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Abstract

Background: Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from
some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig
production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk
of boar taint. There is evidence for genetic variation in the predisposition to boar taint.

A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred
Danish Landrace boars with high levels of skatole in fat (>0.3 ug/g), were each matched with a litter mate with low
levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using
the lllumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on
938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For
androstenone, a regional heritability approach’ combining information from multiple SNPs was used to estimate the
genetic variation attributable to individual autosomes.

Results: A highly significant association was found between variation in skatole levels and SNPs within the CYP2ET
gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance
was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously.
Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and
nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on
SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal
heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using
GWAS.

Conclusions: Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace
pigs. The study agrees with evidence that the CYP2ET gene has effects on skatole breakdown in the liver. Autosomal
heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for
GWAS significance.
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Background

Boar taint is an offensive urine or faecal-like odour, affect-
ing the smell and taste of some cooked pork. Androste-
none and skatole, which are lipophilic compounds that
accumulate in the fat of mature non-castrated male pigs,
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have been identified as the main causes of boar taint [1]. A
range of thresholds, above which negative reactions from
consumers are expected, have been reported for androste-
none (>0.5-1.0 pg/g fat) and skatole (>0.2-0.25 pg/g fat)
[2-6]. The scale of the problem was revealed in a large EU
study of carcasses from over 40,000 non-castrated male
pigs. Androstenone levels exceeded 1.0 pg/g fat and skatole
levels exceeded 0.25 pg/g fat in 30% and 11% of these car-
casses, respectively [3]. The cost of testing, losses in carcass
value and potential future lost sales result in a substantial
economic cost to the industry.
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Androstenone or 5a-androst-16-en-one is a male ster-
oid produced in the testes at sexual maturity. High con-
centrations of androstenone are present in the saliva of
male pigs where it is converted to a pheromone and is
an important olfactory trigger for sexual behaviour in
sows [7]. Androstenone accumulates in adipose tissue
producing taint when the fat is heated. The ability to de-
tect this taint is itself under genetic control in humans and
largely governed by the OR7D4 receptor. Approximately
70% of the human population are unable to detect the as-
sociated urine like odour [8,9]. Skatole or 3-methyl-indole
is produced from the breakdown of tryptophan by bacteria
in the hindgut of the pig and subsequently absorbed into
the blood stream where it is largely metabolised in the liver
and excreted in urine. Skatole which is not degraded in the
liver is deposited in peripheral tissues mainly accumulating
in adipose tissue.

The most effective solution, to date, for controlling
boar taint, is surgical castration shortly after birth. How-
ever, as castration removes natural anabolic androgens
that promote lean growth, non-castrates are leaner with
10-30% greater efficiency in feed conversion and super-
ior meat quality. Furthermore, concerns over animal wel-
fare have led to legislative control [10]. Within Europe an
industry-wide agreement is in place to cease castration for
welfare reasons by 2018 (http://ec.europa.eu/food/animal/
welfare/farm/initiatives_en.htm), forcing the industry to ex-
plore other methods to prevent tainted carcasses.

Selective breeding based on the identification and ex-
ploitation of genetic variation in androstenone and skatole
levels could ultimately provide a more sustainable solution
[11]. Recent studies have revealed Quantitative Trait Loci
(QTL) with effects on skatole or androstenone, including
QTL mapped to almost every chromosome [11-18]. The
genetic architecture of predisposition to boar taint shows
evidence for inter- and intra-breed variation with many
of the reported effects appearing to be breed specific
[11,16-19]. In general, Duroc pigs tend to have high
levels of androstenone, and the Landrace breeds high
levels of skatole. The relationship between the two com-
pounds is complex. Testicular steroids have been shown
to inhibit the breakdown of skatole in the liver but the re-
lationship between the compounds and the underlying
mechanisms are not well understood [20].

