]
15 Molecular MLR 0.580 0.618 0.39 [25]
16 BCUT MLR 0.720 0.783 0.30 [25]
17 Galvez MLR 0.560 0.617 0.40 [25]
18 2D MLR 0.710 0.753 0.32 [25]
19 Randic MLR 0.512 0.559 0.42 [25]
20 Geometrical MLR 0.895 0.909 0.20 [25]
21 RDF MLR 0.814 0.851 0.25 [25]
22 3D-MoRSE MLR 0.880 0.914 0.20 [25]
23 GETAWAY MLR 0.857 0.889 0.22 [25]
24 WHIM MLR 0.799 0.861 0.25 [25]
25 SZOTT PLS 0.736 0.908 0.20 [26]
26 VSW PLS 0.696 0.868 0.24 [16]
27 V MLR 0.921 0.948 0.17 [15]
28 E MLR 0.888 0.940 0.21 [27]
29 E SVR 0.912 0.962 0.12 [17]
30 𝑧-scores PLS 0.800 0.850 nd [3]
∗No data.

square errors (RMSE) which were calculated using (A.1) of
the appendix).

Kim and Li-Chan (2006) [3] studied the QSBR of 224
di- to tetradecapeptides (2–14 amino acids peptides) using
multiple linear regression (MLR) and partial least square
(PLS) regression methods. They used total hydrophobicity,
molecular mass (log𝑀), and residual numbers to develop
their regressionmodels, and the amino acid 𝑧-scores, namely,
𝑧
1
: hydrophobicity, 𝑧

2
: bulkiness/molecular size, and 𝑧

3
: elec-

tronic property, were calculated using the method developed
by Hellberg et al. [20] (individually or in combination with
the mentioned parameters) to develop a PLS model (Table 1,
number 30). They concluded that the developed models
for whole data sets and data subsets (comprising different
peptide length) were significant and improved for subsets [3].
Moreover, the combination of 𝑧-scores and studied variables
improved the correlation of predicted and observed values for
di- and tripeptides.

QSBR model development for three or more amino acid
peptides has not been studied as well as that of dipeptides.
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This work aims to build suitable models for predicting the
bitterness of 224 peptides and 5 amino acids on the basis of
their calculated structural parameters. Structural parameters
(0D–3D) were calculated using Dragon [28] software. The
selected parameters were used to develop linear and nonlin-
ear models, and the prediction capability and robustness of
the proposedmodels were studied using internal and external
validation methods according to the QSAR method valida-
tions guidelines [29] and references [30–33]. The impacts of
the selected parameters and structural features on bitterness
were evaluated according to the parameter definitions.

2. Materials and Methods

2.1. Data Set. A total of 229 experimental bitterness values
(224 peptides and 5 amino acids) determined by human
sensory evaluations were obtained from [3]. The details of
peptide sequences and the bitterness activity expressed as a
log(1/𝑇) (𝑇 being the bitter threshold concentration (𝑀)) are
summarized in Table 2. The ranges of bitterness were 1.0–5.7,
and the numbers of amino acids of the studied peptides were
2–14.

2.2. Calculated Descriptors. The 2D structures of all mole-
cules were drawn and converted to 3D structures using
the HyperChem 7 software. The completed model and the
molecularmechanics energyminimizedmolecules were used
as inputs for the Dragon 5.4 software [28]. The software
calculated 20 subsets of molecular descriptors, including
2D autocorrelation, 3D-MoRSE descriptors, centered frag-
ments, Burden eigenvalues, connectivity indices, constitu-
tional descriptors, edge adjacency indices, eigenvalue-based
indices, functional group counts, geometrical descriptors,
GETAWAYdescriptors, information indices,molecular prop-
erties, Randic molecular profiles, RDF descriptors, topolog-
ical charge indices, topological descriptors, walk and path
counts, and WHIM descriptors. The structural parameters
calculated after discarding the constant and near-constant
values (1295 descriptors) were saved and further analyzed
using the SPSS 11.5, STATISTICA 7 and MATLAB 7.8 soft-
ware.

2.3. Outlier Detection. In order to identify possible out-
liers, two different methods of principal component analysis
(PCA) mapping and standard scores were used. According
to the nature of the outliers, which could be related to
the different mechanism of binding because of the different
structural features, recording errors, or inaccurate design of
samples, no single outlier detection approach could identify
all kinds of outliers [34]. In this study, two approaches, one
in descriptor space (PCA plot of scores) and the second
in response space (standard score), were used to check the
outliers before the main numerical analysis [35].

2.4. Training-Test Selection. The training set plays an impor-
tant role in developing the properties of the model, as the
more similar the molecules for training the model are, the
more accurate the expected results are. Thus, the selection

Table 2: Details of the observed-predicted (using MLR, SVM, and
ANNmethods) bitterness and corresponding errors (IPD).

