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Abstract

Background: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple
sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time
series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g.,
ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks.

Results: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP
experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other
types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In
this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease
of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been
developed and made available. Genexpi is also available as a standalone command line tool and an R package.

Conclusions: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about
the composition of regulons and delivers biologically interpretable results.
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Background
Uncovering the nature of gene regulatory networks is one
of the core tasks of systems biology. Identifying direct reg-
ulons of sigma factors/transcription factors can be consid-
ered the basic element of this task. In fact a large portion
of software for network inference is limited to such direct
interactions (e.g., [1–3]). It has however been shown that
using only one source of data for network inference (e.g.,
only CHIP-seq experiment) can be misleading and com-
bining multiple sources is necessary [4].
Primary focus of this paper is on CyGenexpi – a plugin

for the Cytoscape platform [5] that uses time-course gene
expression data to discover regulons among candidate
genes obtained from other sources (literature, database
mining, or ChIP experiments). CyGenexpi can be also
used for de-novo network inference, although this is less
reliable. CyGenexpi is built on top of the Genexpi software

package that provides the core functionality also as a
command-line tool and an interface to the R language.
Genexpi is based on an ordinary differential equation

model of gene expression introduced in [6]. In the model,
the synthesis of new mRNA for a gene is determined by a
non-linear (sigmoidal) transformation of the expression of
its regulators. The model also includes a per-gene decay
rate of the mRNA, which is assumed to be constant.
While there are multiple tools for gene network infer-

ence from the command line or programming languages
(see [7] for a recent review), there are currently, only two
Cytoscape plugins for gene network inference: ARACNE
[8] and Network BMA [9]. ARACNE is intended for
steady-state expression data, while Network BMA handles
time series, but assumes a simple linear model of regula-
tion without regard to mRNA decay. CyGenexpi thus pro-
vides an alternative to Network BMA in that it builds on a
non-linear model including decay.
A preliminary version of the method presented in this

paper has been applied in our previous work [10]. The
additional contribution of this paper is a) a polished and
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documented publicly available implementation of the
method with well-defined API, b) improved workflow
and software support for the workflow c) interfacing the
method with Cytoscape and R and d) evaluation of the
method on additional datasets. As Cytoscape does not
natively support working with time series data, we also
developed CyDataseries - a plugin for importing and
handling time series and other forms of repeated mea-
surements data in Cytoscape.
Both Genexpi and CyDataseries are imlemented in

Java and are platform independent. Binaries, source code
and documentation are available at http://github.com/
cas-bioinf/genexpi/wiki/. The software is open source
and licensed under LGPL version 3.

Implementation
The core of Genexpi – the algorithm for fitting model pa-
rameters – is implemented in OpenCL, with a Java wrap-
per. Thanks to high portability of both Java and OpenCL,
Genexpi can be executed on both GPUs and CPUs in any
major operating system and has very good performance.
There are currently three interfaces to Genexpi core:
CyGenexpi (a Cytoscape plugin), a command-line inter-
face and an R interface. In this section we describe the
model and fitting method of Genexpi – the implementa-
tion of the interfaces is straightforward. Initial part of this
section is taken from [10] and its supplementary material
where we describe first use of Genexpi in practice. In
addition we provide details of regularization and param-
eter fitting as well as further developments made to make
the method usable by non-expert users, especially the
semi-automatic evaluation of good fits and the “no
change” and “constant synthesis” models.

The model
Genexpi is based on an ordinary differential equation
(ODE) model for gene regulation, inspired by the neural
network formalism [6]. In this model the synthesis of
new mRNA for a gene z controlled by set of m regula-
tors y1,..,ym (genes or any other regulatory influence) is
determined by activation function f(ρ(t)) of the regula-
tory input ρðtÞ ¼ P

j¼1::mwjy jðtÞ þ b. Here wj is the rela-

tive weight of regulator yj and b is bias (inversely related
to the regulatory influence that saturates the synthesis of
the mRNA). In our case, f is the logistic soft-threshold
function f(x) = 1/(1 + e-x). The transcript level of z is then
governed by the ODE:

dz
dt

¼ k1 f ρð Þ−k2z ð1Þ

where k1 is related to the maximal level of mRNA syn-
thesis and k2 represents the decay rate of the mRNA.
Both k1 and k2 must be positive. The complete set of

parameters for this model is thus β = {k1, k2, b, w1,…,
wm}. Given N samples from a time series of gene expres-
sion taken at time points t1, …, tN the inference task can
be formalized as finding β that minimizes squared error
with regularization:

β̂ ¼ argmin
β

XN
i¼1

ẑβ tið Þ−z tið Þ� �2 þ r βð Þ
" #

ð2Þ

Here z is the observed expression profile, ẑβ the solution
to (1) given the parameter values β and the observed ex-
pression of y1,..,ym, and r(β) is the regularization term. The
regularization term represents a prior probability distribu-
tion over β that gives preference to biologically interpret-
able values for β and is discussed in more detail below.
Assuming Gaussian noise in the expression data, (2) is the
maximum a posteriori estimate of β.
Our model is similar to that used by the Inferelator al-

gorithm [1], although there are important differences:
the Inferelator does not model decay (k2) – it assumes
decay is always one. Further, Inferelator minimizes the
error of the predicted derivative of the expression pro-
file, while we minimize the prediction error for the ac-
tual integrated expression profile and introduce the
regularization term.

Smoothing the expression profiles
Since the expression data is noisy, Genexpi encourages
smoothing the data prior to computation. We have had
good results with linear regression of B-spline basis with
degrees of freedom equal to approximately half the
number of measurement points. By smoothing we get
more robust results with respect to low frequency phe-
nomena, but sacrifice our ability to discover high-
frequency changes and regulations (oscillations with fre-
quency comparable to the measurement interval are
mostly suppressed). Further our experiments with fitting
raw data or tight interpolations of the data (e.g. cubic
spline with knots at all measurement points) have had
little success in fitting even the profiles that were highly
correlated, due to the amplified noise in the data.
Smoothing of time series profiles has been used previ-
ously for network inference [11].
Further advantage of smoothing is that it lets us sub-

sample the fitted curve at arbitrary resolution. The sub-
sampling then allows us to integrate (1) accurately with the
computationally cheap Euler method, making evaluation of
the error function fast and easy to implement in OpenCL.

Parameter fitting and regularization
Genexpi minimizes eq. 2 by simulated annealing. For
each gene and candidate regulator set we execute 128
annealing runs with different initial parameter values.
Using 128 runs was enough to achieve high replicability
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of the results. Annealing runs for the same target and
regulator are executed on the same OpenCL compute
unit, letting us to move all necessary data to local mem-
ory and thus increase efficiency. We use the Xor-
Shift1024* random generator [12] as a fast and high
quality parallel source of randomness.
Note that in some cases, multiple vastly different com-

binations of parameters may yield almost identical regu-
latory profiles. For example, if the interval of attained
regulatory input ð min

i¼1::N
ρðtiÞ; max

i¼1::N
ρðtiÞÞ lies completely

on one of the tails of f, the activation function becomes
approximately linear over the whole interval, so increas-
ing the weights and decreasing bias while decreasing k1
yields a very similar ẑβ . To discriminate between those
models and to force the parameters into biologically in-
terpretable ranges, we introduce the regularization term
r(β). In particular, we expect k1 smaller than the maximal
expression level of the target gene (i.e., that maximal
transcript level cannot be achieved in less than a unit
time starting from zero), we put a bound on maximal
steepness of the regulatory response: max

t
j wjy jðtÞ j< 1

0 for all regulators j and we expect the regulatory input
to come close to zero (the steepest point of the sigmoid
function) for at least one time point: min

t
j ρðtÞ j< 0:5.

For a suitable penalty function γ(x, ω) the regularization
term becomes:

r βð Þ ¼ c

�
γ
�
k1; max

i¼1::N
z tið ÞÞ þ

Xm
j¼1

γð max
i¼1::N

wjy j tið Þ
��� ���; 10Þ

þ γð min
i¼1::N

ρ tið Þj j; 0:5
�

ð3Þ
where c is a constant governing the amount of

regularization. In our work, the penalty for value x > 0
and bound ω is:

γ x;ωð Þ ¼
0; x≤ω

x
ω
−1

� �2
; x > ω

(
ð4Þ

Minimizing γ(x, ω) is then the same as maximizing
log-likelihood, assuming that x is distributed uniformly
over (0; ωx) with some probability p and as ωx + α|e|
with probability (1 – p) where e ∼ N(0, 1). In this inter-
pretation, the probability p is uniquely determined by c
in the regularization term and by choosing α such that
the resulting density function is continuous.
We have empirically determined the best value of c to

be approximately one tenth of the number of time
points after smoothing. While without regularization,
many of the inferred models contained implausible par-
ameter values, regularization forced almost all of those
parameters into given bounds - r(β) was zero for most

models. At the same time the mean residual error of the
models inferred with regularization differed by less than
one part in hundred from models inferred without
regularization.