Although highly successful at identifying new trait asso-
ciated loci and pathways, human genome-wide association
studies (GWAS) have failed to capture a large proportion
of the genetic variation in complex traits [21,22]. To ad-
dress this so-called ‘missing heritability’ gap, methods have
been developed involving the analysis of larger regions of
the genome to account for variation unexplained by ana-
lysis of individual single nucleotide polymorphisms (SNPs)
[23]. Estimating local heritability using larger regions cap-
tures additive variation in the genome which might elude
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the stringent significance thresholds necessary for test-
ing each SNP individually. It has also been suggested
that rare variants not in complete linkage disequilib-
rium (LD) with common SNP markers are captured by
estimating the genetic variation from an entire “region”
or set of SNPs [24].

The objective of this study was to identify genomic re-
gions with effects on boar taint in Landrace pigs.

Results are reported from the two approaches used:
(i) single SNP analysis using genome-wide association,
and (ii) a regional approach dividing SNPs by chromo-
some and estimating genetic variation attributable to
each autosome.

Results

We acquired data for a population of approximately
6,000 commercial Danish Landrace boars. The animals
were slaughtered at a mean age of 160 (+13) days. Mea-
sures for skatole were taken using an in-line procedure
at three Danish abattoirs. Power to detect a QTL can be
increased in a finite sample by selecting those individuals
that differ most from the phenotypic mean i.e. the ex-
tremes of the phenotypic distribution. Here, we took ex-
treme animals plus a within-litter ‘control’ in order to
maximize power while controlling for family stratifica-
tion. This strategy maximises the potential genetic in-
formation to be gained from the sample [25,26]. Thus,
500 boars with high skatole (>0.3 pg/g fat) at slaughter,
each matched with a low skatole litter mate (the lowest
in the litter and in any event below 0.3 ug/g) were se-
lected for genome-wide analysis. Phenotypic measurements
for androstenone in adipose tissue were subsequently
collected for these selected 1,000 boars.

The measures for both skatole and androstenone were
positively skewed and were log transformed prior to ana-
lysis (Additional file 1: Figure S1). Descriptive statistics
and heritabilities for both traits are given in Table 1.
Pedigree information and skatole measures were avail-
able for 5,000 boars from the initial population that were
not selected for genotyping and genome-wide analyses.
Narrow sense heritabilities estimated from pedigree rela-
tionships hﬁedigree (LM 1) using all 6,000 records for ska-
tole and 1,000 records for androstenone were moderate
at 0.39 (s.e. 0.03) and 0.52 (s.e. 0.09) respectively and
were similar to those previously reported [16,27]. The
genomic heritability estimate of 0.07 (s.e. 0.01) for ska-
tole in the selected individuals was very low (Table 1).
This result was expected and reflects the experimental
design as the selected individuals comprised phenotypic-
ally divergent sibs for skatole thus maximising the within
family variance. Narrow sense heritability is based on a
ratio of the between and within family variance and is
therefore reduced (and was similarly reduced in the
pedigree based estimate using only the 1,000 genotyped
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Table 1 Descriptive statistics for skatole and
androstenone

Skatole Androstenone
Mean (ug/g) 032 1.05
Sd (ng/9) 024 0.93
Range (ug/g) 0.02-2.49 0.06-9.23

Effect of slaughter weight
(sig of effect)

—0.0089 (3.43 E-05) —0.023 (0.0007)

Effect of meat percentage —0.048 (9.1 E-12) —0.026 (0.06)
(sig of effect)”

h2cdigree (5€) 039 (0.03)™ 052 (0.09)
h? op (s€) 007 (0.01) 035 (0.08)

Data from 938 progeny of 128 sires and 441 dams.

TCovariate effects estimated in LMM using log trait.

h?,edig,,ee refers to narrow sense heritability estimated in a linear mixed model
using GRM estimated from pedigree relationships.

