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Abstract

Introduction: Recent meta-analyses of genome-wide association studies revealed new genetic loci associated with fasting
glycemia. For several of these loci, the mechanism of action in glucose homeostasis is unclear. The objective of the study
was to establish metabolic phenotypes for these genetic variants to deliver clues to their pathomechanism.

Methods: In this cross-sectional study 1782 non-diabetic volunteers at increased risk for type 2 diabetes underwent an oral
glucose tolerance test. Insulin, C-peptide and proinsulin were measured and genotyping was performed for 12 single
nucleotide polymorphisms (SNP) in or near the genes GCK (rs4607517), DGKB (rs2191349), GCKR (rs780094), ADCY5
(rs11708067), MADD (rs7944584), ADRA2A (rs10885122), FADS1 (rs174550), CRY2 (rs11605924), SLC2A2 (rs11920090), PROX1
(rs340874), GLIS3 (rs7034200) and C2CD4B (rs11071657). Parameters of insulin secretion (AUC Insulin0–30/AUC Glucose0–30,
AUC C-peptide0–120/AUC Glucose0–120), proinsulin-to-insulin conversion (fasting proinsulin, fasting proinsulin/insulin, AUC
Proinsulin0–120/AUCInsulin0–120) and insulin resistance (HOMA-IR, Matsuda-Index) were assessed.

Results: After adjustment for confounding variables, the effect alleles of the ADCY5 and MADD SNPs were associated with an
impaired proinsulin-to-insulin conversion (p = 0.002 and p = 0.0001, respectively). GLIS3 was nominally associated with
impaired proinsulin-to-insulin conversion and insulin secretion. The diabetogenic alleles of DGKB and PROX1 were nominally
associated with reduced insulin secretion. Nominally significant effects on insulin sensitivity could be found for MADD and
PROX1.

Discussion: By examining parameters of glucose-stimulated proinsulin-to-insulin conversion during an OGTT, we show that
the SNP in ADCY5 is implicated in defective proinsulin-to-insulin conversion. In addition, we confirmed previous findings on
the role of a genetic variant in MADD on proinsulin-to-insulin conversion. These effects may also be related to neighboring
regions of the genome.
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Introduction

Type 2 diabetes is a multifactorial disease that arises from a

complex interaction between environmental factors and genetic

susceptibility. The major environmental causes are sedentary

lifestyle and high energy intake [1]. A multitude of genes

contributes to the overall predisposition of type 2 diabetes, but

the genes have a rather small individual effect [2]. Most of the

approximately 40 known genetic variants conferring increased risk

for type 2 diabetes have been discovered by genome-wide

association studies (GWAS) [3]. With this method, associations

between genomic variants and diabetes prevalence or quantitative

glycemic traits like increased fasting glucose (FG) can be

established. The variants are single nucleotide polymorphisms

(SNPs) harboured in different loci of the genome. Most of the

recently discovered SNPs are located in non-coding DNA regions.

They may regulate the expression of nearby or far away genes

[4,5], however, the exact target genes and their function in glucose

homeostasis are in most cases still elusive. Detailed metabolic

characterization of these variants can provide further data to

elucidate their mechanism of action.

Hyperglycemia, the sine qua non of diabetes, results from a

combination of impaired insulin secretion and impaired insulin

action. Although their exact pathophysiologic relevance is unclear,

measuring proinsulin, C-peptide and insulin levels can illuminate

different aspects of beta-cell dysfunction. In the case of insulin, its

level in venous plasma is influenced by extensive hepatic first-pass

clearance and a short half-life [6] in combination with pulsatile
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secretion [7], while C-peptide levels seem to be somewhat more

robust [8]. A decreased proinsulin-to-insulin ratio resulting from

enhanced proinsulin-to-insulin conversion is supposed to indicate

the adaptation of the healthy beta-cell to increased secretory

demand after a glucose stimulus [9]. On the other hand,

proinsulin-to-insulin ratio increases with age [10] and hyperproin-

sulinemia has been shown to be an early manifestation of the

failing beta cell in prediabetic individuals by prospective

investigations [11,12].