Evaluating good fits
To evaluate whether a fit is good, we have chosen a sim-
ple, but easily interpretable approach. The primary rea-
son is that we intend to keep the human in the loop
throughout the inference process and thus the human
has to be able to understand the criteria intuitively.
Since most published time series expression data is re-
ported only as averages without any quantification of
uncertainty, we let the user set the expected error mar-
gin based on their knowledge of the data. The error
margin is determined by three parameters: absolute,
relative and minimal error. These combine in a straight-
forward way to get an error margin for each time point,
depending on the expression level z(t):

error tð Þ ¼ max eminimal; eabsolute þ z tð Þerelativef g ð5Þ

Fit quality is then the proportion of time points where
the fitted profile is within the error margin of the mea-
sured profile. A fit is considered good if fit quality is
above a given threshold (the default value is 0.8).

No change and constant synthesis model
Prior to analyzing a gene as being regulated, we need to
test for two baseline cases that would make any predic-
tion useless. The obvious first case are genes that do not
change significantly over the whole time range. Genes
that do not change are excluded from further analysis as
both regulators and targets as the Genexpi model con-
tains no information in that case.
A slightly more complicated case is the constant syn-

thesis model where we expect the mRNA synthesis to be
constant over the whole time range:

dz
dt

¼ k1−k2z ð6Þ

Note that this is the same as assuming there are 0 reg-
ulators. Since genes with constant synthesis could be fit-
ted by any regulator by simply putting w = 0, and large
b, those genes are excluded as targets. However, regula-
tors that could be explained by constant synthesis are
still analyzed, as there is meaningful information. Fitting
the constant synthesis model is also done via simulated
annealing in OpenCL.
For the putative regulations excluded this way, the cor-

rect interpretation is that the underlying dataset pro-
vides no evidence for or against such regulations. If
there are biological justifications that the regulations
should be visible in the data (e.g. that the regulatory
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effect should be larger than the measurement noise), it
is possible to cautiously consider this as evidence against
the regulations taking place.

Results and discussion
In this section we describe the intended workflow for
analysis with Genexpi and its user interface and then we
discuss results of evaluation on real biological data.
The primary user interface for Genexpi is the CyGe-

nexpi plugin for the Cytoscape software, but Genexpi
can also be run directly from R and via a command line
interface. For CyGenexpi, an important improvement
over the Aracne or NetworkBMA Cytoscape plugins is
the direct involvement of user in the process.

Genexpi workflow
The workflow for analysis with Genexpi is as follows:

1. Start with a network of putative regulations either
obtained from database mining or experiments.

2. Import the time-course expression data and smooth
them to provide a continuous curve.

3. Remove genes whose expression does not change
significantly throughout the whole time-course.

4. Remove genes that could be modelled by the
constant synthesis model.

5. Optional: Human inspection of the results of steps
3&4, possibly overriding the algorithm’s decisions.

6. Finding best parameters of the Genexpi model for
each gene-regulator pair. The fitted models are then
classified into good and bad fits. Good fits indicate
that the regulation is plausible, while bad fits show
that the regulation either does not take place or in-
volves additional regulators.

7. Optional: Human inspection of the fits, possibly
overriding the algorithm’s classification (shown in
Fig. 1).

This workflow is completely covered by CyGenexpi
with the help of CyDataseries in a simple wizard-style
interface. Alternatively, the same workflow, but without
human intervention can be run by a single function call
in R. All interfaces also provide the user with the ability
to run individual steps separately.
While Genexpi can include multiple regulators for a

gene, we found this not very useful in practice, as even
for relatively long expression time series (13 time points)
, an arbitrary pair of regulators is able to model the ex-
pression of a large fraction of all genes, increasing the
false positive rate. CyGenexpi therefore currently does
not expose GUI for using more than one regulator in
the model. Using more regulators is however available
for more advanced users via the command-line or R
interfaces.
For CyGenexpi, the time series data is imported with

CyDataseries from either a delimited text file or the
SOFT format used in Gene Expression Omnibus.

