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ABSTRACT: The interaction of exoribonuclease (ExoN) nonstructural protein
(NSP14) with NSP10 co-factors is crucial for high-fidelity proofreading activity of
coronavirus replication and transcription. Proofreading function is critical for
maintaining the large genomes to ensure replication proficiency; therefore, while
maintaining the viral replication fitness, quick resistance has been reported to the
nucleotide analogue (NA) drugs. Therefore, targeting the NSP14 and NSP10
interacting interface with small molecules or peptides could be a better strategy to
obstruct replication processes of coronaviruses (CoVs). A comparative study on
the binding mechanism of NSP10 with the NSP14 ExoN domain of SARS-CoV-2,
SARS-CoV, MERS-CoV, and four SARS-CoV-2 NSP14mutant complexes has been
carried out. Protein−protein interaction (PPI) dynamics, per-residue binding free
energy (BFE) analyses, and the identification of interface hotspot residues have
been studied using molecular dynamics simulations and various computational
tools. The BFE of the SARS-CoV NSP14−NSP10 complex was higher when
compared to novel SARS-CoV-2 and MERS. However, SARS-CoV-2 NSP14mutant systems display a higher BFE as compared to the
wild type (WT) but lower than SARS-CoV and MERS. Despite the high BFE, the SARS-CoV NSP14−NSP10 complex appears to
be structurally more flexible in many regions especially the catalytic site, which is not seen in SARS-CoV-2 and its mutant or MERS
complexes. The significantly high residue energy contribution of key interface residues and hotspots reveals that the high binding
energy between NSP14 and NSP10 may enhance the functional activity of the proofreading complex, as the NSP10−NSP14
interaction is essential in maintaining the stability of the ExoN domain for the replicative fitness of CoVs. The factors discussed for
SARS-CoV-2 complexes may be responsible for NSP14 ExoN having a high replication proficiency, significantly leading to the
evolution of new variants of SARS-CoV-2. The NSP14 residues V66, T69, D126, and I201and eight residues of NSP10 (L16, F19,
V21, V42, M44, H80, K93, and F96) are identified as common hotspots. Overall, the interface area, hotspot locations, bonded/
nonbonded contacts, and energies between NSP14 and NSP10 may pave a way in designing potential inhibitors to disrupt NSP14−
NSP10 interactions of CoVs especially SARS-CoV-2.

1. INTRODUCTION
The emergence of various coronaviruses (CoVs) has been
causing serious epidemic diseases to humans, viz., severe acute
respiratory syndrome (SARS), Middle East respiratory
syndrome (MERS), and coronavirus disease-2019 (COVID-
19, SARS-CoV-2), posing serious concerns.1 Like the cellular
replicative DNA polymerase that has high fidelity, viral RNA-
dependent RNA polymerase (RdRp), including the CoVs RdRp,
does not have a proofreading exoribonuclease (ExoN) domain
for high-fidelity replication and transcription.2−5 RNA virus
replication is an error-prone process (or low viral fidelity)
resulting in a different population of genomic mutants or
″quasispecies″.6 Low replication fidelity RNA viruses lead to an
increased chance of error in the transcription process resulting in
the extinction of the virus, which suggests the need for stability
between quasispecies type and replication fitness for the
virulence and evolution of viruses.7,8 In SARS-CoV-2 and

other CoVs, replication and transcription occur by the viral
RdRp, NSP12.9 The lack of proofreading activity in RdRp is
challenging for the replication of CoVs. The ExoN enhances the
fidelity for the synthesis of RNA by correcting errors in
nucleotide incorporation made by the RdRp. To diminish the
low fidelity of RdRp, all CoVs have nonstructural protein 14
(NSP14) consisting of a 3′-to-5′ N-terminal ExoN domain (res.
1−289)10,11 that forms a complex with NSP10 crucial for ExoN
activity and acting as a co-factor. Additionally, NSP14 has a C-
terminal guanine N7 methyl transferase (N7-MTase) whose
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function is different from the proofreading ExoN activity.10,11

Reports have also shown that ExoN inactivation disrupts SARS-
CoV-2 and MERS-CoV replication that displays apart from
transcription, ExoN is also involved in CoV replication.

It has been observed that mutations in SARS-CoV-2, SARS-
CoV, MERS-CoV, and murine hepatitis virus (MHV) NSP14
display a strong relation with increasing mutational load in the
viral genome,12−15 and genetically engineered inactivation of
ExoN often results in 15−20-fold increased mutation rates,
while knockout ExoN and CoVs produce crippled but viable
viruses resulting in mutant phenotypes.16−19 The NSP14 ExoN
proofreading function is critical for maintaining and extending
large genomes of CoVs to ensure replication proficiency.7,20

Because of its role in enhancing the fidelity of replication while
maintaining viral replication fitness, quick resistance can be
developed to nucleotide analogue drugs, which can promote
antiviral drug resistance.20 Therefore, instead of targeting the
active site, targeting the NSP14 and NSP10 interacting interface
with small molecules or peptides could be a better strategy to
disrupt transcription and replication processes of SARS-CoV-2.

Recently, the structure of electron microscopy has revealed
the molecular mechanism of how the ExoN NSP14−NSP10
complex interacts with double-stranded RNA consisting of a 5′
overhang and a one-nucleotide mismatch at the 3′ end.21 In the
narrow ExoN active site, the mismatched base enters and
interacts with catalytic conserved residues via its 3′-hydroxy and
2′-hydroxy groups. The double-stranded RNA portions interact
with both NSP10 N-terminal regions, and NSP14-ExoN
residues interact outside the catalytic site.21 The strong
interaction of the cofactor NSP10 with NSP14 may be traced
to the stability of the ExoN domain and enhances NSP14 ExoN
activity. This information provides direct structural visualization
of recognition of ExoN to its chosen mismatched RNA
substrate.21,22

The fast spread of the SARS-CoV-2 and its deadly
consequences have emphasized the need for additional viral
inhibitors with more specific targeting. The key target is thought
to be the NSP12 inhibition through nucleoside analog viral
inhibitors,23 but NSP14 is thought to be less important.22 It is
also hypothesized that the regulation of CoV genome fidelity
may depend completely on NSP10/12/14.24 Inhibition of PPI
between NSP14 and NSP10 is essential to abrogate the
transcription and replication of viral RNA, thereby controlling
the COVID19 disease.24

Unveiling the protein−protein interaction (PPI) at the atomic
level is a crucial step for designing potential PPI inhibitors to
obstruct protein−protein interactions.25−32 At the PPI interface,
amino acids interact with each other, and a couple of them
contribute high binding energy toward the stabilization and
formation of a PPI complex that offers specificity to the binding
sites and those residues considered to be hotspots.33−43 The
hotspot residues are those, when mutated to alanine, that
significantly increase the BFE (ΔΔG) to the tune of 1.5 to 2.0
kcal/mol.33,39−46 Hotspot residues at the PPI interface are
present together as clusters, and they are conserved, which were
noticed to be more buried compared to the other interface
residues of the PPI interface.33,39−46 Besides the presence of
hotspots, other parameters such as interacting interface area,
polarity, flatness, and buriedness have been considered to
characterize PPI interfaces.47−49 These parameters including
hotspot residues at interfaces of the SARS-CoV-2 NSP14−
NSP10 proofreading complex may help in understanding
NSP14−NSP10 interaction in a better way to modulate the

interface area by designing PPImodulators or inhibitors, thereby
controlling the replication and transcription of COVID-19.

Extensive MD simulations were performed on the NSP14−
NSP10 complex of SARS-CoV-2, SARS-CoV, and MERS-CoV
and four NSP14mutant complexes to obtain information on the
dynamics of the PPI interface. The interacting interface area
including hotspots can be targeted by small molecules or
biologics to gain valuable insights on the therapeutic
indications.50−55 Further, the total binding free energy (BFE)
was computed using the molecular mechanics Poisson−
Boltzmann surface area (MM-PBSA)56,57 approach followed
by per-residue energy contribution analysis.57 The PDBsum
server was used to analyze the PPI profile,58 and hotspot residues
at the NSP14−NSP10 interface were identified using different
computational approaches implemented in web servers
including the KFC2,59 DrugScorePPI,60 and Robetta servers
along with per-residue energy contribution analysis.61,62 A single
method may not give a significant result; thus, these methods
were considered for accuracy improvement for hotspot
identification. Various computational approaches have been
employed to decipher the active site and hotspot residues of
macromolecules such as proteins and DNA for drug
targeting.63−65 While targeting the PPI interface remains an
issue, in designing and discovery of small molecule inhibitors or
modulators because the PPI interface are highly dynamic in
nature. Therefore, various attempts have been made by different
groups to understand the molecular mechanism of PPI at the
atomic level through MD simulation studies to predict the
hotspot residues for drug design.26,66−70

In the current study, we noticed a significant difference in the
dynamic behavior of the NSP14−NSP10 complex among the
selected viruses, wherein, overall, the SARS-CoV NSP14−
NSP10 complex was observed to have more structural flexibility
especially at the catalytic region as opposed to wild-type (WT)
SARS-CoV-2, NSP14mutant complexes, and MERS-CoV. Poten-
tial hotspot residues were also identified and contributed more
energy toward the formation of the complex. The lesser
fluctuation in the SARS-CoV-2/mutant proofreading complex
may be necessary for maintaining the structural stability of the
ExoN domain of SARS-CoV-2 (WT/mutant). This may be
responsible for efficient NSP14 ExoN activity that is crucial in
expanding and maintaining the large genome of CoVs for high
replication proficiency, which may also significantly lead to
stable genome mutation and evolution of a new variant. The
experimental Alanine Scanning Mutagenesis (ASM)44 method
is very tedious; hence, identification of potential locations of
hotspots at the NSP14 and NSP10 interface by in silico
approaches may be convenient for the researchers to perform
their experimental ASM for only those amino acids that are
being predicted as hotspots.