Dynamic glucose metabolism and glucose-stimulated insulin

secretion can be further evaluated by observing the above

parameters along the course of an oral glucose tolerance test

(OGTT). Insulin action can be characterized by insulin sensitivity

which can be approximated in several ways [13–16].

Nine variants in or near ADCY5, MADD, ADRA2A, CRY2,

FADS1, PROX1, SLC2A2, GLIS3, and C2CD4B have been

discovered and 7 already known diabetes-related SNPs in

G6PC2, MTNR1B, GCK, DGKB, GCKR, SLC30A8 and TCF7L2,

have been confirmed to be associated with FG in a recent meta-

analysis [17]. Metabolic phenotypes of the SNPs in G6PC2 [18],

SLC30A8 [19] and MTNR1B [20–22] have already been

extensively examined by our group and others. We therefore

investigated the 12 remaining SNPs in DGKB, GCKR, ADCY5,

MADD, FADS1, GCK, ADRA2A, CRY2, SLC2A2, GLIS3, PROX1

and C2CD4B. Our objective was to determine novel genotype-

phenotype associations.

Methods

Subjects
We studied 1782 non-diabetic subjects of European descent

with increased risk for type 2 diabetes (positive family history, prior

gestational diabetes, glucose intolerance or overweight) who

participated in the ongoing Tübingen family study for type 2

diabetes.

All participants underwent a physical examination. Medical

history, smoking status and alcohol consumption habits were also

obtained. Participants were not taking any medication known to

affect glucose tolerance or insulin sensitivity. Metabolic traits were

measured during an oral glucose tolerance test. A subgroup of 312

subjects was further characterized by an IVGTT, in part

performed within the EUGENE2 network [23]. In addition,

hyperinsulinemic-euglycemic clamps were performed in 480

subjects.

Participant characteristics are supplied in Table 1. The ethics

committee of the medical faculty of the University of Tübingen

approved the study protocol. A written consent was obtained from

all participating individuals.

OGTT, IVGTT and hyperinsulinemic-euglycemic clamp
Following an overnight fast, all participants ingested a 75 g

glucose dose at 8 am. Plasma glucose, insulin, proinsulin and C-

peptide concentrations were determined after 0, 30, 60, 90 and

120 min. A bedside glucose analyzer (glucose-oxidase method,

Yellow Springs Instruments, Yellow Springs, OH, USA) was used

to determine plasma glucose.

On a separate occasion, an IVGTT was performed in overnight

fasted subjects, as previously described [23]. After baseline samples

had been collected, a 0.3 g/kg body weight glucose dose of a 20%

glucose solution was given at time 0. Blood samples for the

measurement of plasma glucose and insulin were obtained at 2, 4,

6, 8, 10, 20, 30, 40, 50, and 60 min. Hyperinsulinemic-euglycemic

clamp was performed, starting at 60 min after the IVGTT glucose

bolus or without prior IVGTT. Subjects received a primed

infusion of short-acting human insulin (40 mU/m2/min) for

120 min. Variable infusion of 20% glucose was started to clamp

the plasma glucose concentration at 5 mM. Blood samples for the

measurement of plasma glucose were obtained at 5-min intervals.

Plasma insulin levels were measured at baseline and at the steady

state of the clamp. Plasma glucose and insulin were determined by

standard laboratory methods.

Plasma insulin, C-peptide and proinsulin were measured with

commercial chemiluminescence assays for ADVIA Centaur

(Siemens Medical Solutions, Fernwald, Germany) in accordance

with the manufacturer’s instructions.

Genotyping
DNA was extracted from peripheral blood by blood cell lysis,

protein precipitation and a washing protocol. All SNPs were

genotyped using the MassARRAY platform from Sequenom

(Sequenom, San Diego, CA, USA). To verify results, samples of 50

individuals were bidirectionally sequenced for all SNPs using an

ABI Prism 310 genetic analyzer (Applied Biosystems). Allele

frequencies of all SNPs obeyed Hardy-Weinberg equilibrium and

allele frequencies were in accordance with the HapMap CEU

Population (Centre d’Etude du Polymorphisme [Utah residents

with northern and western European ancestry] Hapmap Data,

Phase 1,2 and 3, Release #27).