Fig. 1 Human inspection of the model fits in CyGenexpi. The user is shown the profile of the regulator (blue) and target (red) as well as the best
profile found by Genexpi (green). The red ribbon is the error margin of the measured profile. The algorithm classified the first profile as a good
fit, while the second was considered implausible to be regulated. The user may however modify the classification based on their knowledge of
the data and organism
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While Genexpi can be used for de-novo regulon iden-
tification from time-series expression data only, high
rate of false positives should be expected. The main rea-
son is that in real biological data, multiple sigma factors
may have similar expression profiles and Genexpi thus
considers all genes regulated by one of the sigma factors
as possibly regulated by all of the similar sigma factors.
The evaluation in this paper therefore focuses on identi-
fying the regulated genes among a set of plausible candi-
dates. Nevertheless, the workflow for de-novo inference
is almost the same as described above, only the initial
network should contain a link from each investigated
regulator to all other genes.
We evaluated Genexpi in three ways: 1) direct biological

testing of the suggested regulatory relationships, 2) com-
paring the ability of Genexpi and other tools to recon-
struct two literature-derived regulons and 3) measuring
computing time required to process the data. The first
part of the evaluation is taken from our previous work
[10], while the latter two are new contributions.

In-vitro biological evaluation
This section recapitulates the relevant results obtained
with Genexpi, originally reported as a part of [10].
We performed a basic analysis of the predictive perform-
ance of Genexpi with the SigA regulon of Bacillus subtilis
combined with the expression time series from GSE6865
[13]. We followed the Genexpi workflow outlined in the
previous section, including evaluation of fits by human.
Genexpi predicted 215 genes that were not known to be
regulated by SigA as potential SigA targets. We selected
10 of those genes for in-vitro transcription assays.1 We
found that 5 of them were SigA-dependent (for the
remaining five, the regulation could not be excluded).
More details of the SigA analysis can be found in the
aforementioned paper. We have however excluded the
SigA regulon from purely computational evaluation as the
method was developed and tweaked for the SigA data and
any comparison would thus be likely biased.

Reconstructing bacterial regulons
To extend the biological evaluation from [10] and to
better determine Genexpi’s performance in identifying
regulons, we took two bacterial regulons from the
literature: a) the SigB regulon of B. subtilis from
Subtiwiki [14] as of January 2017 combined with the
GSE6865 expression time series [13] and b) two ver-
sions of the SigR regulon of Streptomyces coelicolor:
one derived with ChIP-chip [15] and the one deter-
mined via knockouts [16]. Both versions of the SigR
regulon were combined with the GSE44415 expres-
sion time series [17].
For each of the literature regulons we first exclude

targets that were constant or had constant synthesis

(steps 3&4 of the workflow) and determined how
many of the remaining members were considered by
Genexpi to be regulated by the respective sigma factor –
these correspond to true positives. Then we generated a
set of random expression profiles with similar magnitude
and rate of change as the sigma factor. Inspired by [18] we
draw random profiles from a Gaussian process with a
squared exponential kernel with zero mean function,
transformed to have positive values. See Fig. 2 for an ex-
ample of the random profiles. We then tested how many
targets were predicted to be regulated by this nonsensical
profile – these correspond to false positives.
We consider testing a random regulator profile as a

more reliable assessment than testing the complement
of the literature-based regulon for two reasons. First,
it is a better match for the intended Genexpi work-
flow, which starts with a set of candidate genes. Here,
using a random profile for the regulator models the
situation where the candidate list is wrong and we ex-
pect Genexpi to reject that there is regulatory influence on
most genes. Second, the complement is usually composed
of less characterized genes and there is little guarantee that
the complement contains genes that are not regulated by
the sigma factor. The complement may include genes that
are regulated with the sigma factor, but were not anno-
tated yet, and also genes that have expression profile simi-
lar to the profiles of the regulon of the analyzed sigma
factor due to chance or non-regulatory interactions. Such
profiles would be classified as false positives, while they in
fact have nothing to do with the analyzed regulon and its
sigma factor. Comparing the performance on regulon
complement actually depends more on the uniqueness of
the sigma factor profile than on the inference algorithm.
For this evaluation we ran Genexpi with default settings

and without any human input. Complete code to repro-
duce all of the results for this and the following section is
attached as an R notebook in Additional file 1.