2. METHODOLOGY
2.1. Protein Complex Structure Preparation and

Sequence Comparison. The SARS-CoV-2 NSP14 consists
of an N-terminal (ExoN) domain (residues 1−289) that is
involved in proofreading activity and a C-terminal region
consisting of N7-MTase domain (290−527) involved in mRNA
capping. Three-dimensional (3D) NSP14−NSP10 complexes
of SARS-CoV-2 and SARS-CoV were retrieved from PDB (PDB
ID: 7MC5 with 1.64 Å resolution and 5C8U with 3.40 Å
resolution), andMERS-CoV NSP14 was modeled in the SWISS
MODEL server as the crystal structure is not available71 and
docked with NSP10 in the PatchDock server.72 The best docked
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model based on global energy was chosen for further analysis. In
addition, based on the literature study, four SARS-CoV-2
NSP14 mutant PPI complexes were prepared using PyMol.73

The mutations are P203L, F233L, L177F, and a combination of
these three considered as triple mutations in this study; these
mutations display a strong relation with increased mutational
load in the SARS-CoV-2 genome.12,13 Then all the NSP14−
NSP10 complexes were cleaned in UCSF Chimera74 by
removing solvent molecules, ions, and other heteroatoms, and
the complexes were subjected to MD simulations. The
arrangement of the selected CoV NSP14−NSP10 complexes
is presented in Figure 1. In the present study, we mainly focus on
the N-terminal ExoN domain (res. 1−289) interaction with
NSP10 because the SARS-CoV-2 NSP14 N7-MTase function
does not depend on ExoN activity and NSP10.21 The multiple
sequence alignment for NSP14 and NSP10 of the selected three
viruses was carried out by the Clustal Omega server (https://
www.ebi.ac.uk/Tools/msa/clustalo/).
2.2. Molecular Dynamics Simulations. MD simulations

in triplicate have been performed on the heterodimer NSP14−
NSP10 complex of SARS-CoV-2, SARS-CoV, and MERS-CoV
and SARS-CoV-2 NSP14mutant complexes using the Gromacs
5.0.4 package.75 The CHARMM force field (version:
charmm36-Jul2020)76 was used for PPI complexes, and the
SPC water model was used to solvate the complex systems.77

The periodic boundary conditions (PBCs) were set up with a
cubic box by keeping 1.0 nm from the edge for the MD
simulations. The box size information for SARS-CoV-2, SARS-
CoV, and MERS-CoV NSP14−NSP10 PPI complex is
presented in Table S1. The systems were neutralized by
incorporating the counterions accordingly into the solvated box

followed by energy minimization by the 5000 steepest descent
method to remove hindrances and clash in the solvated system.

Further, the complexes were heated under NVT from
absolute zero to room temperature for 100 ps using a modified
Berendsen thermostat followed by a 100 ps equilibration run
under NPT.78,79

Finally, the complex was simulated with no constraints for a
production run of 100 ns. For restraining the bond lengths, the
LINCS algorithm80 was employed, and long-range electrostatics
were calculated by employing PME81 along with the SETTLE
algorithm for the solvent molecules. Using the g_mmpbsa
package of GROMACS, the MMPBSA method was utilized for
binding free energy calculation between interacting NSPs
(NSP14 and NSP10) by extracting the last 20 ns MD trajectory.

By employing the MM-PBSA method, the total BFE was
calculated by incorporating the explicit solvation model for the
estimation of binding free energy ΔGbinding.

= [ + ]G G G Gbinding complex protein1 protein2 (1)

The ensuing equations describe the MM-PBSA protocol:

= +G E G T Sbind MM PBSA (2)

= + +E E E EMM int vdW ele (3)

= +G G GPBSA PB surf (4)

where ΔEMM =molecular mechanics energy system in a vacuum,
Eint = internal energy, EvdW = van der Waals forces, ΔEele =
electrostatic energy, ΔGPBSA = sum total of polar solvation free
energy of the Poisson−Boltzmann model (ΔGPB) and the

Figure 1. Cartoon representation of (a) the SARS-CoV-2 NSP14 structure containing an ExoN domain (blue) and MTase domain (red). (b)
Superimposed initial complex structure of NSP14−NSP10 SARS-CoV-2 (PDB ID: 7MC5), SARS-CoV (PDB ID: 5C8U), and MERS-CoV
(modeled). (c) Surface representation of the NSP14−NSP10 complex of SARS-CoV-2 (light brown: NSP10, dark brown: NSP14). (d) Surface
representation of the NSP14−NSP10 complex of SARS-CoV (cyan: NSP10, navy blue: NSP14). (e) Surface representation of the NSP14−NSP10
complex of MERS-CoV (pink: NSP10, magenta: NSP14).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03007
ACS Omega 2022, 7, 29995−30014

29997

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


nonpolar/surface solvation free energy (ΔGsurf), and TΔS =
entropy.

The entropy term is the most difficult to compute; therefore,
in the above calculation, entropy (TΔS) was neglected because
this study mainly focused on calculating only the total binding
energy contribution of each amino acid toward the complex-
ation process.

The final 20 ns trajectory was extracted (i.e., 80−100 ns) for
predicting binding energy by employing MMPBSA using the
inbuilt MmPbSaStat.py program and for per-residue energy
decomposition analysis, MmPbSaDecomp.py was used to
extract the residue wise energy contribution during protein−-
protein binding.56,57

The MMPBSA methods are commonly used to calculate
binding affinities of protein−protein and protein−ligand
interactions at a reasonable computational cost. Although this
method has provided lots of valuable predictive results in
different types of studies,82−84 it is less accurate than few of the
computationally expensive methods, for example, free energy
perturbation and thermodynamic integration methods.
2.3. Principal Component Analysis. Through PCA, the

protein motion can be analyzed by considering the combined
essential motion of the protein throughout the MD simulation

trajectories in the protein. PCA was carried out in two steps: (1)
constructing a covariance matrix using protein C-α atoms and
(2) diagonalization of the covariance matrix. By utilizing the
GROMACS software package, PCA was done following the
standard protocol.85 The motion in the PPI complexes was
analyzed by projecting the first two eigenvectors.

In the current study, PCA was done to analyze the
conformational projection of the NSP14−NSP10 complex of
SARS-CoV-2, SARS-CoV, and MERS-CoV and SARS-CoV2
NSP14mutant complexes using the protein C-α atoms. Based on
the covariance matrix, PCA is calculated by following
equation:86

= =C x x x i j N( ) ( ) ( , ) ( 1, 2, 3, ..., 3 ).ij i i j

where xi/xj signifies the Cartesian coordinate of the ith/jth atom
and <−> signifies the ensemble average. All the MD simulation
results are plotted using the Xmgrace tool.87

2.4. Free Energy Landscape (FEL) Analysis. FEL analysis
is beneficial to characterize the mechanism of protein folding.88

For a protein structure, FEL can provide a quantitative
description of protein folding dynamics. FELs were prepared
and evaluated for all the three viral complexes and NSP14mutant

complexes from the 100 ns MD trajectories. The FELs of the

Figure 2. Root mean square deviation (RMSD) graphs for (a−c) SARS-CoV-2, SARS-CoV, and MERS-CoV NSP14−NSP10 complexes (left side)
and SARS-CoV-2 NSP14mutant complexes (right side) along the 100 ns MD simulations in triplicate. The triple mutant (in red, right-side plots) is the
combination of the three (F233L, P203L, and L177F) mutations.
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complex systems were created by employing the gmx sham
utility of GROMACS utilizing the following formula:

=G K T P Xln ( )B

where KB indicates the Boltzmann constant; T indicates the
temperature, that is, 300 K; and P(X) signifies the probability
distribution.
2.5. Detection of Hotspots. The interaction profile of

heterodimer NSP14−NSP10 complexes was studied using the
PDBsum server. The server provides a pictographic summary of
the macromolecular structure and their important information
as well as results obtained by PROCHECK and diagrammatic
representation molecular contacts of biomolecular complexes.58

Three online servers�KFC2,59 DrugScorePPI,60 and Robetta
servers61, 62�were utilized to identify hotspots. The KFC2
server implements machine learning (ML) techniques for in
silico ASM by considering atomic contacts, hydrogen bonding,
and the size of residue for hotspot detection.59 The DrugscorePPI
server also utilizes the computational alanine-scanning techni-
que, which has a knowledge-based scoring function for
predicting hotspots across protein−protein interacting inter-
faces.60 In the Robetta server, for interaction free energy
calculation, different parameters such as H-bonds and implicit

solvation are utilized, along with other interactions like
solvation, packing, and Lennard−Jones. This server (Robetta)
can precisely predict the hotspot residues by 79% with a 1.0
kcal/mol cutoff value.61,62

3. RESULTS AND DISCUSSION
3.1. Structural and Sequence Comparison. The super-

imposed NSP14−NSP10 complex of SARS-CoV-2, SARS-CoV,
and MERS (modeled docked complex) is depicted in Figure 1.
The all-atom root mean square deviation (RMSD) between
SARS-CoV-2 and SARS-CoV, and SARS-CoV-2 and MERS-
CoV was found to be the same, that is, 0.87 Å. The all-atom
RMSD between SARS-CoV and MERS-CoV NSP14−NSP10
complex was observed to be 0.44 Å. Multiple sequence
alignment (MSA) analysis of the NSP14 exon domain provides
the percentage identity matrix. For SARS-CoV-2 and SARS-
CoV, the percentage identity matrix was observed to be 97.12%,
while it was 61.67% for SARS-CoV-2 andMERS and 61.59% for
SARS-CoV and MERS-CoV.

The percentage identity matrix for NSP10 SARS-CoV-2 and
NSP10 SARS-CoV was observed to be 97.12%; for SARS-
NSP10 CoV/CoV-2 and MERS-CoV, it was 58.99%. The
multiple sequence alignment is depicted in Figures S1 and S2.