Calculations
The AUC for insulin, glucose, C-peptide and proinsulin were

calculated with the trapezoid method. AUC Insulin0–30/AUC

Glucose0–30, AUC C-peptide0–120/AUC Glucose0–120 were calcu-

lated to detect effects on insulin secretion as proposed earlier [24].

In this publication we compared 12 indices of insulin release to

answer the question which index is best suited to detect genotype

effects on insulin secretion. AUC Insulin0–30/AUC Glucose0–30

and AUC C-peptide0–120/AUC Glucose0–120 ranked highest.

Insulin sensitivity during OGTT was estimated as proposed by

Matsuda and DeFronzo [13] [Insulin sensitivity index (ISI-

OGTT) = 10,000!(Glu0?Ins0?Glumean?Insmean)] and by means of

the homeostasis model assessment index for insulin resistance

(HOMA-IR) [25]. Insulin clearance was calculated as AUC C-

peptide0–120/AUC Insulin0–120. Clamp-derived insulin sensitivity

index (ISI-clamp) was calculated as the ratio of the glucose infusion

rate necessary to maintain euglycemia during the last 60 min

(steady state) of the clamp (in mmol/kg/min) and steady-state

insulin concentration (pmol/l).

Table 1. Clinical characteristics of the study population.

n (NGTa/IFGb/IGTc/IFG+IGT) 1782 (1256/200/172/154)

sex (female/male) 1175/607

age (years) 40613

BMI (kg/m2) 30.068.9

Fasting glucose (mmol/l) 5.1460.55

2-hour-glucose (mmol/l) 6.3761.64

Fasting insulin (pmol/l) 69.3658.0

2-hour insulin (pmol/l) 4676487

Data are presented as means6SD.
anormal glucose tolerance.
bimpaired fasting glycemia.
cimpaired glucose tolerance.
doi:10.1371/journal.pone.0023639.t001

Genetic Effects on Proinsulin-Insulin Conversion
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Statistical analyses
Variables with non-normal distribution were transformed to

their natural logarithms prior to statistical analysis.

Hardy-Weinberg equilibrium was tested using the x2 test.

Differences between genotypes were tested with multiple linear

regression analysis assuming an additive effect model. All data

were adjusted for body mass index (BMI), sex and age. Insulin

secretion parameters, proinsulin-to-insulin conversion parameters

and proinsulin levels were additionally adjusted for the ISI.

Results with a p,0.05 were considered nominally significant.

After correction for multiple testing, i.e. for the investigated SNPs,

results with p,0.0042 were considered statistically significant. For

the SNP with the highest and lowest minor allele frequencies effect

sizes of 0.086 and 0.322, respectively, were detectable with

sufficient power (12ß = 0.8).

Statistical analyses were conducted with JMP 8.0 (SAS Institute,

Cary, NC), the power analysis was done with G*Power Ver 3.1.2

[26].

Results

Key parameters of insulin secretion, proinsulin-to-insulin

conversion and insulin sensitivity were investigated after genotyp-

ing the cohort of 1782 subjects for 12 SNPs using an additive

model. For the SNPs that exhibited effects on proinsulin-to-insulin

conversion, we plotted the levels of the investigated blood

parameters along the time axis of the OGTT to estimate the

dynamic changes after glucose stimulation. For comprehensive

data on relevant findings see Table 2, information on all examined

SNPs is supplied as supplemental data, see Table S1. In order to

attempt a replication of significant findings related to insulin

secretion and insulin sensitivity, IVGTT and hyperinsulinemic-

euglycemic clamp data were analyzed for the respective SNPs.

The expected association with fasting glucose could be at least

nominally confirmed for all but 5 SNPs in the cohort.

We observed effects on proinsulin-to-insulin conversion
for rs11708067 in ADCY5 (p = 0.002), rs7944584 in MADD

(p = 0.0001) and rs7034200 in GLIS3, the latter reaching only

nominal significance (p = 0.0136). The effect allele in MADD was

associated with an elevation of the proinsulin-insulin ratio at all

time-points tested, implicating impaired proinsulin-to-insulin

conversion. The other two SNPs associated with impaired

glucose-stimulated proinsulin-to-insulin conversion only. Howev-

er, in the case of both MADD and ADCY5 (Figure 1), the effect size

tended to be larger for the integrated and late-stage OGTT-

derived proinsulin-to-insulin conversion parameters.