Peptide sequenceObserved MLR IPD SVM IPD ANN IPD
Training data set

R 1.60 1.20 25.1 1.81 13.4 1.90 18.5
F 1.70 1.86 9.3 1.83 7.5 1.86 9.5
P 1.90 1.87 1.6 2.36 24.3 2.16 13.5
L 1.70 1.82 6.9 1.82 7.3 1.86 9.4
V 1.70 1.62 5.0 1.61 5.3 1.68 1.1
GR 1.00 2.00 100.1 2.31 130.7 2.06 106.0
RR 2.11 2.38 12.9 2.69 27.4 2.84 34.7
PP 2.34 2.05 12.4 2.35 0.2 2.26 3.3
KP 2.52 2.39 5.0 3.28 30.1 3.20 26.8
PR 2.52 1.97 21.7 3.26 29.3 3.22 27.9
RF 2.60 2.68 3.0 2.81 8.1 2.76 6.0
RP 3.10 2.34 24.5 3.05 1.5 3.03 2.1
LI 2.40 2.07 13.8 2.12 11.5 2.01 16.4
KF 2.04 2.46 20.8 1.83 10.5 1.84 10.0
VF 2.52 2.46 2.5 2.32 8.0 2.36 6.3
VY 2.52 2.44 3.1 2.74 8.8 2.77 9.9
YG 2.52 2.37 6.1 2.48 1.7 2.39 5.3
YY 2.63 2.82 7.2 2.47 6.0 2.47 6.0
FI 2.83 2.62 7.6 2.32 18.0 2.06 27.2
IF 2.83 2.54 10.2 3.58 26.6 3.52 24.4
YF 3.10 2.70 12.9 3.31 6.8 3.29 6.2
VA 1.16 1.63 40.9 1.55 33.9 1.49 28.6
VG 1.19 1.34 12.9 1.56 30.8 1.36 14.3
PA 1.32 1.62 22.5 1.59 20.5 1.55 17.2
IE 1.37 2.13 55.5 2.30 68.2 2.12 54.7
IQ 1.49 1.91 28.3 1.97 32.5 1.93 29.7
IS 1.49 1.80 20.7 1.67 12.4 1.80 20.7
IT 1.49 2.11 41.3 2.08 39.6 2.03 36.2
SL 1.49 1.99 33.7 2.14 43.8 1.92 28.7
WE 1.56 2.63 68.6 2.70 73.0 2.65 69.6
IK 1.65 2.40 45.5 2.42 46.5 2.33 41.3
IA 1.68 1.77 5.5 1.64 2.3 1.66 1.1
AL 1.70 1.52 10.9 1.78 4.7 1.77 3.8
VV 1.71 1.59 6.9 1.70 0.5 1.63 4.8
LA 1.72 1.84 6.9 1.72 0.1 1.76 2.3
PY 1.80 2.09 15.9 1.93 7.3 2.02 12.1
GW 1.89 2.18 15.5 2.00 5.7 2.15 13.9
PL 2.22 1.98 10.9 2.21 0.2 1.95 12.0
PI 2.33 1.85 20.5 2.10 9.9 1.92 17.6
IP 2.40 2.06 14.1 2.25 6.3 2.03 15.3
YL 2.40 2.52 5.2 2.61 8.9 2.55 6.1
LY 2.46 2.79 13.4 2.89 17.3 2.76 12.2
IW 3.05 2.84 6.9 2.86 6.3 2.76 9.5
FY 3.13 2.80 10.4 2.90 7.5 2.84 9.2
LW 3.40 2.63 22.6 2.80 17.8 2.86 16.0
IV 1.90 1.80 5.3 2.31 21.5 2.06 8.2
FV 2.23 2.55 14.4 2.29 2.8 2.06 7.4
VE 2.23 1.99 10.6 2.57 15.4 2.46 10.3
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Table 2: Continued.

Peptide sequence Observed MLR IPD SVM IPD ANN IPD
YP 1.70 2.51 47.8 1.72 1.0 1.57 7.9
PK 2.23 2.06 7.8 2.27 1.7 2.10 5.9
LD 2.23 2.19 1.7 2.26 1.3 2.09 6.2
AD 2.23 2.15 3.7 2.22 0.5 2.00 10.5
LE 2.52 2.15 14.6 2.33 7.5 2.13 15.5
GE 2.83 2.13 24.8 2.63 7.2 2.58 8.8
VL 2.11 2.04 3.2 2.47 16.9 2.37 12.4
GP 1.79 2.28 27.3 2.09 16.7 1.94 8.6
FG 2.00 2.24 12.1 2.25 12.5 2.26 12.8
PF 2.14 2.28 6.4 2.34 9.3 2.29 6.9
GF 2.36 2.25 4.5 2.30 2.5 2.24 5.2
GY 2.15 2.14 0.4 2.12 1.5 2.17 0.8
LF 2.82 2.52 10.5 2.70 4.2 2.55 9.4
FL 2.85 2.58 9.4 2.64 7.4 2.57 9.7
GL 1.64 1.80 9.6 1.70 4.0 1.75 6.6
LG 1.71 1.70 0.7 1.58 7.7 1.70 0.6
IG 2.01 1.71 15.1 1.69 16.0 1.70 15.6
GI 2.17 1.91 12.1 1.82 16.3 1.84 15.4
LL 2.47 2.21 10.5 2.33 5.6 2.08 16.0
II 2.54 2.05 19.1 2.24 11.9 2.05 19.1
IL 2.54 2.12 16.6 2.29 9.9 2.08 18.2
RGP 1.90 2.51 31.8 1.66 12.4 1.83 3.9
FGG 2.34 2.27 3.2 2.10 10.3 2.09 10.9
GFG 2.52 2.35 6.7 2.25 10.9 2.10 16.5
PPP 2.70 2.39 11.6 2.62 3.1 2.42 10.3
GLL 2.83 2.37 16.4 2.33 17.6 2.07 26.7
RPG 3.10 2.71 12.7 2.46 20.5 2.37 23.5
LGG 1.00 1.68 67.6 1.75 75.0 1.67 67.1
GGL 2.00 1.99 0.4 2.00 0.2 1.92 4.1
LGL 2.30 2.38 3.3 2.43 5.8 2.34 1.7
LLG 2.30 2.35 2.1 2.39 4.0 2.31 0.3
PIP 2.85 2.37 16.7 3.71 30.1 3.51 23.2
LLL 2.92 2.70 7.5 3.06 4.8 2.94 0.9
GYG 1.70 1.72 1.3 2.63 54.5 2.42 42.2
GVV 2.34 2.05 12.4 2.98 27.3 3.07 31.3
VVV 2.34 2.38 1.8 1.76 24.9 1.64 29.8
PPF 2.63 2.48 5.7 3.38 28.4 3.38 28.5
YGG 2.63 2.60 1.3 2.67 1.6 2.46 6.3
RPF 2.83 3.28 15.9 2.55 9.8 2.44 13.8
FGF 2.92 2.85 2.4 3.24 11.1 3.29 12.5
DLL 3.10 3.18 2.6 2.63 15.2 2.67 13.7
GFF 3.23 3.04 5.9 3.14 2.8 3.08 4.7
FPF 3.40 3.31 2.8 3.38 0.6 3.25 4.4
GYY 3.40 3.02 11.2 3.15 7.4 3.06 9.9
PFP 3.40 2.88 15.3 2.74 19.5 2.58 24.2
YYY 3.70 3.45 6.8 3.73 0.7 3.57 3.5
GGV 1.48 1.93 30.2 1.75 18.4 1.79 21.0
PGG 2.34 1.69 27.6 2.02 13.6 2.00 14.6
GGF 2.83 2.42 14.4 2.39 15.4 2.36 16.8
GGP 2.04 1.95 4.4 2.60 27.3 2.51 23.1

Table 2: Continued.