Figure 3. Root mean square fluctuation (RMSF) graphs in triplicate for (a−c) NSP14 SARS-CoV-2, SARS-CoV, and MERS-CoV (left side) and
SARS-CoV-2 mutants (NSP14) along the 100 ns MD simulation. The triple mutant (in red, right-side plots) is the combination of the three (F233L,
P203L, and L177F) mutants.
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Figure 4. Root mean square fluctuation (RMSF) graphs in triplicate for (a−c) NSP10 SARS-CoV-2, SARS-CoV, and MERS-CoV (left side) and
SARS-CoV-2 mutants (in complex with NSP14) along the 100 ns MD simulation. The triple mutant (in red) is the combination of the three (F233L,
P203L, and L177F) mutants.

Figure 5. Superimposed average structures (collected from the trajectories of last 20 ns) of the NSP14−NSP10 complex of SARS-CoV-2 with SARS-
CoV and MERS-CoV. The square box (on the left side) depicts the C-terminal fluctuating residues ranging from 245 to 268. NSP14 SARS-CoV is
depicted in blue color, SARS-CoV-2 is in brown, and MERS-CoV is in magenta.
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The hydrophobicity map for all the three viruses has been
depicted in Figure S3. Hydrophobicity analyses categorized the
surfaces into nonpolar (orange) containing hydrophobic groups,
polar (blue), and neutral (white) regions. The majority of the

interacting interface of NSP14 SARS-CoV-2, SARS-CoV, and

MERS-CoV contains stronger nonpolar patches (orange) and

weak polar patches (blue) with few neutral regions (white).

Figure 6. (a) Superimposed average structures (from last 20 ns) of NSP10 SARS-CoV-2 (light brown), SARS-CoV (cyan), and MERS-CoV (pink).
(b) The C-terminal residues of NSP10 SARS-CoV (cyan) are highlighted, showing more residue fluctuation and change in the initial conformation
(coil) to beta strand. (c) Superimposed initial structures (before MD) of NSP10 SARS-CoV-2, SARS-CoV, and MERS-CoV. (d) The C-terminal
region of the three viruses is highlighted. (e) Superimposed mutant NSP14−NSP10 complexes (all). (f) Superimposed structure of NSP10 of mutant
complexes. In one of the mutant complexes (P203L), NSP10 shows a conformational change from coil to beta strand.
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3.2. Molecular Dynamics Simulation and Binding Free
Energy Analysis. MD simulations were performed for the
selected PPI complexes to check the stability of the PPI
structures in a dynamic system for which 100 nsMD simulations
were carried out in triplicate (three sets). The NSP14−NSP10
SARS-CoV-2 complex in all the three sets of MD simulations
attain structural stability with less fluctuation from the initial
conformer with an RMSD value of 0.15 nm as shown in Figure 2,
and for SARS-CoV and MERS-CoV, the complex converged
with a high RMSD value of around 0.3 nm or more in all the
three sets of MD simulations. Overall, the NSP14−NSP10
complex of SARS-CoV-2 is rigid and slightly more stable in
comparison with that of SARS-CoV and MERS-CoV. The
mutant structure of SARS-CoV-2 NSP14L117F in complex with
NSP10 shows a slight fluctuation after 30 ns till 100 ns with an
RMSD of 0.25 nm in the case of replica 1 (see Figure 2a).
However, in replicas 2 and 3, NSP14L117F was found to converge
with a 0.2 nm RMSD value (see Figure 2b,c).

The mutant complex does not show any huge difference in
RMSD and is more like the WT, attaining stability and
convergence at around 0.2 nm (see Figure 2). In the case of
replica 2, the triple mutation (P203L, L177F, and F233L) has
shown convergence after 60 ns with an RMSD of 0.25 nm (see
Figure 2).

To analyze the compactness in the PPI complexes throughout
theMD simulation, the radius of gyration (Rg) was measured. In
the dynamic system, Rg signifies the overall dimension of the
protein computing the mass weight of RMSD by collecting all
atoms from the center of mass. In the case of replica 1, the Rg
value for the SARS-CoV-2 NSP14−NSP10 complex is around
2.35 nm; for SARS-CoV, there is a slight decrease in Rg with
fluctuation after 40mn; forMERS-CoV, the Rg value is 2.35 nm,
which is higher than SARS-CoV-2. In the case of the mutant
complex, the Rg value is more for L177F and F233L, which
signifies a change in protein folding and its compactness, while
for P203L and the triple mutant, the Rg value is almost the same
as WT, i.e., 2.35 nm (see Figure S4).We could not see any huge
difference in the Rg plots in the triplicate; overall, the
convergence pattern in Rg for all the three sets of MD
simulations is the same.

The stability of C-α atoms and residues can be analyzed by the
RMSF plot (see Figures 3 and 4). For SARS-CoV NSP14,
flexibility is more in comparison to SARS-CoV-2 and MERS-
CoV and SARS-CoV-2 NSP14mutant complexes with high peaks
in many positions such as for residue ranges 44−50 and 245−
268 in the first and second replica, as shown in Figure 4a,b (left
side). Meanwhile, in replica 3 at position 245−268, MERS-CoV
has shown fluctuation with an RMSF value of 0.5. In the case of

Figure 7. (a−c) Hydrogen bonds observed at the PPI interface across NSP14 and NSP10 of SARS-CoV-2, SARS-CoV, MERS-CoV (left side), and
SARS-CoV-2 NSP14mutants (right side) complexes along the three sets of 100 ns MD simulation. The triple mutant (in red, in left-side plots) is the
combination of the three (F233L, P203L, and L177F) mutants.
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the SARS-CoV-2 NSP14 mutant, slight fluctuations can be seen
in L177F and P203L in various positions in all the triplicates.

In the case of NSP10, SARS-CoV residue fluctuation can be
seen at positions 45−54 and 60−64 in all the three sets of MD
simulations. Additionally, the SARS-CoV NSP10 C-terminal
region (113−131) fluctuates more in replicas 1 and 2. Overall,
SARS-CoV and MERS-CoV NSP10 show slightly more residue
fluctuation than SARS-Cov-2.

The conformational change in the average PPI complexes of
the three viruses can be observed in Figure 5. The all-atom

RMSD between SARS-CoV-2 and SARS-CoV is observed to be
3.13 Å, while the all-atom RMSD value is 2.18 Å in SARS-CoV-2
and MERS-CoV and 3.57 Å in SARS-CoV andMERS-CoV (see
Figure 5).

In Figure 5, fluctuations in the residue range 245−268 of
SARS-CoV NSP14 ExoN were observed in replicas 1 and 2 (see
Figure S5). Within this region, His257, Cys261, and His264 are
the conserved residues of the second zinc finger region, while
H268 is one of the conserved catalytic residues among the three
selected viruses. It has been suggested that the mutation of the

Figure 8. Time evaluation of conformational projections on (a) eigenvector 1 and (b) eigenvector 2. (c−e) 2D projection plot showing the
conformation sampling of the NSP14−NSP10 complex of SARS-CoV-2, SARS-CoV, and MERS-CoV on eigenvector 1 and eigenvector 2. (f)
Superimposed 2D projection plots showing the difference in the conformation sampling of PPI complexes.

Figure 9. 2D projection plots showing the conformation sampling of NSP14−NSP10 complexes of (a) wild-type NSP14 in complex with NSP10 of
SARS-CoV-2, (b) NSP14F233L mutant, (c) NSP14F203L mutant, (d) NSP14L177F mutant, and (e) NSP14 triple mutant in complex with NSP10. The
triple mutant is the combination of the three (F233L, P203L, and L177F) mutants.
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second zinc finger residue Cys261 to Ala or His264 to Arg
disrupts the enzymatic activity, suggesting its major role in
catalysis. The mutation of His268 to Ala shows a lack of RNA
degradation ability, hence suggesting the importance of these
residues in the nucleotide excision process.89,90 The residue
range 245−268 of SARS-CoV NSP14 has shifted more from its
original position in comparison to SARS-CoV-2, MERS-CoV,
and SARS-CoV-2 NSP14 mutant complexes. It has been
recently reported that in the narrow ExoN active site, a
mismatched base enters and interacts with catalytic conserved
residues.21 The fluctuation in this important region that includes
the key catalytic residues may have a significant impact on the
transcription and replication process of SARS-CoV. Thus, the
SARS-CoV NSP14−NSP10 complex displays a pronounced
structural flexibility compared to SARS-CoV-2, MERS-CoV,
and SARS-CoV-2 mutant complexes. Recently, Gribble et al.,
suggested that RNA proofreading ExoN is accountable for the
generation of recombination frequency and also the change in
the recombination products in vitro; they demonstrated that a
recombination event is crucial for generating CoVs’ diversity.90

A stable complex is required for the recombination, which may
be essential for the high fidelity and replicative fitness of SARS-
CoV-2 and perhaps for the evolution of new stable variants of
SARS-CoV-2.

Additionally, in all the three sets of MD simulations, SARS-
CoV NSP10 residues 113−131 at the C-terminal display greater
fluctuation compared to the other two CoVs, as shown in Figure
6 and Figure S6. There is a conformational change at position
113−131 during the MD simulations in all the three sets of
SARS-CoV NSP10 from coil to beta strand, as shown in Figure
6b and Figure S6. In all the mutant complexes, slight residual
flexibility has been observed in several positions of NSP10 with
the mutation L177F and P203L in replica 1, and in the P203L

mutant complex, a slight fluctuation at the C-terminal region of
NSP10 has been noticed (res. 113−131) where conformational
change was observed from coil to beta strand as that of SARS-
CoVNSP10 (Figure 6e,f). Similarly, in replica 2, conformational
change has been observed in the same C-terminal region of
NSP10 in case of the NSP14triple mutant complex (Figure S7b),
whereas in replica 3, none of the NSP10 mutant complexes
displayed any conformational change as that of replica 1 (in
P203L) and replica 2 (in triple mutant), as shown in Figure
S7a,b.