™Narrow sense heritability estimated for skatole using pedigree relationships
from 6000 individuals.

h\p refers to narrow sense heritability estimated in a linear mixed model
using GRM estimated from SNP genotypes.

individuals (not shown)). Comparing variance compo-
nents estimated from the unselected and selected popu-
lations provides an indication of how effects estimated
in the selected sample would scale to the population as a
whole. Mean skatole measures for selected boars and
their litter mates were 0.48 (sd. 0.25) and 0.15 (sd. 0.06)
ug/g respectively. Although data were selected for ska-
tole, androstenone measures also differed slightly (but
not significantly) between the two groups with a mean
of 1.25 (sd. 1.0) pg/g in the high skatole animals, and
0.85 (sd. 0.77) pg/g in their low skatole litter mates. The
estimated genetic correlation between skatole and andros-
tenone in the selected data was 0.27 (s.e. 0.20). Because
the estimate of the additive genetic variance in skatole is
biased downwards in the genotyped subset, the genetic
correlation between skatole and androstenone is also likely
to be underestimated.

Genome-wide association study (GWAS)

DNA isolated from muscle samples collected at slaughter
were genotyped for 63,153 SNPs using the Illumina Porci-
neSNP60 beadchip [28]. Analysis was restricted to the au-
tosomes. The genotype data were subjected to quality
control (QC) through an iterative process performed using
the GenABEL package in R 2.9.1 software [29,30]. The QC
criteria for SNPs were call rates > 0.95 and minor allele
frequencies (MAF) > 0.01. The QC criteria for individuals
were call rates > 0.95, heterozygosity < 045 (1% false discov-
ery rate (FDR)) and identity-by-state (IBS) < 0.95. After QC,
44,648 autosomal SNPs and 938 individuals were included in
the final analysis. SNP locations throughout the analysis are
given according to the published draft pig genome sequence
(Sscrofal0.2: ftp://ftp.ncbinlm.nih.gov/genbank/genomes/
Eukaryotes/vertebrates_mammals/Sus_scrofa/Sscrofal0.2/)
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[31] and as available in Ensembl release 75 (http://www.
ensembl.org/Sus_scrofa/Info/Index).

Population stratification

Genome wide association is based on differences in allele
frequencies associated with differences in the trait under
study. Phenomena such as admixture, selection and popu-
lation stratification can result in spurious patterns of allele
frequencies unrelated to the trait. Population stratification
can be assessed by clustering individuals based on mea-
sures of relatedness and examining clusters for evidence of
systematic bias. Here, model based clustering was per-
formed using the mclust function in R software 2.10.1 [30].
Mclust uses Bayesian information criterion (BIC) and an
expectation maximisation algorithm (EM) to select the op-
timal model and number of clusters. The best fit for the
data was 3 elipsoidal clusters (Figure 1). Multi-dimensional
scaling (mds) was applied to a distance matrix obtained as

~N

Within groups sum of squares
5.0e+13 1.0e+14 1.5e+14 2.0e+14 2.5e+14 3.0e+14

noo

010

Figure 1 Visualization of population structure. Scree plot showing
best fit shown by bend in curve is 3 clusters for the data (top). Plot of
three clusters using co-ordinates from multi-dimensional scaling
(bottom). Clusters are shown in green, red and blue. Individuals are

assigned to clusters or groups based on degree of genetic relatedness.
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a function of the weighted genomic relationship matrix.
Multi-dimensional scaling returns a matrix with k columns
whose rows give the coordinates of the points chosen to
represent dissimilarities. k is a user defined parameter
based on the expected number of clusters, here k=3. The
3 columns from the mds matrix were fitted into the linear
model as covariates in order to account for the population
stratification indicated by the model based clustering.

The differences in study design between the two traits
(i.e. skatole, androstenone) were reflected in the GWAS
by very different estimates of lambda, which is an indica-
tor of bias due to population structure. Lambda was
close to 1 for all of the skatole analyses where high and
low animals were matched sibs, but greater than 2 for
the androstenone analyses. This result indicates that the
sampling design for skatole was balanced and therefore,
unaffected by potential biases arising from any popula-
tion stratification. Although lambda indicates some bias
for the androstenone analyses, this bias was largely
accounted for with the inclusion of the co-ordinates
from the multi-dimensional scaling (mds) matrix in the
model (i.e. the inclusion of the mds matrix lowered the
value of lambda from 2.0 to 1.3). Any remaining stratifi-
cation was successfully corrected for by fitting the gen-
omic relationship matrix. Full details are given in the
materials and methods.