No effect on insulin secretion could be seen for rs7944584 in

MADD and rs11708067 in ADCY5, but rs7034200 in GLIS3 had a

nominally significant association with insulin secretion (AUC

Insulin0–30/AUC Glucose0–30, p = 0.0075). Furthermore, glucose-

stimulated insulin secretion was nominally associated with

rs340874 in PROX1 (p = 0.0495) and rs2191349 in DGKB

(p = 0.0149). AUC insulin0–10 levels during the IVGTT showed

no significant associations with these SNPs (p = 0.11 for DGKB,

p = 0.45 for PROX1 and p = 0.8 for GLIS3).

As for insulin sensitivity, nominally significant associations

could be found for rs340874 in PROX1 (ISI-OGTT, p = 0.0351)

and rs7944584 in MADD (ISI-OGTT, p = 0.029 and HOMA-IR,

p = 0.0063). The clamp-derived insulin sensitivity index did not

associate with these SNPs (ISI-clamp, p.0.65).

Further nominally significant associations were observed for

rs11920090 in SLC2A2 and rs10885122 in ADRA2A with insulin

sensitivity and fasting proinsulin-to-insulin conversion, respective-

ly, but the minor allele frequencies were too low (14% and 12%,

respectively) to establish plausible relationships.

Insulin clearance showed a nominally significant association

(p = 0.048) with the genotypes in PROX1.

Discussion

We tested 12 newly discovered glucose-raising genetic variants

in an extensively phenotyped cohort of non-diabetic subjects to

identify the mechanism of action leading to increased fasting

glucose.

The findings of Ingelsson et al [27] on impaired proinsulin-to-

insulin conversion could be fully replicated for the SNP in the

MADD gene. The level of significance was convincingly strong not

only for the fasting proinsulin-to-insulin-ratio, but for the proinsulin-

to-insulin conversion parameters throughout the OGTT as well.

Similarly strong associations were established for glucose-stimulated

proinsulin-to-insulin conversion in the case of the ADCY5 variant.

This effect allele did not relate to the fasting proinsulin-to-insulin

ratio though; in fact differences between the genotypes became

more prominent after the 1st hour of the OGTT. An effect on

proinsulin-to-insulin conversion was suggested for the examined

SNP in GLIS3 as well, yet we could not show it at the required level

of significance. Since a relevant proportion (326 out of 1782) of the

participants turned out to have impaired glucose tolerance (IGT)

which could confound proinsulin-to-insulin conversion [11,28], we

also tested the influence of this effect. Further adjustment on IGT

did not change the findings (data not shown).

How these variants influence proinsulin-to-insulin conversion is

unclear. The examined SNPs are named after the closest gene, but

linkage disequilibrium with other, mostly nearby, parts of the

genome could easily hide a different SNP as a causative agent for

the established associations. For example, MADD, an acronym of

mitogen-activated protein kinase (MAPK) activating death do-

main, encodes an adaptor protein that plays a role in MAPK

activation. However, no plausible link to proinsulin-to-insulin

conversion could be found in the literature for this gene. Several

neighboring genes have been discussed as potential candidates

instead [27,29]. Of these, genes that encode proteins involved in

vesicle trafficking between the endoplasmic reticulum (ER) and the

Golgi-apparatus could provide an enlightening hypothesis on the

findings.

The gene product of ADCY5 is a member of membrane-bound

adenylyl-cyclase enzymes, which is most abundantly expressed in

the heart and brain, but also present in pancreatic beta cells. It

catalyzes the production of cAMP, which can modulate glucose-

stimulated insulin secretion by several possible mechanisms [30].