To evaluate the folding dynamics during simulations, SASA
has been a useful analysis. Based on the SASA plot, SARS-CoV-2
NSP14−NSP10 showed SASA values of 190−220 nm2 in all the
three sets of MD simulations; however, SARS-CoV and MERS-
CoV SASA values were found to be higher and fluctuate within
200−220 nm2 as shown in Figure S8. The SARS-CoV-2 NSP14
mutants do not display a huge difference with the wild type and
maintain consistency throughout the three, but the values were
lower than those of SARS-CoV andMERS-CoV in the three sets
of MD simulation, showing that the change in surface residues
may be accessible to the solvent.

Hydrogen bonds are considered to play a crucial role in the
stabilization of PPI conformation in the dynamic system. The
formation of intermolecular H-bonds between NSP14 and
NSP10 in 100 ns MD trajectory for all the three sets of
simulation can be seen in Figure 7. A perusal of the trajectories of
MD results reveals that around 18 H-bonds formed at the
NSP14 andNSP10 interface of SARS-CoV. In the case of SARS-
CoV-2 andMERS-CoV, 12−16 H-bonds formed after 60 to 100
ns. Almost a similar pattern of H-bonds can be seen during the
three sets of MD simulations.

By using the PDBsum server, the PPI profile of the last 20 ns
average structure was analyzed wherein, in the first set of MD

Figure 10. Free energy landscape of PC1 and PC2 displaying the achievement of distinguishable local minima basins (in ΔG, kJ/mol) of NSP14−
NSP10 complexes of (a) SARS-CoV-2, (c) SARS-CoV, and (e) MERS-CoV and corresponding free energy surface plots of (b) SARS-CoV-2, (d)
SARS-CoV, and (f) MERS-CoV complexes with respect to their RMSD (nm) and Rg (nm).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03007
ACS Omega 2022, 7, 29995−30014

30004

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 11. Free energy landscape of PC1 and PC2 (a, b, e, f) NSP14−NSP10 mutant PPI complexes displaying the achievement of distinguishable
local minima basins (in ΔG, kJ/mol) and their corresponding free energy surface plots (c, d, g, h) with respect to their RMSD (nm) and Rg (nm). The
triple mutant (in red) is the combination of the three (F233L, P203L, and L177F) mutants.
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simulation, the average structure showed 12 H-bonds and the
initial PPI complex had 22 H-bonds. In the case of SARS-CoV
and MERS-CoV, the H-bonds in the initial structure were 14
and 8, respectively; however, after MD simulation, the average
structure showed 17 and 10 H-bonds, respectively (see Tables

S2−S4). For replicas 2 and 3, the PPI profiles of all the complex
systems are presented in Tables S3 and S4. In the case of the
SARS-CoV-2 NSP14mutant, the L177F mutation shows a
reduction in the H-bond formation after 40 ns, but in other
mutants (F233L, P203L, and the triple mutant), there is an

Table 1. MM-PBSA Binding Free Energy Calculations of NSP14−NSP10 SARS-CoV-2, SARS-CoV,MERS-CoV, and SARS-CoV-
2 NSP14mutated Complexesa

human CoV NSP14−NSP10 complex van der Waals energy electrostatic energy polar solvation energy SASA energy binding energy

Replica 1
SARS-CoV-2 −704.73 ± 346.62 −628.03 ± 315.97 1184.08 ± 581.53 −79.31 ± 39.11 −227.99 ± 137.38
SARS-CoV −934.45 ± 33.92 −1034.14 ± 63.24 1608.86 ± 93.14 −103.33 ± 3.04 −463.06 ± 89.90
MERS-CoV −392.14 ± 371.75 −543.71 ± 518.92 668.52 ± 613.89 −43.66 ± 41.23 −311.00 ± 337.02
SARS-CoV-2F233L −959.63 ± 33.32 −774.45 ± 86.45 1516.18 ± 154.28 104.24 ± 3.98 −322.14 ± 90.90
SARS-CoV-2P203L −912.90 ± 34.15 −699.34 ± 68.38 −1417.66 ± 107.47 −99.08 ± 3.98 −293.65 ± 74.37
SARS-CoV-2L177F −773.79 ± 32.71 −646.11 ± 103.47 1198.85 ± 143.88 −84.39 ± 3.62 −305.44 ± 108.38
SARS-CoV-2Triple −946.44 ± 32.82 −699.77 ± 66.16 1419.22 ± 80.84 −103.72 ± 2.92 −330.72 ± 72.02
Replica 2
SARS-CoV-2 −913.42 ± 32.20 −717 ± 74.22 1337.18 ± 104.99 −98.73 ± 3.52 −392.89 ± 75.26
SARS-CoV −901.61 ± 29.66 −935.91 ± 96.43 1490.98 ± 108.62 −99.60 ± 3.21 −446.15 ± 97.82
MERS-CoV −768.63 ± 30.67 −1209.81± 1338.12 ± 109.71 −86.22 ± 3.57 −726.54 ± 86.03
SARS-CoV-2F233L −928.56 ± 36.73 −633.29 ± 98.69 1249.84 ± 102.65 −99.04 ± 3.80 −411.06 ± 55.40
SARS-CoV-2P203L −961.15 ± 31.53 −732.10 ± 64.25 1469.84 ± 92.22 −105.03 ± 3.15 −328.45 ± 75.23
SARS-CoV-2L177F −966.01 ± 28.27 −643.65 ± 77.75 1473.20 ± 99.73 −104.52 ± 2.88 −240.99 ± 82.14
SARS-CoV-2Triple −954.59 ± 29.38 −780.03 ± 63.07 1519.38 ± 101.84 −105.19 ± 3.29 −320.43 ± 75.81
Replica 3
SARS-CoV-2 −912.92 ± 32.83 −559.06 ± 71.93 1205.36 ± 105.18 −99.14 ± 3.76 −365.76 ± 65.81
SARS-CoV −933.03 ± 34.90 −1012.12 ± 63.11 1594.67 ± 96.58 −102.82 ± 3.83 −453.29 ± 79.11
MERS-CoV −768.70 ± 33.16 −1151.44 ± 85.77 1309.04 ± 103.27 −84.47 ± 2.90 −695.57 ± 84.87
SARS-CoV-2F233L −962.58 ± 29.78 −681.60 ± 60.08 1415.92 ± 89.49 −101.45 ± 2.82 −329.72 ± 70.07
SARS-CoV-2P203L −909.33 ± 35.79 −632.04 ± 53.22 1449.00 ± 93.58 −103.93 ± 3.29 −196.31 ± 84.50
SARS-CoV-2L177F −873.85 ± 40.85 −764.27 ± 90.15 1458.46 ± 128.21 −97.92 ± 3.90 −277.58 ± 82.14
SARS-CoV-2Triple −933.09 ± 28.34 −650.72 ± 68.34 1399.72 ± 107.29 −102.87 ± 3.11 −286.96 ± 106.96

aThe energy terms (in kJ/mol) were calculated from the data obtained from the last 20 ns trajectory from the three sets of 100 ns MD simulation.

Table 2. The Per-Residue Energy Decomposition Results of Key Interacting Residues of SARS-CoV-2, SARS-CoV, MERS-CoV,
and SARS-CoV-2 Mutant NSP14−NSP10 Complexesa

PPI complex systems

per-residue energy contribution (kJ/mol)

NSP14-K200 NSP14-I201 NSP10-F19 NSP10-V21

replica 1 wild-type SARS-CoV-2 −21.50 ± 0.91 −6.71 ± 0.27 −25.03 ± 0.89 −13.16 ± 0.48
SARS-CoV-2/NSP14P203L −26.81 ± 0.56 −8.17 ± 0.18 −31.01 ± 0.20 −16.48 ± 0.15
SARS-CoV-2/NSP14F233L −17.98 ± 1.14 −7.26 ± 0.18 −30.34 ± 0.21 −15.82 ± 0.15
SARS-CoV-2/NSP14L177F −23.50 ± 0.70 −7.71 ± 0.19 −29.16 ± 0.23 −15.40 ± 0.19
SARS-CoV-2/NSP14triple −28.49 ± 0.59 −7.76 ± 0.19 −31.15 ± 0.19 −15.54 ± 0.15
SARS-CoV −44.59 ± 0.67 −5.61 ± 0.21 −27.66 ± 0.20 −17.08 ± 0.17
MERS-CoV −6.64 ± 0.68 −3.82 ± 0.33 −14.02 ± 0.95 −9.46 ± 0.66

replica 2 wild-type SARS-CoV-2 −22.95 ± 0.51 −9.05 ± 0.17 −29.76 ± 0.20 −16.09 ± 0.16
SARS-CoV-2/NSP14P203L −26.61 ± 0.49 −5.29 ± 0.16 −30.63 ± 0.20 −15.22 ± 0.17
SARS-CoV-2/NSP14F233L −23.03 ± 0.44 −5.38 ± 0.17 −32.51 ± 0.17 −16.24 ± 0.16
SARS-CoV-2/NSP14L177F −13.61 ± 0.55 −8.03 ± 0.19 −30.50 ± 0.22 −15.27 ± 0.15
SARS-CoV-2/NSP14triple −29.50 ± 0.67 −5.49 ± 0.21 −31.08 ± 0.19 −15.56 ± 0.14
SARS-CoV −40.68 ± 0.83 −5.53 ± 0.16 −29.92 ± 0.23 −16.69 ± 0.16
MERS-CoV −24.20 ± 0.62 −2.51 ± 0.21 −25.83 ± 0.21 −16.64 ± 0.16

replica 3 wild-type SARS-CoV-2 −22.28 ± 0.67 −5.10 ± 0.16 −30.63 ± 0.17 −13.41 ± 0.17
SARS-CoV-2/NSP14P203L −10.85 ± 0.61 −9.09 ± 0.16 −29.09 ± 0.20 −14.52 ± 0.13
SARS-CoV-2/NSP14F233L −26.70 ± 0.73 −7.68 ± 0.17 −28.75 ± 0.19 −15.34 ± 0.16
SARS-CoV-2/NSP14L177F −21.46 ± 46 −8.65 ± 0.16 −30.81 ± 0.22 −15.11 ± 0.18
SARS-CoV-2/NSP14triple −21.39 ± 0.71 −7.85 ± 0.16 −30.48 ± 0.21 −15.62 ± 0.13
SARS-CoV −22.30 ± 0.80 −8.85 ± 0.16 −30.35 ± 0.24 −16.41 ± 0.15
MERS-CoV −25.53 ± 0.76 −5.23 ± 0.76 −31. 90 ± 0.21 −17.74 ± 0.16

aThe per-residue energy decomposition analysis was carried out using the last 20 ns MD trajectory of the three sets of MD simulation.
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increase in the H-bond formation in the mutant structures as
compared to WT (see Figure 7 and Tables S2−S4). There are
two common interfaces of H-bond between the three viruses;
that is, NSP14 Lys61 retains a H-bond with NSP10 Ser15
throughout the MD simulation, and NSP14 Ile201 retains two
H-bonds with NSP10 Phe19 and Val21 in all the three viruses as
well as in mutant PPI complexes throughout the three sets of
MD simulation. Further, H-bond interactions are tabulated in
Tables S5−S28 and salt bridges in Tables S29 and S30.