Peptide sequence Observed MLR IPD SVM IPD ANN IPD
PPG 2.04 2.22 8.6 2.35 15.4 2.16 5.7
FFG 2.65 2.93 10.5 3.06 15.5 2.99 12.8
ELL 3.40 2.91 14.5 2.73 19.7 2.82 17.0
FFF 3.70 3.44 7.1 4.28 15.7 3.94 6.4
EGG 2.83 2.06 27.2 2.71 4.2 2.61 7.9
YGY 3.10 2.84 8.5 2.87 7.4 2.79 10.0
YPF 3.52 3.03 13.9 3.18 9.6 3.04 13.7
GGLG 1.60 1.92 19.8 1.55 3.3 1.34 16.2
FGFG 3.52 2.94 16.4 3.55 1.0 3.56 1.2
GPFF 3.80 3.21 15.6 3.19 16.0 3.15 17.0
RPGF 3.80 3.39 10.9 3.41 10.2 3.36 11.6
FGGF 3.92 3.08 21.5 3.32 15.3 3.2 18.3
RPFF 4.40 3.82 13.2 4.42 0.4 4.24 3.6
GLGG 1.70 1.84 8.2 1.70 0.2 1.74 2.3
LGGG 1.90 1.98 4.1 2.26 18.9 1.92 0.8
PFPP 2.34 3.14 34.3 2.39 1.9 2.41 2.8
GPPF 2.52 2.88 14.2 2.56 1.7 2.47 1.9
RRPP 2.7 3.14 16.4 3.00 11.2 3.11 15.3
VYPF 3.52 3.46 1.6 2.97 15.7 3.05 13.5
PFIV 3.52 3.12 11.5 3.28 6.9 3.33 5.5
FFPR 4.00 3.87 3.2 3.79 5.2 3.87 3.3
FFPP 2.52 3.27 29.6 2.51 0.3 2.43 3.5
FFPE 2.76 3.56 28.8 3.49 26.3 3.55 28.6
GGFF 2.85 3.48 22.0 2.39 16.1 2.34 18.1
FFPG 2.90 3.38 16.6 3.37 16.3 3.35 15.6
LLLL 3.23 3.35 3.7 3.18 1.6 3.23 0.0
FFGG 2.52 3.20 27.0 2.41 4.4 2.31 8.2
RRPFF 4.70 4.15 11.7 4.69 0.3 4.63 1.4
GGGLG 1.90 2.28 19.9 2.34 23.1 2.08 9.4
GLGGG 1.90 2.15 12.9 1.77 7.0 1.69 10.8
LGGGG 1.90 2.16 13.6 2.51 32.3 2.49 31.1
GGVVV 2.11 2.84 34.6 2.21 4.7 2.02 4.5
FFPGG 2.83 3.58 26.6 3.18 12.4 3.18 12.2
PGPIP 3.11 3.25 4.6 3.26 4.8 3.19 2.6
RGPPF 2.63 3.45 31.2 2.95 12.2 2.89 9.8
PPFIV 2.92 3.30 12.9 2.64 9.6 2.69 7.9
RPGFF 3.51 3.82 8.8 3.98 13.4 3.86 9.9
RPGGFF 4.04 3.95 2.3 4.28 5.8 4.06 0.6
PFPGPI 3.36 3.63 8.1 3.65 8.7 3.56 6.0
RPFFGG 3.92 4.11 4.7 4.22 7.6 4.07 3.9
RGPPGF 3.52 3.31 5.9 3.55 0.9 3.43 2.6
RGPPFI 4.60 3.60 21.7 3.47 24.7 3.52 23.4
RGPFIV 4.30 3.84 10.7 3.83 10.9 3.76 12.6
RGGFIV 3.10 3.35 8.0 3.02 2.6 2.89 6.7
RGPPFF 4.23 4.04 4.6 4.13 2.4 3.98 5.9
RRPPGF 4.40 3.73 15.3 4.79 9.0 4.75 7.9
RRPPFF 5.15 4.13 19.9 5.08 1.4 5.40 4.9
GPPFIV 2.92 3.40 16.6 3.28 12.4 3.20 9.5
GGFFGG 3.70 4.02 8.8 3.72 0.4 3.55 4.0
KPPFIV 3.82 3.56 6.8 3.42 10.4 3.51 8.2
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Table 2: Continued.