Single SNP associations were performed using a
GRAMMAR [29] analysis (LM 3) in GenABEL software.
The results are summarized in Figure 2. Test statistics
exceeding genome-wide significance were found on SSC14
for skatole, and on SSC5 for androstenone. Further
peaks on SSC13 and SSC17 exceed a genome-wide 5%
FDR for effects on androstenone. Effects on skatole ex-
ceeding nominal significance but not genome-wide sig-
nificance were also seen on SSC3, SSC5, SSC6 and
SSC8 (Table 2).

Skatole

The effect of the SIRIO000194 SNP at the telomeric end of
SSC14 on skatole levels was highly significant (P < 1.4E-09)
exceeding the genome-wide threshold (Figure 2) and
explaining ~5% of the phenotypic variance. This SNP lies
within the CYP2EI gene, which encodes an enzyme in-
volved in the breakdown of skatole [32-34]. The next rank-
ing SNP after the SNPs in LD with SIRI0000194 is the
ASGA0039716 SNP on chromosome 8. The ASGA0039716
SNP lies within the gene TET2 or methylcytosine dioxygen-
ase 2. There is no obvious connection between the func-
tion of this gene or any other protein coding genes within
1 Mbp of TET2 as currently annotated in the pig genome
and skatole metabolism or storage. SNPs on chromosomes
3, 5 and 6 also reach nominal significance. When we fitted
SIRIO000194 as a fixed effect the ranking changed and
MARC0040638 was the top ranking SNP (P < 0.001).
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Figure 2 Manhattan plots for genome-wide association analysis
for associations with skatole (top) and androstenone (bottom).
Grammar method applied to eighteen autosomes plus unassigned
SNPs (far right in dark blue). Genome-wide significance thresholds
dashed line 5% FDR cut off. Dotted line is genome-wide significance
threshold set by 100,000 permutations. Results are based on corrected
P values using lambda statistic to account for systematic bias.

Androstenone

A peak of genome-wide significant SNP effects on androste-
none was seen on SSC5 (P < 6.8E-07) explaining 4% of the
phenotypic variation (Table 2). Two SNPs H3GA0016037
and ASGA0025097 mapping 4 Mbp apart are highly
significant. Figure 3 shows the LD structure and genes
around the SSC5 peak SNP for androstenone. LD be-
tween the two SNPs is relatively high at r* = 0.68 sug-
gesting that both SNPs are tagging the same causal
variant. There were also SNPs with large effects on chro-
mosomes 8, 13 and 17 (Table 2). SSC13 and 17 exceeded
the genome-wide false discovery rate. ALGA0073594 on
SSC13 does not map to any known gene. ASGA0095898
on SSC17 lies within PTPRT or protein tyrosine phosphatase,
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Table 2 Descriptive statistics for most significant SNP effects
Chr SNP Pos (bp)§ P value SNP effect Proportion phenotypic variance Sig-full”
Skatole
14 SIRIO000194 153,477,507 1.40E-09** -0.26 0.05 1.66E-10
8 ASGA0039716 125,083,628 0.00029 0.04 0.001 0.0018
5 ASGA0025182 28,884,161 0.00052 0.12 0.02 0.00011
3 ALGA0020313 103,881,028 0.00082 0.17 0.01 0.0006
6 MARC0040638 4,515,061 0.00144 -0.13 0.01 0.00031
Androstenone
5 H3GA0016037 20,902,965 6.82E-07** 0.26 0.04 5.17E-07
5 ASGA0025097 24,354,867 3.51E-06* 0.28 0.03 2.03E-06
17 ASGA0095898 50,429,537 1.08E-05* -052 0.02 0.0001
13 ALGA0073594 203,892,414 2.38E-05% -0.17 0.02 3.63E-05
8 ASGA0093454 80,694,489 0.0002 -0.22 0.02 0.00024

*exceeds 5% genome-wide false discovery rate **exceeds genome-wide significance threshold estimated from 100,000 permutations Tsignificance when tested in
linear mixed model using ASReml software. § SNP position in base pairs in the Sscrofa10.2 genome assembly.

receptor type T and ASGA0093454 on SSC8 lies within
the FH2 domain containing 1 gene.