Taking the first two eigenvectors (EVs), PCA was performed
to investigate the PPI collective motions (see Figure 8). The
scatter plot generated for PPI complexes is shown in Figures 8
and 9. A significant difference has been observed in the
conformational projections between all the three PPI complexes
of the selected viruses. It has been noticed that the projection of
the SARS-CoV-2 andMERS-CoVNSP14−NSP10 PPI complex
contracted on both the EVs during the MD simulation (see
Figure 8) as compared to SARS-CoV and the three SARS-CoV-2
NSP14 mutants (triple, P203L, and L177F) shown in Figure 9.
The NSP14−NSP10 PPI complex of the SARS-CoV-2 and
MERS-CoV system explored less phase space compared to the
WT NSP14−NSP10 SARS-CoV-2 complex and the three
mutant complexes (see Figure 9).

The free energy landscape of (FEL) provided the global
minima of backbone atoms of PPI complexes with respect to
RMSD and Rg presented in Figures 10 and 11. Distinguishable

local basins from free energy surface have been shown in red
color (see Figures 10 and 11). The NSP14−NSP10 PPI
complex of SARS-CoV-2, SARS-CoV, andMERS-CoV achieved
the global minima (lowest free energy state) between RMSD
values of 0.15 and 0.20 nm with Rg 2.35−2.37 nm (see Figure
10). For SARS-CoV, there are two positions of global minima
conformations at RMSD of 0.35 with Rg 2.33−3.36 and in
between RMSD 0.23 and 0.30 nmwith Rg at around 2.33−2.357
(see Figure 10). In the case of MERS-CoV, the global minima

Table 3. Common H-Bond Forming Residues across NSP14
and NSP10 among SARS-CoV-2, SARS-CoV, and MERS-
CoVa

NSP14

SARS-CoV-2 SARS-CoV MERS-CoV

Thr21 Thr21 Ala21
Asp41 Asp41
Lys61* Lys61* Lys61*
Asn67 Asn67 Pro69 (x)
Tyr69 Tyr69 Tyr69 (x)
Asp126 (x) Asp126 Asp126
Thr127 Thr127 (x) Thr127
Thr131 Thr131 (x) Thr131
Ile201* Ile201* Ile201*

NSP10
SARS-CoV-2 SARS-CoV MERS-CoV
Ser15* Ser15* Ser15*
Phe19* Phe19* Phe19*
Val 21* Val 21* Val 21*
Asp29* Asp29* Asp29*
Ser33* Ser33* Ser33*

Asn40 Asn40
Lys43 (x) Lys43 Lys43
Leu45* Leu45* Leu45*
Thr58 Thr58
Cys90 (x) Cys90 Cys90
Cys93* Cys93* Cys93*
Gly94* Gly94* Gly94*
Tyr96 Tyr96 Tyr96 (x)

aThe average PPI complex extracted from the last 20 ns MD
trajectory was subjected to the PDBsum server to get the interaction
profile including H-bonds. The boldface residues are involved in H-
bond formation. Unbold residues with an ″x″ mark do not form a H-
bond. Residues with an asterisk (*) are common H-bond forming
residues among all the viruses.

Table 4. List of Interacting Residues at the Protein−Protein
Interacting Interface of SARS-CoV-2 NSP14 (Chain A) and
NSP10 (Chain B)a

residues KFC
Robetta ΔΔG
(kcal/mol)

DrugScore PPI
ΔΔG (kcal/mol)

per-residue energy
contribution (kJ/mol)

LEU-
7A

HS 0.71 0.65 −6.5

PHE-
8A

HS 2.88 1.08 −15.76

THR-
21A

HS 1.16 0.54 −9.06

ASP-
41A

HS 3.81 3.49 14.47

PHE-
60A

HS 1.53 0.56 −9.73

MET-
62A

HS 1.11 0.46 −10.24

TYR-
64A

1.14 1.27 −7.46

VAL-
66A

HS 1.58 1.89 −11.93

TYR-
69A

2.69 2.33 −8.95

THR-
127A

−3.3

ASN-
130A

HS 0.36 1.03 1.58

ILE-
201A

HS 1.61 2.03 −6.71

THR-
5B

HS 1.38 0.44 −5.48

PHE-
16B

HS 3.23 1.07 −16.49

PHE-
19B

HS 4.55 1.34 −4.03

VAL-
21B

1.19 1.21 −13.16

ASP-
29B

1.13 −49.77

VAL-
42B

HS 1.48 1.12 −11.8

MET-
44B

1.25 0.55 −14.07

LEU-
45B

−7.81

THR-
58B

−2.85

HIS-
80B

HS 1.47 0.17 −1.83

LYS-
93B

HS 3.49 1.55 88.01

TYR-
96B

HS 5.34 3.07 −5.54

aInterface hotspot residues are predicted using three computational
methods implemented in the KFC, DrugScorePPI, and Robetta web
servers. The per-residue energy decomposition analysis was carried
out using the last 20 ns MD trajectory. HS: hotspot. H-bond forming
hotspot residues are depicted in boldface.
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structure was obtained around RMSD 0.24−0.32 nm with Rg
between 2.378 and 3.396 nm (Figure 10). It has been observed
that the PC1 and PC2 motion of the mutated systems of SARS-
CoV-2 spanned larger ranges than those of the WT system,
signifying the rearrangements in the conformation caused by the
mutations (see Figure 11).

Simultaneously, for protein surfaces, electrostatic potential
was observed (Figures S9 and S10). The electrostatic potential
categorized the surface into positively charged patches in blue,
negatively charged patches in red, and neutral patches in white.
Figure S9 shows an electrostatic potential surface comparison of
the three viruses’ initial NSP14−NSP10 complexes with the
average structure derived during the last 20 ns, and Figure S10
shows a comparison of WT and mutant NSP14−NSP10
complexes. The interacting interface region mostly consists of

neutral amino acids that are of two categories: (a) Nonpolar
amino acids containing hydrophobic groups attain the interior of
the protein or PPI interface (e.g., Ile, Val, Ala Trp, Leu, Gly, Met,
Pro, and Phe). Most of our predicted hotspot residues belong to
this category. (b) Polar uncharged amino acids with side chain
functional groups contain N, S, and O involved in the formation
of H-bonds with water or other molecules. The e.g. of polar
uncharged amino acids are Thr, Cys, Tyr, Glu, Ser, and Asn. This
category of amino acids (Thr, Asp, Tyr, Ser, and Phe) was found
to form a H-bond at the PPI interface in our study (see Tables
S5−S28).

For all the triplicates, by employing MM-PBSA, the BFEs
were predicted for NSP14−NSP10 complexes, and results are
presented in Table 1. The BFE of SARS-CoV NSP14−NSP10
(−463.06, −446.15, and −453.29 kJ/mol) is higher in all the

Figure 12. Representation of interacting interface residues at NSP14 (chain A) and NSP10 (chain B) of (a) SARS-CoV-2, (b) SARS-CoV, and (c)
MERS-CoV obtained from the PDBsum server. The average conformer extracted from the last 20 ns MD trajectory was subjected to the PDBsum
server. Interface hotspot residues were predicted using three computational methods implemented in the KFC2, DrugScorePPI, and Robetta web
servers along with per-residue energy decomposition analysis. The encircled residues are identified hotspot residues.
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three sets of MD as opposed to SARS-CoV-2 (−227.99,
−392.89, and −365.76 kJ/mol); however, in the case of MERS-
CoV in the first set of MD simulations, the binding energy is less
(−311.00 kJ/mol) as compared to SARS-CoV but higher in
replicas 1 and 2 (−726.54 and −695.57 kJ/mol). In the case of
SARS-CoV-2 NSP14mutant complexes, most of the mutant
complexes show a high binding affinity (BFE) between
NSP14 and NSP10 as compared to WT, with the exception of
L177F (see Table 1).

The nonpolar interaction energies including (ΔEvdW) +
(SASA) were found to have a higher contribution to ΔGbind,
which mean that hydrophobic interaction played a major role in
the formation of protein−protein complexes. ΔGbind compo-
nents signify that ΔEvdW and ΔEelec contributions are greater in
the NSP14−NSP10 interaction.

Takada et al. found that viruses containing NSP14L177F or
NSP14P203L mutation showed higher nucleotide substitution
rates in the spike, membrane, and envelop genes per year than
the viruses with the WT NSP14,13 and Eskieret al. reported that
the NSP14F233L mutation showed a high prediction capacity for
membrane glycoprotein and envelope glycoprotein genes and an
increased mutation density.12

In the current study, these NSP14 mutant complexes have
been observed to display higher binding affinity (BFE) between
NSP14 and NSP10 as compared to WT SARS-CoV-2 NSP14−
NSP10 complexes. The BFE of NSP14L177F, NSP14P203L,
NSP14F233L, and NSP14triple mutant are −305.44, −293.65,

−322.14, and − 330.72 kJ/mol, respectively, much higher
than the WT (−227.99 kJ/mol). While minor fluctuations have
been noticed between the various replicas, the overall structural
pattern is virtually similar in all the replicas. In general, replica 1
BFE was observed to be slightly higher in mutants as compared
to WT, while in replica 3, the wild-type SARS-CoV-2 complex
(see Table 1) BFE is higher than mutants.