Peptide sequence Observed MLR IPD SVM IPD ANN IPD
GGRPFF 4.04 4.07 0.6 3.98 1.5 3.83 5.1
PVLGPV 3.30 3.25 1.6 3.26 1.2 3.21 2.8
FPPFIV 3.52 3.66 4.0 4.18 18.8 4.09 16.3
RGPPGGV 2.48 3.07 23.9 2.93 18.2 2.96 19.2
RGPPGFF 4.40 3.97 9.7 4.04 8.3 3.93 10.7
RGPPFFF 5.00 4.45 11.1 4.62 7.6 4.47 10.6
VIIPFPG 3.60 4.08 13.3 3.49 3.1 3.5 2.8
VIFPPGR 4.10 4.33 5.5 3.87 5.6 3.83 6.6
RGPPGIG 2.78 3.49 25.5 3.41 22.7 3.43 23.5
RGPPGGF 3.08 3.25 5.4 3.17 3.0 3.10 0.8
YPFPGPI 3.80 4.09 7.7 4.21 10.7 4.05 6.6
RPPPFFF 4.70 4.73 0.6 4.41 6.2 4.22 10.2
VIPFPGR 4.15 4.13 0.5 4.38 5.6 4.23 1.9
PFPGPIP 3.60 3.54 1.6 4.00 11.2 3.98 10.7
RGPPGFG 3.68 3.56 3.1 3.47 5.7 3.49 5.2
RGPFPIV 3.95 3.85 2.5 3.92 0.7 3.88 1.9
RPFFRPFF 5.00 5.11 2.2 4.96 0.9 5.03 0.6
RGPKPIIV 4.08 3.87 5.0 4.21 3.2 3.83 6.3
VYPFPPGI 3.82 4.23 10.7 4.21 10.1 4.15 8.7
RGPEPIIV 4.51 3.87 14.2 4.12 8.7 3.80 15.8
RGPPGGFF 4.11 3.37 18.0 3.28 20.1 3.28 20.3
GGRPFFGG 4.40 4.30 2.3 3.92 10.8 3.81 13.3
RGPPGGGFF 3.95 4.05 2.6 4.24 7.4 4.09 3.5
GGRGPPFIV 4.10 3.95 3.6 4.35 6.1 4.30 4.9
RGPPFIVGG 4.31 4.06 5.7 4.04 6.3 4.01 7.1
FFRPFFRPFF 5.15 5.49 6.7 4.21 18.2 4.06 21.1
PVRGPFPIIV 5.40 4.16 22.9 4.82 10.8 4.18 22.6
VYPFPPGINH 4.30 4.48 4.3 4.51 4.9 4.38 2.0
VYPFPPGIGG 3.52 4.20 19.2 3.08 12.4 3.00 14.9
VYPFGGGINH 3.64 3.96 8.7 4.01 10.1 3.88 6.6
RPFFRPFFRPFF 5.00 5.44 8.9 5.04 0.8 5.22 4.4
RGPPFIVRGPPFIV 4.40 4.92 11.8 3.87 12.0 3.75 14.8
PVLGPVRGPFPIIV 4.83 4.36 9.7 5.11 5.9 4.48 7.2

Test data set
RG 2.11 1.97 6.4 2.29 8.4 2.01 4.6
AV 1.16 1.71 47.6 1.59 37.4 1.58 36.3
ID 1.37 2.07 51.4 2.07 51.2 1.97 43.9
VD 1.90 1.94 2.2 2.36 24.5 2.15 13.4
LV 2.23 1.89 15.1 1.75 21.6 1.82 18.4
VI 2.23 1.90 14.7 1.99 10.9 1.96 12.1
FP 2.77 2.54 8.3 2.65 4.3 2.46 11.1
FF 3.01 2.75 8.6 2.89 4.0 2.82 6.5
AF 1.81 2.41 33.4 2.55 40.7 2.39 31.8
PGR 1.60 2.65 65.4 2.60 62.3 2.65 65.9
RRR 2.40 3.55 48.0 3.52 46.8 3.55 47.8
FIV 2.83 2.77 2.1 2.68 5.2 2.71 4.2
GGY 2.83 2.44 13.8 2.55 9.7 2.45 13.5
GRP 3.10 2.64 14.8 2.54 18.1 2.64 15.0
YYG 3.20 3.10 3.2 3.17 0.9 3.11 2.9
KPF 3.40 3.18 6.4 3.14 7.6 3.11 8.5
GLG 2.00 1.58 21.3 1.57 21.5 1.69 15.7

Table 2: Continued.

Peptide sequence Observed MLR IPD SVM IPD ANN IPD
GPG 1.70 2.09 23.2 2.11 24.0 2.01 18.1
KPK 2.52 2.97 17.7 2.82 11.8 3.02 19.9
VYP 2.52 2.97 17.7 2.87 13.9 2.90 15.0
GGGL 2.34 2.26 3.2 2.39 2.1 2.10 10.0
RPFG 3.41 3.47 1.8 3.37 1.1 3.34 1.9
RGFF 3.80 3.69 3.0 3.95 4.0 3.83 0.7
GGLGG 1.90 2.29 20.6 1.93 1.7 1.92 0.9
GGGGL 2.65 2.21 16.6 2.40 9.5 2.17 17.9
PGPGPG 2.60 3.10 19.2 3.14 20.6 3.09 19.0
PFPIIV 3.90 3.43 12.0 3.55 9.0 3.40 12.7
VIFPPG 2.68 3.80 41.8 3.71 38.4 3.66 36.6
RGPPFIV 4.30 3.86 10.3 3.75 12.7 3.78 12.1
VYPFPPG 3.52 4.06 15.4 4.09 16.1 3.95 12.2
RGPFPIIV 5.40 4.14 23.3 4.40 18.5 4.14 23.4
RGPGPIIV 4.81 3.84 20.3 4.26 11.5 3.88 19.2
RRPPPFFF 5.70 4.78 16.2 4.76 16.5 4.69 17.6
VIIPFPGR 3.85 4.54 18.0 4.47 16.1 4.51 17.1
VYPFPPIGNH 4.30 4.46 3.7 4.48 4.1 4.38 1.8
GGRGPPFIVGG 4.40 4.21 4.3 4.21 4.4 4.11 6.6

Validation data set
IN 1.49 2.11 41.9 2.12 42.4 2.01 34.8
WW 3.60 2.99 16.9 3.18 11.7 3.05 15.3
GV 1.74 2.22 27.8 2.19 25.8 2.08 19.8
FPK 2.52 3.10 22.9 2.94 16.7 3.14 24.7
FPP 2.34 2.65 13.3 2.56 9.6 2.62 12.1
PGP 2.04 2.56 25.4 2.57 26.0 2.41 18.0
VIF 2.89 2.78 3.8 2.79 3.6 2.82 2.3
RPPFIV 4.10 3.74 8.7 3.61 12.0 3.65 11.0
RGPPFGG 3.23 3.37 4.5 3.23 0.1 3.34 3.3
RGPPFIIV 4.30 4.12 4.1 4.20 2.4 3.99 7.2

of the training and test sets is one of the most important
steps in model development and should be done so that
each set reflects the original data set as much as possible. 𝐾-
means clustering is one of the most frequently used methods
of data set splitting. This procedure identifies relatively
homogeneous groups of molecules (each observation has the
nearest distance to the mean of the cluster) based on selected
properties (biologic activities and structural parameters).
Using this method, we divided the data set into 10 clusters,
and three subsets (i.e., training, test, and validation sets) were
selected from them.The validation set was excluded from the
study before the descriptor selection step, and the test set was
excluded before the model development step.