Autosomal heritability

The linear mixed model (2) can be extended to divide
phenotypic variance into estimates of the genetic and
environmental variance containing information from ge-
notypes of a group of N SNPs spanning a region. This
method has been implemented in the GCTA software
package and it has been shown that the method can be
used to estimate genetic variation for any region of the
genome [35]. We divided the pig genome into the 18 auto-
somes and jointly estimated the contribution to heritability
of androstenone (Figure 4, Additional file 2: Table S1) from
each autosome (6). The total heritability summed over all
autosomes was 0.29 for androstenone. As with the total
heritability, the autosomal heritabilities for skatole will be
specific to the genotyped subset and underestimated for

the unselected population due to the study design. For
this reason we have omitted the results on skatole
from the main text, but these results can be found in
Additional file 3.

Individual LRT (likelihood ratio tests) for each chromo-
some for androstenone are detailed in Table 3. These were
derived by the LRTpoly test comparing a linear mixed
model fitting systematic or fixed effects and a GRM
based on information from all SNPs with a model in-
corporating an additional variance component for the
genetic variance attributable to all SNPs on a chromo-
some. This provides a test of whether inclusion of individ-
ual autosomes provides a better model of the variance
than the overall relationship matrix (as might be the case
if the individual chromosomes harbor a gene or genes of
large effect on the trait). Estimates of the autosomal heri-
tabilities for effects on androstenone for LRTpoly are sum-
marised in Table 3.
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Figure 3 LD decay from SNP H3G000016037 plotted against significance of effect on androstenone, pairwise LD in the region and
genes located within the region. Sscrofa genome build 10.2.
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Figure 4 Autosomal heritability or proportion of phenotypic
variance explained for androstenone. *estimate of heritability is
larger than standard error. All 18 autosomes were fitted simultaneously
in a mixed linear model.

For androstenone, the only autosome with a significant
LRTpoly test for genetic variance was chromosome 5
explaining 6% of the phenotypic variation, reflecting the
GWAS results. Under the LRTpoly method, autosomes
2, 3 and 13 each explain 2% of the phenotypic variation,
however, the estimates are not significant. When all au-
tosomes are fitted simultaneously (Figure 4) SSC2, SSC3

Table 3 Estimates of autosomal heritability for
androstenone

Chr h2utosome se p-val holygenic se
1 0 004 1 038 006
2 002 0.02 016 033 006
3 0.02 0.02 016 034 006
4 0 002 1 036 006
5 006 003 0.00051 029 006
6 0 003 1 0.37 006
7 0 002 1 036 006
8 0 0.02 1 036 006
9 0 0.02 1 0.37 006
10 0 002 1 036 006
1 0 0.02 1 036 006
12 0 0.02 038 035 006
13 002 002 021 033 006
14 0 0.02 1 036 006
15 0 0.02 036 035 006
16 0 0.02 1 036 006
17 0 0.02 1 036 006
18 0 001 1 036 006

Testing strategy was to compare fitting a random polygenic effect (based on a
GRM estimated using all genotyped SNPs across the genome) plus a random
effect for variance attributed to SNPs from a single autosome with a reduced
model fitting only the random polygenic effect. P-val is the corresponding p
value based on the distribution of the LRT being between x? and a point mass
of zero. h? autosome is an estimate of the heritability of the autosome, h?
polygenic is an estimate of the heritability from the entire genome.
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and SSC13 explain 5%, 3% and 4% of the genetic variation.
The sum of autosomal estimates of genetic variation from
LRTpoly is 0.12 (Table 3). The genetic variation explained
by fitting all autosomes simultaneously was 0.29 (Additional
file 2: Table S1), indicating that LRTpoly is conservative as
might be expected as part of the individual autosomal heri-
tabilities are absorbed by the overall genomic polygenic
effect.