Eckerle et al. (2007 and 2010) also suggested that the
mutation of NSP14 ExoN in MHV and SARS-CoV is
responsible for 20-fold more mutations in the whole genome
than their WT.14,17 The function of NSP14 ExoN proofreading
activity is considered to be an important feature in expanding
and maintaining the large genomes of CoVs to ensure
replication fitness and proficiency in SARS-CoV.3,7

The residue around position 203 has been analyzed, and it was
observed that the residue range of NSP14 ExoN 199 to 203
(VKIGP) is a part of interacting interface. Lys200, Ile201, and
Gly202 are conserved among all the three selected CoVs except
203. The comprehensive analysis of the PPI complex of three
viruses showed that the residues NSP14 Lys200 and Ile201
alone have direct interaction with the residues of NSP10 F19
and V21, which are also well conserved among the three selected
viruses, as shown in Tables S5−S13.The comparison of per-
residue energy contribution of these residues of all the seven
complexes in triplicate MD simulation is presented in Table 2.
Most of the mutated SARS-CoV-2 NSP14−NSP10 complexes
display higher per-residue contributions in all the three sets of

Table 5. List of Interacting Residues at the Protein−Protein Interacting Interface of SARS-CoV NSP14 (Chain A) and NSP10
(Chain B)a

residues KFC

Robetta
ΔΔG (kcal/

mol)
DrugScore PPI

ΔΔG (kcal/mol)
per-residue energy

contribution (kJ/mol)

VAL-
4A

1.05 1.28 −11.36

THR-
5A

HS 1.04 0.41 −9.63

LEU-
7A

HS 2.07 1.31 −16.56

PHE-
8A

HS 2.10 0.62 −13.63

THR-
21A

HS 0.74 0.45 −10.65

THR-
25A

HS 2.49 0.85 −14.09

SER-
28A

HS 0.93 0.24 −2.87

LEU-
38A

1.29 1.13 −14.12

ASP-
41A

1.25 3.52 23.56

ILE-
55A

HS 0.64 0.93 −4.54

PHE-
60A

HS 0.82 0.29 −2.3

MET-
62A

HS 1.14 0.53 −11.56

TYR-
64A

0.92 0.91 −9.21

VAL-
66A

HS 1.58 1.94 −15.78

ASN-
67A

−1.25

TYR-
69A

HS 3.35 2.54 −10.15

ASP-
126A

HS 0.72 0.61 12.15

residues KFC

Robetta
ΔΔG (kcal/

mol)
DrugScore PPI

ΔΔG (kcal/mol)
per-residue energy

contribution (kJ/mol)

ILE-
201A

HS 0.70 0.94 −5.61

PHE-
217A

−3.79

GLU-
6B

HS 7.92 −0.61 −18.3

PHE-
16B

HS 3.16 1.03 −20.09

PHE-
19B

HS 3.40 1.02 −27.66

VAL-
21B

HS 1.46 2.08 −17.08

ASP-
29B

1.37 1.51 −28.04

VAL-
42B

HS 1.87 1.98 −18.43

MET-
44B

1.21 0.51 −18.26

ARG-
78B

HS 2.54 0.91 10.65

HIS-
80B

HS 1.28 0.08 −0.36

LYS-
93B

HS 2.28 2.04 61.15

TYR-
96B

HS 2.38 2.84 −5.52

aInterface hotspot residues are predicted using three computational
methods implemented in the KFC, DrugScorePPI, and Robetta web
servers. The per-residue energy decomposition analysis was carried
out using the last 20 ns MD trajectory. HS: hotspot. H-bond forming
hotspot residues are depicted in boldface.
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MD simulations as compared to WT, suggesting the significant
strong interactions leading to mutant complex stability.
Although the total BFE of the mutants in replica 3 is slightly
lower than the WT SARS-CoV-2, the per-residue energy
contributions of the key interface residue are higher for SARS-
CoV-2 NSP14 Lys200 and Ile201 and NSP10 F19 and V21. The
strong interaction of NSP10 with NSP14 reflects the important
role of NSP10 in maintaining the stability of the ExoN domain
structure to fully support the NSP14 ExoN activity.22

Throughout the three sets of 100 ns MD simulation, Lys200
of NSP14 SARS-CoV-2maintained nonbonded interaction with
NSP10 Phe19 and Val21, and NSP14 and Ile201 maintained
two H-bonds, one with NSP10 Phe19 and another with
NSP10Val21(see Tables S5−S7). The same kinds of inter-
actions have been observed for SARS-CoV as well (see Tables

S8−S10) In the case of MERS-CoV, Lys200 was involved in
nonbonded interaction with NSP10 Phe19 and NSP10 Asn18,
while NSP14 Ile201 formed one H-bond with NSP10 Phe19
and nonbonded interaction with NSP10 Val21 till the end of the
simulations in the first replica (see Table S11). However, for
replicas 2 and 3, Ile201 formed two H-bonds, one with Phe19
and another with V21 (see Tables S12 and S13).
3.3. Profiling the Interaction Complex. The interface

statics or profiles of the PPI complex of the initial conformer
(beforeMD) of heterodimer NSP14−NSP10 complex of SARS-
CoV-2, SARS-CoV, and MERS-CoV and all the NSP14mutants

complexes were analyzed and compared with the average
complex structure obtained from the last 20 ns (80−100 ns)MD
trajectory. The change in the PPI interface from the initial to
average PPI structures obtained from MD simulations can be
observed from the results obtained. The PPI profiles such as
interface area, nonbonded or noncovalent interactions, H-bond,
and salt bridge information of all the complex systems are
summarized in Tables S2−S4. In the initial NSP14−NSP10
SARS-CoV-2 complex, 50 total interface residues were observed
at NSP14 and 45 at the NSP10 interface, and the interface area
was 2135 Å2 (in NSP14) and 2320 Å2 (in NSP10). For replica 1,
at the end of MD simulation, the average structure was found to
have less interacting residues, that is, 36 at NSP14 and 35 at
NSP10 interface; the interface area was 1847 Å2 (in NSP14) and
1994 Å2 (in NSP10). Interestingly, for SARS-CoV-2
NSP14mutant complexes F233L and triple mutant NSP10, the
interface area increased to 2042 and 2099 Å2, respectively (see
Table S2). In the average PPI structure, there is a reduction in
the number of H-bond formation and nonbonded contact, but
the salt bridge remains the same till the end of the MD
simulations of replica 1, while in replicas 2 and 3, there is a loss of
salt bridges in the case of SARS-CoV-2 (see Tables S3 and S4).
The details of H-bond and salt bridge information of all the PPI
complex systems along with SARS-CoV-2 mutants for the three
sets of MD simulation are summarized in Tables S5−S30.

As the H-bond plays a crucial role in stabilizing the PPI
complex, we analyzed the common H-bond forming residue
among the three selected viruses within the NSP14 and NSP10
interface, presented in Table 3. It may be noticed that there is a
reduction in the number of H-bond and nonbonded contacts in
the average complex along the MD trajectory, while the number
of interactions in the SARS-CoV average PPI structure is more
than that of SARS-CoV-2. The SARS-CoV PPI complex
contains 42 and 39 interface residues, respectively, in NSP14
and NSP10 in the initial complex, but at the end of the first set of
100 ns simulation, the number of interface residues dropped to
36 in the latter with no change in the number of the former.
Similar analysis on the MERS-CoV-2 PPI complex reveals that
the initial structure contains 42 and 39 interacting interface
residues for NSP14 and NSP10, same as SARS-CoV. However,
the end of simulation trajectory analysis reveals that there is an
increase in the average H-bonds from 8 to 10, loss in one salt
bridge, and a slight reduction in the nonbonded contacts (see
Tables S2−S4b). The common H-bond forming residues
among all the three viruses at the NSP14 interface are Lys61
and Ile210; at the NSP10 interface, the residues are Ser15,
Phe19, Val21, Asp29, Leu45, Cys93, and Gly94. For SARS-CoV
and SARS-CoV, the common H-bond forming residues at the
NSP14 interface are Thr21, Asp41,Lys61, Asn67, Tyr69, and
Ile201; at the NSP10 interface, the residues are Ser15, Phe19,
Val21, Asp29, Ser33, Leu45, Cys93, Gly94, and Tyr96. The
common H-bond forming residues among SARS-CoV-2 and

Table 6. List of Interacting Residues at the Protein−Protein
Interacting Interface of MERS-CoV NSP14 (Chain A) and
NSP10 (Chain Ba

residues KFC
Robetta ΔΔG
(kcal/mol)

DrugScore PPI
ΔΔG (kcal/mol)

per-residue energy
contribution (kJ/mol)

TYR-
22A

1.07 1.91 −6.21

LEU-
39A

1.37 1.11 −7.69

LEU-
62A

HS 1.43 0.89 −5.71

VAL-
66A

HS 1.23 0.93 −5.68

TYR-
69A

1.92 1.00 −1.77

ASP-
126A

HS 0.77 1.22 −5.98

ASN-
131A

HS 1.88 0.65 −1.17

LYS-
200A

1.34 0.84 −6.64

ILE-
201A

HS 0.85 1.47 −3.82

SER-
15B

HS 0.81 0.59 −0.43

LEU-
16B

HS 1.01 0.33 −6.99

PHE-
19B

HS 3.85 1.20 −14.02

THR-
20B

HS 0.82 0.38 −1.39

VAL-
21B

HS 1.49 1.67 −9.46

ASN-
40B

−3.43

VAL-
42B

HS 1.84 1.37 −9.37

LYS-
43B

−6.92

MET-
44B

1.29 0.50 −8.23

HIS-
80B

HS 2.47 0.29 −3.07

LYS-
93B

HS 1.43 1.30 40.99

PHE-
96B

1.11 0.54 −4.03

aInterface hotspot residues are predicted using three computational
methods implemented in the KFC, DrugScorePPI, and Robetta web
servers. The per-residue energy decomposition analysis was carried
out using the last 20 ns MD trajectory. HS: hotspot.
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MERS-CoV at the NSP14 interface are Thr127, Ile201 and
Lys61; at the NSP10 interface, the residues are Ser15, Phe19,
Val21, Asp29, Ser33, Leu45, Cys93, and Gly94. The common
H-bond forming residues among SARS-CoV andMERS-CoV at
the NSP14 interface are Asp126, Ile201, and Lys61; at the
NSP10 interface, the residues are Ser15, Phe19, Val21, Asp29,
Ser33, Asn40, Lys43, Leu45, Cys90, Cys93, and Cys96 (see
Table 3).
3.4. Hotspot Residue Prediction. The summary of the

results obtained from the four methods (KFC2 server,
DrugscorePPI, and Robetta servers and residue wise energy
contribution) is presented in Tables S31−S33. The result
obtained from the comparison of four methods suggests that
among the key interface residues, a couple of them are predicted
to be hotspots upon alanine mutation in the Robetta server and
DrugScorePPI with ΔΔG values >1 kcal/mol or nearly 1 kcal/
mol. The hotspot residues and their energy contributions across
PPI interface are tabulated in Tables 4−6.