Fig. 2 A sample of the random profiles tested against the SigB
regulon. The dots represent the measured (not smoothed)
profile of SigB
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For comparison, we performed the same analysis
with TD-Aracne [19] – an extension of the frequently
used Aracne algorithm designed for time series data.
TD-Aracne was run both on the whole dataset at
once and on each regulator-target pair separately.
Running regulator-target pairs however had much
worse performance than using the whole dataset, so
those results are omitted here, but can be inspected
in Additional file 1. We also compared the results for
the whole regulon and for the subset of the regulon
that was predicted by Genexpi, i.e. without the genes
removed in steps 3&4 of the workflow.
For all analyses, we smoothed the raw data by lin-

ear regression over B-spline basis of order 3 with 3–
10 degrees of freedom. TD-Aracne was tested with
the raw data as well as the smoothed data subsampled

to give lower number of equal-spaced time points as ex-
pected by TD-Aracne. For TD-Aracne we tested three
methods of recovering the regulon from the inferred net-
work over the full gene set: a) take only the genes that
were marked as directly regulated by the sigma factor, b)
take all genes connected by a directed path from the regu-
lator and c) take all genes connected to the regulator.
Variant a) had very low performance overall, among b)
and c) we report the result more favorable to TD-Aracne.
For the SigR regulon of Kim et al., the results were very
similar when only the targets marked as having “strong”
evidence were used. All results not shown here can be
found in Additional file 1. See Table 1 for the main results.
In the SigB regulon, the Genexpi performs slightly

better than TD-Aracne. While TD-Aracne (in multiple
settings) confirms almost all of the literature regulon

Table 1 Main Evaluation Results

Results of Genexpi and TD-Aracne on the regulon reconstruction task. The “Regulator” column reports the proportion of predicted regulations by the true regula-
tor, “Random” reports the proportion of predicted regulations by a random profile (averaged over 50 runs). The best results for each algorithm are highlighted in
bold. TD-Aracne (tested) are results of TD-Aracne only on those genes not removed by Genexpi in steps 3&4 of the workflow. The “tested” variant is not reported
for the SigR regulon as the results are very similar to those on all genes. The DFs column contains the degrees of freedom for the spline, “#T” stands for “Number
of genes tested by Genexpi”, “Reg.” for “Regulator” and “Rand.” for “Random”
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while rejecting over half of the regulations by a ran-
dom profile, Genexpi using spline with 4 degrees of
freedom rejects two thirds of random regulations
while also recovering 90% of the literature regulon.
Moreover, Genexpi has the advantage of allowing for
a sensitivity/specificity tradeoff by choosing the
degree of freedom for the spline – with high degrees
of freedom, almost all random regulations are rejected
while still recovering majority of the literature regulon.
The performance of TD-Aracne varied unexpectedly with
the chosen degree of freedom. We also see, that running
TD-Aracne with smoothed data and removing no change
and constant synthesis genes as in Genexpi workflow,
allows for only slight improvements for the performance
of TD-Aracne over running directly with the raw data (as
TD-Aracne is designed to work).
For both variants of the SigR regulon, TD-Aracne

mostly found little difference between the literature
based and random regulons. The few cases of better
performance by TD-Aracne occurred unpredictably
with certain smoothing of the data. At the same time,
Genexpi was rarely misled by the random regulations
and recovered large fractions of the literature regulon
while behaving consistently: the proportion of both
true and random regulations grows with more aggres-
sive smoothing (less degrees of freedom).

Computing time required
For analysis of computing time, Genexpi was run on a
mid-tier GPU (Asus Radeon RX 550) and TD-Aracne on
an upper-level CPU (Intel i7 6700 K). Both algorithms
were run on a Windows 10 workstation with only basic
precautions to prevent other process from perturbing the
system load. The numbers reported should therefore not
be considered benchmarks but rather an informative esti-
mate of the computing time during a normal analysis
workflow. The results are shown in Table 2 and indicate
that Genexpi was fast enough to be run repeatedly on
commodity hardware with TD-Aracne being slower, but
still fast enough for most practical use cases.