Since knocking out the ADCY5 gene in mice may protect cardiac

muscle from apoptosis [31], a similar effect on beta cell apoptosis

and thus beta cell mass has been postulated [32]. Nonetheless, the

presently demonstrated solitary association of the ADCY5 variant

with proinsulin-to-insulin conversion does not fit neatly to these

hypothetical ways of action. Interestingly, the investigated SNP in

ADCY5 could also serve as a proxy for neighboring genes involved

in protein folding and vesicle trafficking. A large linkage block

spanning about 260,000 base pairs comprises the investigated

rs11708067 in ADCY5, the whole SEC22 gene and a part of the

PDIA5 gene. SEC22A encodes a protein belonging to the SEC22

family of vesicle trafficking proteins [33]. Protein disulfide

isomerase family A, member 5 (PDIA5) belongs to a family of

enzymes that mediate oxidative protein folding in the endoplasmic

reticulum [34].

Dysfunctional regulatory pathways in the transport mechanism

and protein folding machinery can lead to an increase in misfolded

Genetic Effects on Proinsulin-Insulin Conversion
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proteins in the ER and Golgi-apparatus [35]. Molecular

overcrowding further impairs correct folding of the polypeptide

chains resulting in a dramatically increased accumulation of

misfolded proinsulin when secretory demand rises [36]. Therefore,

more proinsulin is released from the beta cell [35].

The genetic variation in MADD and ADCY5 did not affect

insulin secretion neither in our population nor in the study of

Ingelsson et al. This leads to the hypothesis that an impaired

conversion of proinsulin to insulin mirrors beta cell dysfunction,

which is sufficient to increase glucose levels. Minor effects on

insulin secretion may have been missed due to the relatively small

number of subjects in the present study. Effects on insulin secretion

have to be established in future studies. However, we were able to

detect possible effects on insulin secretion for SNPs in DGKB,

GLIS3 and PROX1 which could not withstand correction for

multiple testing though. These findings failed replication by

IVGTT, and this may be due to the lack of sufficient statistical

power in the smaller subgroup.

Our findings suggest an association of the effect allele in MADD

with insulin sensitivity, but it is unexpectedly a positive correlation

conferring improved insulin sensitivity for the variant with higher

fasting glucose. Due to the marked effect of the risk allele in MADD

on conversion of proinsulin to insulin, the fasting insulin levels

were significantly reduced in carriers of the risk allele (see Table

S1). Therefore, the improved insulin sensitivity suggested by the

used indices may result only from the calculation at a markedly

impaired proinsulin-to-insulin conversion and probably does not

reflect a true effect on insulin sensitivity. It is of note that we could

not replicate this effect of the MADD effect allele on insulin

sensitivity using the gold standard method of the euglycemic

hyperinsulinemic clamp. This also argues against a true effect

observed with the OGTT derived insulin sensitivity data.

The present study has certain limitations that need to be taken

into account. The cohort of this study includes only subjects of

European descent, and the results therefore cannot be generalized.

Moreover, the cross-sectional nature of the study and the lack of

replication in a different cohort have to be noted.

In conclusion, we demonstrated an effect of rs11708067 in

ADCY5 on proinsulin-to-insulin conversion. Because there are

other genes in the adjacent region of the genome that could

pathogenetically more plausibly explain the association with

proinsulin-to-insulin conversion, exploring further SNPs in this

region may reveal stronger associations with proinsulin-to-insulin

conversion in the future.

Supporting Information

Table S1 Association of all investigated SNPs (ADCY5
rs11708067, MADD rs7944584, GCK rs4607517, DGKB
rs2191349, GCKR rs780094, ADRA2A rs10885122, FADS1
rs174550, CRY2 rs11605924, SLC2A2 rs11920090, GLIS3
rs7034200, PROX1 rs340874, C2CD4B rs11071657) with

Figure 1. Proinsulin levels and proinsulin-to-insulin ratio during OGTT for genotypes of rs11708067 in ADCY5.
doi:10.1371/journal.pone.0023639.g001
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parameters of glycemia, insulin sensitivity, insulin
secretion and proinsulin-to-insulin conversion. Mean

values and their standard errors are listed for each genotype.

Effect sizes are provided as beta (6 standard error). For the linear

regression analysis, data were log-transformed. Plasma glucose

levels, ISI and HOMA-IR were adjusted for age, sex and BMI. All

other parameters were adjusted for age, sex, BMI and ISI.

(DOC)
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