At the PPI interface, the energy of the residues is not
uniformly distributed, which is one of the key features of the PPI
interface. Some of them are highly responsible for binding
energy toward the formation of the PPI complex and considered
to be hotspot residues.33,38−43 Studies have suggested that
hotspots have a tendency to form clusters at the center of the
interface.33,38−43 Most of our predicted potential hotspots are
observed in clusters andmostly at the center of the PPI interface.
At the NSP14−NSP10 interface of SARS-CoV-2 and SARS-
CoV, the common predicted hotspot residues at the NSP14
(chain A) interface are Thr21, Asp41, Met62, Thr64, Asn67,
Ile201, Val66, Tyr69, and Asp126, and at the NSP10 (chain B)
interface, Phe16, Phe19, Val21, Val42,Met44, His80, Lys93, and
Tyr96 are predicted as common hotspot residues among SARS-
CoV-2 and SARS-CoV (Figure 12 and Tables 4−6). The
MERS-CoV NSP14 and NSP10 sequence has 61 and 58%
identity with SARS-CoV-2 and SARS-CoV; therefore, many
interacting interface residues of MERS NSP14 and NSP10 are
different. However, few residues are conserved among all the
three viruses, and among them, four residues (Val66, Thr69,
Asp126, and Ile201) of MERS NSP14 and nine residues of
MERS-CoV NSP10 (Leu16, Phe19, Val21, Val42, Met44,
His80, Lys93, and Phe96) are identified as common hotspot
residues among all the three viruses, which can be considered to
be the important residues toward the formation of the NSP14−
NSP10 complex in all the three viruses. Among all the
interacting interface residues, the hotspot residues at the
NSP14 and NSP10 interface are in boldface in Tables S31−
S33, encircled in Figure 12, and depicted as spheres in 3D form
in Figure S11.

There are a number of critical residues of the NSP10
interacting interface that have been identified through
experimental ASM studies. However, for NSP14, mostly ASM
studies have been performed for catalytic residues (Asp90,
Glu92, Asp243, Glu191, His268, Asp273), two zinc finger
residues (Cys207, Cys210, Cys226, His229), and a second zinc
finger (His257, Cys261, His264) in all the three viruses.22,88,89

Only a limited number of ASM studies have been done for the
NSP14 interacting interface21 and MERS-CoV NSP14−
NSP1089,90 as the complex is not yet explored because there is
no crystal structure available.

Recently, Moeller et al. verified the SARS-CoV-2 ExoN
activities with single interacting interface amino acid sub-
stitutions with Ala for Lys9A, Lys61A, and K139A. In this
experiment, all the three Lys-to-Ala mutants exhibited lesser

activity than theWTNSP14 ExoN. Particularly, the substitution
of K9A and K61A caused more severe defects than K139A.21

NSP14 Lys61 formed one H-bond and few nonbonded
interactions with NSP10 Ser15 in all the three viruses,
suggesting that this common residue is one of the key residues
in the interface.

In addition to Lys61,Met62 was also identified as a hotspot by
all the three servers with high per-residue energy contributions,
that is, −10.78 kJ/mol in SARS-CoV2 and −11.56 kJ/mol in
SARS-CoV NSP14, which are higher than Lys61 (−1.11 kJ/mol
in SARS-CoV-2 and −6.75 kJ/mol in SARS-CoV, respectively).
Overall, from the triplicate MD analysis, we conclude that,
among the three CoVs, the SARS-CoV and MERS-CoV
NSP14−NSP10 PPI complex is more flexible with higher
binding free energy between NSP14 and NSP10 as compared to
SARS-CoV-2 and all the SARS-CoV-2 mutant complexes for all
the three sets of MD simulation. SARS-CoV-2 WT and mutant
PPI complexes are also observed to be structurally more stable
and rigid than the SARS-CoV and MERS-CoV. This structural
stability of SARS-CoV-2 NSP14−NSP10 WT and mutants may
induce stable mutations throughout the genome by a high-
fidelity proofreading mechanism, thereby releasing new possible
variants.

4. CONCLUSIONS
The present study makes an attempt to delineate the RNA
synthesis proofreading mechanism in selected coronaviruses by
rigorously analyzing the protein−protein interactions of
NSP14−NSP10 in CoVs. A comparative analysis has been
carried out by taking SARS-CoV-2, SARS-CoV, and MERS-
CoV, as well as the four mutants of SARS-CoV-2
NSP14P203L,L177F,F233L,triple‑mutant complexes, through molecular
dynamics simulation studies in triplicate. It has been observed
that the SARS-CoV NSP14−NSP10 PPI complex had a higher
binding affinity in all the three sets of MD simulation as
compared to SARS-CoV-2. It is interesting to note that few of
theSARS-CoV-2 mutants result in an increase in the BFE in all
the triplicates, revealing that the mutations may enhance
functionality. The SARS-CoV-2 NSP14−NSP10 complex
showed convergence with less RMSD value and less structural
flexibility in comparison to SARS-CoV and MERS-CoV
according to MD simulations. In the case of the mutant
complex, P203L and L177F had significantly higher fluctuations
during the simulations than the WT complex, while triple and
F233L mutants do not show great differences in RMSD, Rg, and
RMSF. All mutant complexes show slightly higher flexibility as
compared to WT but are found to be more rigid than the SARS-
CoV and MERS-CoV NSP14−NSP10 complex. In this work,
more attention is given to the residue range 245−268 of NSP14
ExoN, which shows more structural fluctuations in the case of
SARS-CoV NSP14, where some of the catalytic site residues
(His257, Cys261, and His264) fall within this region. In
addition to this, the SARS-CoV NSP10 C-terminal undergoes
conformational change (res. 113−131) from the initial coil to
beta strand during the simulation. However, these changes are
not observed in NSP14 and NSP10 of SARS-CoV-2, MERS-
CoV, and SARS-CoV-2 NSP14mutants. Structural stability is
required for efficient proofreading activity by the virus for
maintaining the viral replication fitness and proficiency. The
study hypothesized that the overall structural stability and
rigidity in important regions of SARS-CoV-2NSP14 andNSP10
and mutant complexes may perhaps be the reason leading to the
evolution of new effective variants of SAR-CoV-2. Some of the
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common NSP14 (Val66, Thr69, Asp126, and Ile201) residues
and eight NSP10 residues (Leu16, Phe19, Val21, Val42, Met44,
His80, Lys93, and Phe96) are identified as hotspots among all
the three viruses. A few of the hotspot residues identified by the
series of experiments conducted in this study are not
investigated yet by experimental ASM. Moreover, to the best
of our knowledge, this is the first attempt where a comparative
study has been done on all the three important CoVs. This in
silico study may lead the way to predict probable unknown
hotspot locations at the interacting protein interface of the
SARS-CoV-2 NSP14−NSP10 complex. Experimental ASM is a
tedious task as it takes time and is highly expensive. Researchers
will be able to minimize the negative results of random ASM
experiments by selecting those potential hotspot residue
locations identified by in silico approaches. In addition, based
on the information on the nature of the interacting interface area
and hotspot location, peptide/peptidomimetic, or small
molecule can be designed to disturb the PPI between NSP14
and NSP10. This study may also serve as the basis for various
other protein−protein interaction studies to identify the
interacting protein partners in other disease pathways.
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L.; Durfee, C.; Amaro, R. E.; Aihara, H. Structure and dynamics of
SARS-CoV-2 proofreading exoribonuclease ExoN. Proc. Natl. Acad. Sci.
2022, 119, No. e2106379119.
(22)Ma, Y.; Wu, L.; Shaw, N.; Gao, Y.; Wang, J.; Sun, Y.; Lou, Z.; Yan,

L.; Zhang, R.; Rao, Z. Structural basis and functional analysis of the

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03007
ACS Omega 2022, 7, 29995−30014