2.5. Descriptor Selection. In order to reduce the dimension
of the variable matrix, a correlation analysis was carried
out, and both the highly correlated and constant variables
were excluded. A home-developed MATLAB toolbox was
employed that considered the following criteria for excluding
a variable: [1] the intercorrelation with other descriptors
higher than 0.99; [2] the correlation with activity lower than
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Figure 1: Procedure of descriptor selection, QSBR model development, and validation processes.

intercorrelated descriptors; and [3] the frequency of repeated
values for a descriptor (lower than 10% of cases).

After this step, a genetic algorithm-partial least square
(GA-PLS) algorithm [36] was used to select the most signif-
icant variables. GA-PLS (a combination of genetic algorithm
and PLS regression) was also developed and utilized as a
variable selection method in QSAR and QSPR studies by
Leardi [36] and applied for QSAR studies [37, 38]. The
MATLAB 7.8 software was used to run the GA-PLS method
developed by Leardi. The variables were divided into sub-
groups (containing up to 200 variables), and each subgroup
with the corresponding log 1/𝑇 values (𝑌) was introduced to
the algorithm as input. The output (containing descriptors
scoring based on the cross-validated percentage of explained
variance) was produced after 100 runs. As the results of the
GA-PLS were a bit different for each run, the top 50% scores
of each subgroup were combined with the next 100 variables,
and this step was repeated up to the final step. A comparative
study was done in this study to check the capability of GA-
PLS for descriptor selection in comparison with common
methods (i.e., PLS and stepwise). Results showed that GA-
PLS was able to extract more significant descriptors.The only
drawback of this method was the scoring differences between
different runs, which could be solved using the mentioned
procedure (i.e., selection of 50% of each run instead of limited
descriptors [37]).

Twenty percent of high score variables of the final step
were selected as the most significant variables and were fur-
ther studied by stepwise regression and bivariate correlation
analysis in which the selected variables using stepwise regres-
sionwere investigated concerning their intercorrelations.The
less intercorrelated variables were selected for the final model
development process. The complete procedure of descriptor
selection is summarized in Figure 1.

2.6. Model Building. Linear and nonlinear models were
developed using the selected descriptors. The details of the
model development and validation process are discussed in
the next sections.

2.7. Linear Model Using Multiple Linear Regression (MLR).
The selected parameters were used for developing QSBR
equations using the multiple linear regression correlation
(MLR) method, and the goodness of fit and statistical sig-
nificance of the models were evaluated using 𝑅2 (coefficient
of determination), 𝐹 (variance ratio), and the MPD (mean
percentage deviation) values calculated using:

MPD = 100
𝑁

∑

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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𝑌exp.(mean)

󵄨
󵄨
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󵄨
󵄨
󵄨
󵄨
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. (1)

The relative frequency of individual percentage deviations
(IPD) was studied in order to define the model prediction
capacity for each data point. The IPD was calculated using

IPD = 100
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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. (2)

In order to compare the MPD values with the relative
standard deviations (RSD) between experimental bitter val-
ues measured by different research groups (inter laboratory
relative standard deviations (ILRSD)), the ILRSD values for
the available data were computed using

ILRSD = 100
𝑁
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. (3)
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2.8. Nonlinear Models Using Support Vector Regression (SVR)
and Artificial Neural Network (ANN). In the next stage, the
selected descriptors were used to derive non-linear models
using SVR and ANN. To construct an ANN, the Levenberg-
Marquardt algorithm [39] was used by nftool toolbox of
MATLAB 7.8 software to train the network. Selected descrip-
tors and the bitter activity of training sets were introduced
as input and output values, respectively. The training set was
randomly classified for training, validation, and test sets in
order to avoid overfitting, and then networks were trained.
SVR, another non-linear model, constructs a hyperplane in
a multidimensional space that provides minimum error by
employing a non-linear Kernel function. Some parameters
such as capacity parameter (𝐶); 𝜀 are related to type of noise
in the data, and 𝛾 is related to radial base function (RBF),
which is the most common type of Kernel functions. The
SVMmodel and optimization of parameters were done using
STATISTICA 7 software.

2.9. Model Validation. The developed models were evaluated
using the leave-many-out (LMO) cross-validation method.
The 𝑞2 values were calculated using (A.8) of the appendix.

2.10. Chance Correlation. To check the possibility of a chance
correlation, 10 times shuffled activities were correlated to
the variables, and the produced regression coefficients were
compared with the developed model regression coefficient.

2.11. External Validation of Proposed Models Using the Exter-
nal Test Set. A set of statistical criteria [30, 31] was employed
to analyze 36 data points of the test set:

(1) 𝑅2 > 0.6,

where 𝑅2 is the coefficient of determination between the
predicted and observed values.

(2) (𝑅2 − 𝑅2
0
)/𝑅
2
< 0.1 and 0.85 ≤ 𝐾 ≤ 1.15 or (𝑅2 −

𝑅
󸀠2

0
)/𝑅
2
< 0.1 and 0.85 ≤ 𝐾󸀠 ≤ 1.15,

where 𝑅2
0
is the coefficient of determination obtained using

predicted values relative to a regression line fit for experimen-
tal values and required to pass through the origin, and 𝑅󸀠2

0

is the corresponding coefficient obtained using experimental
values relative to a regression line fit for predicted values and
required to pass through the origin. 𝐾 and 𝐾󸀠 are the slopes
of regression lines through the origin for fits for experimental
and predicted data, respectively.

(3) |𝑅2
0
− 𝑅
󸀠2

0
| < 0.3.

In addition, another criterion proposed by P. P. Roy and
K. Roy [32] was considered as

(4) 𝑅2
𝑚
= 𝑅
2
(1 − √𝑅

2
− 𝑅
2

0
),

in which 𝑅2
𝑚
> 0.5 indicates the good external predictability

of the QSAR models.