Reconstructing eukaryotic regulons
While Genexpi was designed for bacterial regulons, we
also tested its performance on eukaryotic data, in

particular the time series of gene expression throughout
the cell cycle of Saccharomyces cerevisiae [20], deposited
as GDS38. We chose the same 8 transcription factors
regulating the cell cycle as in our previous work [21] and
downloaded their regulons from the YEASTRACT data-
base (as of 2018–02-09) [22]. We used spline with 6 de-
grees of freedom to smooth the data and interpolate
missing values. After excluding constant and constant syn-
thesis targets (steps 3&4 of the workflow), we selected 30
targets for each gene at random to reduce computational
burden. We then proceeded as in the bacterial regulons
evaluation by generating random profiles and comparing
recovered regulations by both Genexpi and TD-Aracne
across the measured regulator profiles and 20 random
profiles. The results are shown in Table 3.
In this case, the signal is weaker than in the pro-

karyotes, which is not unexpected given the increased
complexity of eukaryotic regulation. Genexpi gives the
worst (undistinguishable from random) results for
MBP1, SWI4 and SWI6, which are known to regulate
in complexes and thus break the model expected by
Genexpi. Interestingly, TD-Aracne is able to deter-
mine some of those regulations. For the other genes,
Genexpi provides consistent, but weak information
while TD-Aracne provides strong signal for some
genes, while performing very poorly on the others.
The full code to reproduce the analysis can be found

in Additional file 1.

Future work
The Genexpi workflow was kept deliberately simple,
but this involves some inaccuracies. Most notably,
Genexpi masks uncertainty in the data and uses mul-
tiple hard thresholds. Following [18] that use a similar
model of gene regulation in a fully Bayesian setting,
we want to extend Genexpi to handle uncertainty

Table 2 Computing time [s] required for a single inference run
on the given regulon

SigB SigR Kallifidas et al. SigR Kim et al.

Genexpi 26 109 150

TD-Aracne 447 184 446

Time taken to compute a possible regulations for a single regulon. All of the
results were averaged across both the runs with the actual regulator profile
and the runs with a randomly generated profile. All times in seconds

Table 3 Evaluation results for S. cerevisiae

Transcription
factor

Genexpi TD-ARACNE

Regulator Random Regulator Random

FKH1 0.30 0.24 0.00 0.14

FKH2 0.37 0.22 0.45 0.08

MCM1 0.33 0.18 0.65 0.20

NDD1 0.42 0.21 0.00 0.00

ACE2 0.40 0.28 0.52 0.33

MBP1 0.13 0.21 0.39 0.05

SWI4 0.23 0.16 0.48 0.10

SWI6 0.10 0.20 0.00 0.04

Results of Genexpi and TD-Aracne on the eukaryotic regulon reconstruction
task. The “Regulator” column reports the proportion of predicted regulations
by the true regulator, “Random” reports the proportion of predicted regula-
tions by a random profile (averaged over 20 runs)
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explicitly and provide full posterior probability distri-
butions for the quantities of interest.

Conclusions
Our evaluation has shown that Genexpi is a useful part
of a bioinformatician’s toolbox for uncovering and/or
validating regulons in biological systems. Genexpi was
designed for bacterial regulons, but can be – with cau-
tion – employed also for eukaryotic data. It also provides
transparent results and – unlike other similar programs
- lets the human to stay in the loop and apply expert
knowledge when necessary. The parameters of the fitted
models are biologically interpretable and thus can guide
design of future experiments. Time-series expression
data cannot in principle provide complete information
about the regulatory interactions taking place and Gen-
expi is therefore best used as one of multiple sources of
insight about a biological system.
Genexpi is equipped with both simple point&click

interface for the Cytoscape application and with R and
command-line interfaces for advanced users.

List of mathematical notation

Symbol Meaning

k1 synthesis rate of a gene at full activation

k2 decay rate of a gene

wi weight of regulatory influence of putative regulator I on the
gene

b bias of the activation function

ρ(t) regulatory response (weighed sum of regulator profiles) as a
function of time

f activation function (logistic sigmoid in our case)

β vector of all model parameters

z(t) measured/smoothed mRNA levels of gene as a function of
time

ẑβ mRNA levels estimated by a model with parameter vector β

t time

N number of time points

yi(t) mRNA level of i-th regulator as a function of time

m number of regulators

Endnotes
1Transcription of the gene within a solution with SigA

present was compared to transcription without SigA
(negative control) and transcription from a known
strong SigA-dependent promoter (positive control).
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running all the code.
• evaluation_sacharomyces.Rmd – R Markdown notebook to reproduce
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• evaluation_sacharomyces.nb.html – Compiled version of
evaluation_sacharomyces.Rmd, including stored results produced by
running all the code.
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