30012

https://pubs.acs.org/doi/10.1021/acsomega.2c03007?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03007/suppl_file/ao2c03007_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Himakshi+Sarma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:himakshi.acdsd19@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="G.+Narahari+Sastry"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3181-7673
mailto:gnsastry@gmail.com
mailto:gnsastry@neist.res.in
https://pubs.acs.org/doi/10.1021/acsomega.2c03007?ref=pdf
https://doi.org/10.1016/j.ijantimicag.2020.106054
https://doi.org/10.1016/j.ijantimicag.2020.106054
https://doi.org/10.1016/j.ijantimicag.2020.106054
https://doi.org/10.1073/pnas.96.24.13910
https://doi.org/10.1007/s00239-001-0064-3
https://doi.org/10.1007/s00239-001-0064-3
https://doi.org/10.1007/s00239-001-0064-3
https://doi.org/10.4161/rna.8.2.15013
https://doi.org/10.4161/rna.8.2.15013
https://doi.org/10.1016/j.virusres.2006.01.017
https://doi.org/10.1128/JVI.00694-10
https://doi.org/10.1016/j.coviro.2012.07.005
https://doi.org/10.1016/j.coviro.2012.07.005
https://doi.org/10.1038/s41579-020-00468-6
https://doi.org/10.1073/pnas.0508200103
https://doi.org/10.1073/pnas.0508200103
https://doi.org/10.1016/j.molcel.2020.07.027
https://doi.org/10.1016/j.molcel.2020.07.027
https://doi.org/10.1371/journal.ppat.1003760
https://doi.org/10.1371/journal.ppat.1003760
https://doi.org/10.7717/peerj.10181
https://doi.org/10.7717/peerj.10181
https://doi.org/10.7717/peerj.10181
https://doi.org/10.1101/2020.12.23.424231
https://doi.org/10.1101/2020.12.23.424231
https://doi.org/10.1101/2020.12.23.424231
https://doi.org/10.1101/2020.12.23.424231?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.ppat.1000896
https://doi.org/10.1371/journal.ppat.1000896
https://doi.org/10.1128/JVI.01246-20
https://doi.org/10.1128/JVI.01246-20
https://doi.org/10.1128/JVI.01246-20
https://doi.org/10.1371/journal.ppat.1003565
https://doi.org/10.1371/journal.ppat.1003565
https://doi.org/10.1128/JVI.01296-07
https://doi.org/10.1128/JVI.01296-07
https://doi.org/10.1073/pnas.1718806115
https://doi.org/10.1073/pnas.1718806115
https://doi.org/10.1007/82_2015_459
https://doi.org/10.1007/82_2015_459
https://doi.org/10.1126/science.abi9310
https://doi.org/10.1126/science.abi9310
https://doi.org/10.1073/pnas.2106379119
https://doi.org/10.1073/pnas.2106379119
https://doi.org/10.1073/pnas.1508686112
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


SARS coronavirus nsp14−nsp10 complex. Proc. Natl. Acad. Sci. 2015,
112, 9436−9441.
(23) Chien, M.; Anderson, T. K.; Jockusch, S.; Tao, C.; Li, X.; Kumar,

S.; Russo, J. J.; Kirchdoerfer, R. N.; Ju, J. Nucleotide analogues as
inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19.
J. Proteome Res. 2020, 19, 4690−4697.
(24) Jockusch, S.; Tao, C.; Li, X.; Anderson, T. K.; Chien, M.; Kumar,

S.; Russo, J. J.; Kirchdoerfer, R. N.; Ju, J. A library of nucleotide
analogues terminate RNA synthesis catalyzed by polymerases of
coronaviruses that cause SARS and COVID-19. Antiviral Res. 2020,
180, No. 104857.
(25) Blazer, L. L.; Neubig, R. R. Small molecule protein−protein

interaction inhibitors as CNS therapeutic agents: current progress and
future hurdles. Neuropsychopharmacology 2009, 34, 126−141.
(26) Gurung, A. B.; Bhattacharjee, A.; Ali, M. A.; Al-Hemaid, F.; Lee, J.

Binding of small molecules at interface of protein−protein complex−A
newer approach to rational drug design. Saudi J. Biol. Sci. 2017, 24,
379−388.
(27) Kuenemann, M. A.; Sperandio, O.; Labbé, C. M.; Lagorce, D.;

Miteva, M. A.; Villoutreix, B. O. In silico design of lowmolecular weight
protein−protein interaction inhibitors: Overall concept and recent
advances. Prog. Biophys. Mol. Biol. 2015, 119, 20−32.
(28) Panwar, D.; Rawal, L.; Ali, S. Molecular docking uncovers TSPY

binds more efficiently with eEF1A2 compared to eEF1A1. J. Biomol.
Struct. Dyn. 2015, 33, 1412−1423.
(29) Rognan, D. Rational design of protein−protein interaction

inhibitors. MedChemComm. 2015, 6, 51−60.
(30) Xu, J.; Xu, J.; Chen, H. Interpreting the structural mechanism of

action for MT7 and human muscarinic acetylcholine receptor 1
complex by modeling protein−protein interaction. J. Biomol. Struct.
Dyn. 2012, 30, 30−44.
(31) Jin, L.; Wang, W.; Fang, G. Targeting protein-protein interaction

by small molecules. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 435−456.
(32) Cesa, L. C.; Mapp, A. K.; Gestwicki, J. E. Direct and propagated

effects of small molecules on protein−protein interaction networks.
Front. Bioeng. Biotechnol. 2015, 3, 119.
(33) Keskin, O.; Ma, B.; Nussinov, R. Hot regions in protein−protein

interactions: the organization and contribution of structurally
conserved hot spot residues. J. Mol. Biol. 2005, 345, 1281−1294.
(34) González-Ruiz, D.; Gohlke, H. Targeting protein-protein

interactions with small molecules: challenges and perspectives for
omputational binding epitope detection and ligand finding. Curr. Med.
Chem. 2006, 13, 2607−2625.
(35) Bogan, A. A.; Thorn, K. S. Anatomy of hot spots in protein

interfaces. J. Mol. Biol. 1998, 280, 1−9.
(36) Cheung, L. S.-L.; Kanwar, M.; Ostermeier, M.; Konstantopoulos,

K. A hot-spot motif characterizes the interface between a designed
ankyrin-repeat protein and its target ligand. Biophys. J. 2012, 102, 407−
416.
(37) Clackson, T.; Wells, J. A. A hot spot of binding energy in a

hormone-receptor interface. Science 1995, 267, 383−386.
(38) Thorn, K. S.; Bogan, A. A. ASEdb: a database of alanine

mutations and their effects on the free energy of binding in protein
interactions. Bioinformatics 2001, 17, 284−285.
(39) Moreira, I. S.; Fernandes, P. A.; Ramos, M. J. Hot spots�A

review of the protein−protein interface determinant amino-acid
residues. Proteins: Struct., Funct., Bioinf. 2007, 68, 803−812.
(40) Caffrey, D. R.; Somaroo, S.; Hughes, J. D.; Mintseris, J.; Huang,

E. S. Are protein−protein interfaces more conserved in sequence than
the rest of the protein surface? Protein Sci. 2004, 13, 190−202.
(41) Lockless, S. W.; Ranganathan, R. Evolutionarily conserved

pathways of energetic connectivity in protein families. Science 1999,
286, 295−299.
(42) Schreiber, G.; Fersht, A. R. Energetics of protein-protein

interactions: Analysis of the Barnase-Barstar interface by single
mutations and double mutant cycles. J. Mol. Biol. 1995, 248, 478−486.
(43) Thornton, J. M. The Hans Neurath Award lecture of The Protein

Society: proteins�a testament to physics, chemistry, and evolution.
Protein Sci.: Publ. Protein Soc. 2001, 10, 3.

(44) Cunningham, B. C.;Wells, J. A. High-resolution epitopemapping
of hGH-receptor interactions by alanine-scanning mutagenesis. Science
1989, 244, 1081−1085.
(45) Chothia, C.; Janin, J. Principles of protein−protein recognition.
Nature 1975, 256, 705−708.
(46) Janin, J. Principles of protein-protein recognition from structure

to thermodynamics. Biochimie 1995, 77, 497−505.
(47) Miller, S.; Lesk, A. M.; Janin, J.; Chothia, C. The accessible

surface area and stability of oligomeric proteins. Nature 1987, 328,
834−836.
(48) Argos, P. An investigation of protein subunit and domain

interfaces. Protein Eng., Des. Sel. 1988, 2, 101−113.
(49) Janin, J.; Miller, S.; Chothia, C. Surface, subunit interfaces and

interior of oligomeric proteins. J. Mol. Biol. 1988, 204, 155−164.
(50) Jones, S.; Thornton, J. M. Protein-protein interactions: a review

of protein dimer structures. Prog. Biophys. Mol. Biol. 1995, 63, 31−65.
(51) Arkin, M. R.; Randal, M.; DeLano, W. L.; Hyde, J.; Luong, T. N.;

Oslob, J. D.; Raphael, D. R.; Taylor, L.; Wang, J.; McDowell, R. S.;
Wells, J. A.; Braisted, A. C. Binding of small molecules to an adaptive
protein−protein interface. Proc. Natl. Acad. Sci. 2003, 100, 1603−1608.
(52) Sharma, R.; Sagurthi, S. R.; Sastry, G. N. Elucidating the

preference of dimeric over monomeric form for thermal stability of
Thermus thermophilus isopropylmalate dehydrogenase: A molecular
dynamics perspective. J. Mol. Graphics Modell. 2020, 96, No. 107530.
(53) Sharma, R.; Sastry, G. N. Deciphering the dynamics of non-

covalent interactions affecting thermal stability of a protein: Molecular
dynamics study on point mutant of Thermus thermophilus
isopropylmalate dehydrogenase. PLoS One 2015, 10, No. e0144294.
(54) Eyrisch, S.; Helms, V. What induces pocket openings on protein

surface patches involved in protein−protein interactions? J. Comput.-
Aided Mol. Des. 2009, 23, 73−86.
(55) Eyrisch, S.; Medina-Franco, J. L.; Helms, V. Transient pockets on

XIAP-BIR2: toward the characterization of putative binding sites of
small-molecule XIAP inhibitors. J. Mol. Model. 2012, 18, 2031−2042.
(56) Kumari, R.; Kumar, R.; Open Source Drug Discovery

Consortium; Lynn, A. g_mmpbsa� A GROMACS tool for high-
throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54,
1951−1962.
(57) Srivastava, H. K.; Sastry, G. N. Efficient estimation of MMGBSA-

based BEs for DNA and aromatic furan amidino derivatives. J. Biomol.
Struct. Dyn. 2013, 31, 522−537.
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