3. Results and Discussion

3.1. Outlier Detection. According to standard score analysis,
there is no outlier. The PCA map of scores showed that most
of the data points fell into the acceptable data space, and there
is no outlier in the studied data set.

3.2. Training-Test Selection. The selected training, test, and
validation data sets are listed in Table 2 along with the
computed accuracy criteria. The activity ranges for training,
test, and validation sets were 1.00–5.40, 1.16–5.70, and 1.49–
5.40, respectively.The number of data points for the training,
test, and validation sets was 181, 36, and 10, respectively.

3.3. Descriptor Selection. A total of 1292 descriptors were cal-
culated using Dragon 5.4 software.This number was reduced
to 244 descriptors after correlation analysis was performed
using a home-developed toolbox. The remaining descriptors
were analyzed using the GA-PLS method, and the best scor-
ing descriptors (descriptors included inTable 3)were selected
for further analysis using stepwise regression and bivariate
cross-correlation studies (the intercorrelation between the
selected descriptors was less than 0.9). After excluding the
nonsignificant descriptors, the remaining descriptors were
checked to find the possible intercorrelation, and the final
descriptors were selected using a stepwise regression method
(see Table 4). The final six selected descriptors were again
checked for intercorrelation. Six descriptors are suitable for
the construction of a QSAR model [40].

3.4. Evaluation of the Selected Descriptors. SPAN belongs
to the size descriptors which evaluate the dimension of
the molecule and often calculate it from the molecular
geometry. This descriptor is a suitable size descriptor for
macromolecules [41], and its selection for the studied data
set with the developed method showed the method to be
suitable for descriptor selection.The correlation study results
(Figure 2) showed that bitterness increased upon the
enhancement of the SPAN (Figure 2(a)). This finding is in
agreement with previous findings [1–13] which suggested a
significant correlation between peptide size and bitterness.
The investigation of the correlation of peptide subsets with
this descriptor showed less correlations in comparison with
the whole dataset. Therefore, SPAN can be regarded as a
general descriptor rather than a specific one for peptide
subsets. Thus, SPAN can be used in the primary steps of
peptide bioactive compound discovery to recognize bitter
compound fractions.

Mean square distance (MSD) index (Balaban) [28, 41]
contributes negatively to bitterness (Figure 2(b)). MSD de-
creases with the increasing of molecular branching in an
isomeric set [41]. Furthermore, it decreases with an increase
in the number of atoms.This is in agreementwith the findings
on the increase in bitterness following an increase in the
number of amino acids in the studied peptides. The lower
correlation coefficient between peptide subsets by MSD in
comparison with the total dataset showed that MSD is
a general bitterness indicator rather than a subset bitterness
descriptor.
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Table 3: GA-PLS selected descriptors along with descriptive for
training data set (181 peptides).

Name Range Minimum Maximum Mean Std. deviation
rdf025p 112.70 4.07 116.77 30.90 21.13
mor15u 3.81 −1.90 1.91 0.18 0.65
eeig08x 4.21 −0.24 3.97 2.16 1.21
mor11m 2.13 −1.21 0.92 −0.15 0.40
rdf025v 108.21 4.00 112.20 29.52 20.28
mor15e 3.73 −1.57 2.16 0.26 0.70
mor21m 3.86 −3.93 −0.08 −0.90 0.64
belp7 1.88 0.00 1.88 1.18 0.42
rdf075m 144.42 0.00 144.42 16.28 24.18
mor31p 1.85 0.14 1.98 0.54 0.36
ggi6 3.87 0.00 3.87 0.77 0.74
mor11v 2.54 −1.00 1.55 0.10 0.40
mor31v 1.59 0.11 1.70 0.45 0.31
ncs 29.00 1.00 30.00 7.26 5.50
ti1 6217.22 −87.25 6129.97 255.45 699.86
e3s 0.64 0.00 0.64 0.21 0.10
gmti 1318857.00 347.00 1319204.00 81064.04 173637.51
vep1 8.18 2.61 10.78 5.28 1.63
ats1p 2.88 1.81 4.68 3.12 0.60
smtiv 775601.00 341.00 775942.00 48407.38 103187.64
behv6 2.84 0.96 3.79 2.82 0.53
alogp 8.07 −2.81 5.26 0.38 1.45
rtp a 25.63 4.90 30.53 13.02 5.31
c002 18.00 0.00 18.00 4.13 3.38
j3d 10.70 2.41 13.10 5.35 2.46
idmt 1426115.69 182.31 1426298.00 75860.86 184400.59
mats2m 0.32 −0.16 0.16 0.04 0.06
mor11p 2.80 −1.29 1.51 0.05 0.43
mats2v 1426115.69 182.31 1426298.00 75860.86 184400.59
hats8u 0.70 0.00 0.70 0.33 0.13
smti 477598.00 168.00 477766.00 29053.36 63311.78
mor05u 36.43 −38.23 −1.80 −10.14 6.51
hats8e 0.68 0.00 0.68 0.34 0.13
mats2e 0.31 −0.15 0.15 0.03 0.06
l1u 53.45 2.41 55.86 12.98 9.33
rbn 46.00 1.00 47.00 11.61 8.03
h6m 1.81 0.00 1.81 0.34 0.36
rdf080e 387.99 0.00 387.99 39.41 61.82
rtv a 23.23 3.99 27.21 11.50 4.82

Bitterness increases with the enhancement of E3s
(Figure 2(c)). E3s is one of the accessibility directional
WHIM indiceswhich isweighed by atomic electrotopological
states [28, 41]. Indeed, this descriptor defines size, shape,
polarizability, and the conformational properties of the stud-
ied molecules together. Its correlation with the bitterness is
weaker than MSD and SPAN descriptors, but its removal
from the model decreases the correlation coefficient signif-
icantly. It is not a strong identifier for utilization in drug
development processes.

Table 4: Intercorrelation of final descriptors.

log(1/𝑇) SPAN Mor11v MSD HATS8u G3p E3s
log(1/𝑇) 1.00
SPAN 0.79 1.00
Mor11v 0.34 0.09 1.00
MSD −0.81 −0.78 −0.20 1.00
HATS8u −0.56 −0.52 −0.25 0.38 1.00
G3p −0.63 −0.64 −0.13 0.64 0.30 1.00
E3s 0.41 0.22 0.31 −0.38 −0.16 −0.25 1.00

G3p, the 3rd-component symmetry directional WHIM
index (weighed by polarizability) [28, 41], showed a negative
correlation with bitterness (Figure 2(d)). Along with E3s,
these descriptors contribute to the electrical properties of the
molecule. G3p decreases with the increase in the number of
amino acids. In fact, more bitter compounds possess larger
G3p values. Similar to the SPAN and MSD descriptors, the
correlations with subsets are less than the general dataset,
and this descriptor can be regarded as a general identifier.
HATS8u (Figure 2(e)) belongs to the GETAWAY descriptors.
These descriptors are molecular descriptors derived from
the molecular influence matrix (MIM) [12, 28]. HATS,
indices known as spatial autocorrelation based descriptors,
encode information nonstructural fragments [28, 41]. They
are suitable for describing differences in a congeneric series
of molecules. The effective position of substituent and
fragments in molecular space and information about the
molecular size and shape can be encoded by unweighted
HATS indices. Moreover, they are independent of molecule
alignment.

In summary, GETAWAY descriptors encoded local infor-
mation while WHIM descriptors related to the holistic
information of the molecules; thus, their joint uses are
advised. HATS8u decreases with an increase in molecular
size. The negative relation of this descriptor with bitterness is
in agreement with the findings about the size and bitterness
relation.

3D-MoRSE descriptors (3D molecule representation of
structures based on electron diffraction) are derived from
infrared spectra simulation using a generalized scattering
function [28]. Mor11v, weighed by van der Waals volume,
belongs to these descriptors which can be regarded as an
indicator of size, mass, and volume of the molecules. By
decreasing the size of the peptide, the Mor11v values tend
toward zero (Figure 2(f)). In fact, the absolute values of
Mor11v decrease by the decrease in size of the molecule. The
absolute quantity of it worsens the model, and it should be
used in the model in the present form including negative
and positive values for different peptides. The only similar
trend was observed for alogp values of the peptides. The
negative Mor11v values belong to the molecules with neg-
ative alogp values (less hydrophobic peptides). 3D-MoRSE
descriptors cannot encode the lipophilicity of the molecules.
The overall correlation of bitterness to this descriptor is posi-
tive [28].
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Figure 2: Correlation of selected descriptors with bitter activity (𝑅2 is coefficient of determination and is calculated using (A.6) of the
appendix).

3.5. Model Building Using Linear Model (MLR). The selected
descriptors were used to develop six MLR equations contain-
ing 1–6 descriptors. The adjusted 𝑅2 showed that all descrip-
tors improved the model fitting, the 𝑅2 values accurately
depicted the fitting improvement, and the best-fitted model
could be rewritten as follows:

log( 1
𝑇

) = 5.45 (±0.63) + 0.10 (±0.02) SPAN

+ 0.32 (±0.09)Mor11v

− 7.88 (±1.25)MSD

− 1.55 (±0.30)HATS8u

− 5.39 (±2.1)G3p + 0.92 (±0.35)E3s,

𝑅
2
= 0.81, 𝐹 = 125.73,

S.E.P. = 0.08, MPD = 13.7 (±13.2) ,

ND = 181,
(4)

where S.E.P. stands for standard error of prediction and ND
shows the number of data points. The MPD for test and
validation sets were 18.1 (±15.5) (𝑁 = 36) and 16.9 (±12.6)
(𝑁 = 10), respectively. The relative frequency analysis of
the prediction errors showed that more than 50% of data can
be predicted by the prediction error of less than 15%, which
is acceptable for biological measurements, where the mean
ILRSD for bitter activities of 19 dipeptides were measured by
different research groups and were 12.1 (±10.7)%. In addition,
the IPD frequency trend (Figure 3) is similar for training
and test sets. The MPD for the peptides by log(1/𝑇) values
less than 2.0 was 24.3 (±22.2) and for the peptides with
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Figure 3: IPD frequencies (IPD < 15, IPD = 15–30, and IPD > 30)
of the training (top), test (middle), and validation (bottom) sets for
MLR, SVM, and ANNmodels.

log(1/𝑇) more than 2.0, it was 11.1 (±7.9). The highest IPD
value (100.0%) in the training set was calculated for GR
(log(1/𝑇) = 1.00), and in the test set, it was calculated for
PGR (IPD = 65.4% and log(1/𝑇) = 1.60). In other words,
the developed model was not able to predict the bitterness of
less bitter peptides, and the selected descriptors are specific
for the evaluation of the bitter peptides’ interactions with the
receptor.

LOO cross-validation was done using the PLS toolbox of
MATLAB software. The 𝑞2 value and RMSE were 0.76 and
0.44, respectively.The 𝑞2 values for LMO cross-validation are
reported in Table 3. The ranges of 𝑞2 values were 0.61–0.88,
which was in an acceptable range compared with 𝑅2 values.

Table 5: Leave-many-out cross-validation results for MLR model.

Subset 𝑅
2

𝑅
2

adj 𝑞
2

1 0.80 0.79 0.88
2 0.80 0.79 0.87
3 0.80 0.79 0.86
4 0.80 0.80 0.82
5 0.80 0.80 0.82
6 0.81 0.80 0.75
7 0.81 0.80 0.78
8 0.82 0.81 0.76
9 0.82 0.81 0.84
10 0.82 0.82 0.61

Table 6: Chance correlation results.

Shuffled 𝑌 𝑅
2 Shuffled 𝑌 𝑅

2

𝑌1 0.01 𝑌6 0.02
𝑌2 0.07 𝑌7 −0.02
𝑌3 0.01 𝑌8 0.03
𝑌4 −0.02 𝑌9 0.01
𝑌5 0.01 𝑌10 0.00

The ranges of corresponding 𝑅2 and adjusted 𝑅2 for the
desired subsets were 0.80–0.82 and 0.79–0.82, respectively
(see Table 5). Chance correlation (𝑌 randomization) analysis
was done using 10 times shuffled bitter activity, and the results
(𝑅2 = 0.01–0.10) rejected the possibility of fortune correlation
(see Table 6).

3.6. Model Building Using Nonlinear Models (ANN and SVM)
and Comparison with the Linear Model (MLR). The six
selected descriptors were introduced to ANN as input values
and the bitter activity as output data, and the networks were
developed using the Levenberg-Marquardt algorithm [38].
The number of hidden layers was three. In addition, SVM
models were developed using STATISTICA 7 software. Using
the training set, three parameters of SVM were optimized by
10-fold cross-validation. The optimized values of 𝐶, 𝜀, and 𝛾
were 91, 0.07, and 0.06, respectively. The MPD values of the
proposed models for training, test, and validation sets were
13.8, 16.8, and 16.9 for MLR; 13.0, 16.0, and 15.0 for SVM; and
13.1, 16.1, and 14.8 for ANN, all of which are in acceptable
ranges, and there is no significant difference between these
subsets. The IPD frequencies (Figure 3) revealed that both
SVM and ANN methods produced more accurate results,
especially for the test sets. The plots of experimental versus
predicted values (Figure 4) confirmed the discussed results.

3.7. External Validation of the Proposed Models. Statistical
criteria of external test sets are depicted in Table 7. The
results show that the proposed models using linear and
nonlinear models passed the proposed statistical criteria in
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Figure 4: Experimental versus predicted plots for linear and nonlinear models. (𝑅 is calculated using (A.7) of the appendix).

Table 7: Statistical parameters for test sets of MLR, SVM, and ANN
models.

Statistical criteria MLR SVM ANN
𝑅
2
> 0.6 0.723 0.739 0.767
(𝑅
2
− 𝑅
2

0
) /𝑅
2
< 0.1 0.001 0.002 0.004

0.85 ≤ 𝐾 ≤ 1.15 0.999 1.010 0.989
󵄨
󵄨
󵄨
󵄨
𝑅
2

0
− 𝑅
󸀠2

0

󵄨
󵄨
󵄨
󵄨
< 0.3 0.109 0.113 0.106

𝑅
2

𝑚
> 0.5 0.704 0.712 0.722

the literature, and they are robust and valid for external
prediction.

3.8. Comparison with Previous Model. The only similar
study was published by Kim and Li-Chan [3]. They used
the amino acid three 𝑧-scores along with three parameters
(total hydrophobicity, residue number, and logmass value) to
develop a PLS model. A comparison of the newly developed
model with their model is summarized in Table 8. It should
be noted that the aim of this paper was to develop a general
model rather than different models for different subsets, and
reported correlation coefficients belong to the general model
which was computed for subsets. The comparison of the
corresponding 𝑅 values showed that the developed model
could represent the bitter activity variance of three and more
peptides better than the PLS model, while for dipeptides

the PLS model produced more accurate results. Developed
SVM and ANN models resulted in more accurate results for
the total data set compared with both the PLS and MLR
models (Tables 1 and 5; Figure 4).

4. Conclusion

General MLR, SVM, and ANN models were developed to
predict the bitterness of 229 peptides and amino acids.
The capability of the MLR model to reveal the impact of
each descriptor on bitter activity was its main advantage,
where more accurate predictions by SVM and ANN made
them suitable models for precise predictions. Obviously,
individual models (i.e., models developed for each peptide
subset) produced less prediction errors, but considering
the convenience of application of the general models, such
models are preferred during the primary stages of peptide
production and evaluation. The developed models can be
used in nutraceutical and pharmaceutical industries.

Appendix

RMSE = √
∑(𝑌pred. − 𝑌exp.(mean))

2

𝑁

,
(A.1)

where 𝑁 denotes the number of data points and 𝑌pred. and
𝑌exp. are the predicted and observed log 1/𝑇 (𝑇 is the bitter
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Table 8: Developed MLR model statistics for subsets of peptides compared with a previously developed model.

Data set Developed model Previous model
ND 𝑅

2
𝑅
2

adj 𝑅 RMSE 𝑅 (PLS) 𝑅
2 (PLS)

Dipeptidesa 76 0.51 0.47 0.72 0.41 0.63 0.40
Dipeptidesb 45 0.62 0.56 0.79 0.44 0.91 0.83
Dipeptidesc 47 0.59 0.53 0.77 0.42 0.85 0.72
Three peptides 51 0.65 0.60 0.81 0.38 0.71 0.50
Tetrapeptides 23 0.72 0.62 0.85 0.48 0.90 0.81
Pentapeptides 12 0.89 0.80 0.94 0.37 0.88 0.77
Hexapeptides 20 0.65 0.48 0.80 0.47 0.75 0.56
Heptapeptides 16 0.79 0.68 0.89 0.38 0.95 0.90
Octa-tetradecapeptides 24 0.57 0.42 0.76 0.44 — —
Whole data setd 227 0.80 0.79 0.89 0.46 0.81 0.66
Test and validation sets 46 0.76 0.73 0.87 0.56 — —
Training set 181 0.81 0.81 0.90 0.43 — —
aAverage of experimental values was used when there were different values in different references.
bExperimental data were taken from different references.
cExperimental data were taken from [3].
dThe 𝑅 values for whole data set using SVM and ANNmethods are 0.90 and 0.91, respectively.

threshold concentration (𝑀)) values

MSSReg. =
∑ SSReg.

df
, (A.2)

MSSRes. =
∑ SSRes.

df
, (A.3)

where SS is sum of squares, MSS is mean square, Reg. is
regression, Res. is residual and cv is cross validated

MSSTotal = MSSReg. +MSSRes, (A.4)

𝐹 =

MSSReg.
MSSRes.

, (A.5)

𝑅
2
= 1 −

MSSRes.
MSSTotal

, (A.6)

𝑅 = (1 −

MSSRes.
MSSTotal

)

0.5

, (A.7)

𝑞
2
= 𝑅
2

cv = 1 −
MSSRes.cv
MSSTotal

. (A.8)
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