An alternative testing strategy is to fit all autosomes in
a full model and then drop them one at a time for a re-
duced model (LRTdrop). A comparison of significance of
autosomal heritability of androstenone using three test-
ing strategies is given in Figure 5. Dropping a chromo-
some from the model including all the autosomes
provides a test for whether genetic variance is associated
with that particular chromosome whilst accounting for
background polygenic effects on other chromosomes. This
contrasts with the model containing only a single chromo-
some (LRTind in Figure 5) where the LRT and variance
explained may be inflated by genetic variance from the
rest of the genome that is not explicitly included in the
model. For androstenone the results for LRTdrop suggest
that chromosomes 2, 3, 5 and 13 explain a significant pro-
portion of the variance.

Discussion

A genome-wide association study (GWAS) was carried
out to identify SNPs associated with effects on andros-
tenone and skatole in intact male pigs. The effect of the
SIRIO000194 SNP on skatole estimated by fitting the
genotypes as a covariate in the linear mixed model (3)
was 5% of the phenotypic variance of the selected
population (Table 2). The expectation in the general

M LRTind

25 4 = LRTdrop

LRTpoly

20

10

123 45 6 7 8 91011121314151617 18
Autosome

Figure 5 Likelihood ratio test (LRT) for significance of autosomal
heritability or proportion of phenotypic variance explained for
androstenone using three different linear mixed models. LRTind is
comparing a model fitting an individual autosome with a null model|,
LRTdrop is where all autosomes are fitted and compared with a model
which drops each autosome in turn, LRTpoly is comparing a model
fitting an individual autosome plus a polygenic effect with a model

containing only a polygenic effect.
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population assuming a heritability of 0.4 is that it would
explain ~12.5% of the genetic variation. The SIRI0000194
SNP, which was reported previously as AJ697882_2412
[32], is located within the promoter of the CYP2EI gene. In
a small separate sample of 83 Danish pigs significantly
more AJ697882_2412 (SIRI0000194) CC homozygotes were
observed in the ‘high’ skatole group [32]. More recently as-
sociations between skatole levels in two Duroc populations
and the AJ697882 2412 (SIRI0000194) SNP have been re-
ported [33]. Again the CC homozygotes exhibited the high-
est skatole levels. Although SIRI0000194 lies within a block
of high LD (Figure 6) spanning several other genes there is
evidence to support CYP2E] as a candidate for the gene
responsible for the observed associations with skatole
levels. This gene has been previously identified as a
candidate and is involved in the degradation of skatole
in the liver where it is solely and abundantly expressed
[36] (see also (http://biogps.org).

The GWAS for skatole was repeated, fitting the SNP
SIRI000094 into the linear mixed model as a fixed effect.
This model resulted in a change of ranking among the
SNPs. The effect of greatest significance (P <0.001) was
associated with SNP marker MARC0040638 located on
chromosome 6 within the estradiol 17-beta-dehydrogenase
2 (HSD17B2) gene. The HSD17B2 gene and MARC0040638
SNP were located at SSC6:4,514,200-4,578,665 in an earlier
genome assembly (Sscrofa9) but are located on unplaced
scaffolds on the present assembly (Sscrofal0.2). The as-
signment of MARC0040638 SNP to SSC6 is confirmed
from radiation hybrid mapping data (Additional file 2:
Table S1 in [37]). Both the MARC0040638 SNP and
HSDI17B2 gene are present in the sequence of the CH242-
77H3 BAC clone (Genbank accession: CU929847). Incom-
plete sequence data from this BAC clone contribute to the
current pig genome assembly (Sscrofal0.2) on SSC6 6.876-
6.939 Mbp. This SNP did not exceed the FDR or genome-
wide threshold, however a region on chromosome 6
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spanning this gene was previously found to be significant
for skatole in Landrace pigs [18]. Ramos et al., [18] found
significant associations between skatole levels in Duroc
pigs and SNPs mapping to a 6 Mbp region on SSC6 corre-
sponding to 1.829-8.498 Mbp in Sscrofal0.2 coordinates
and thus including the MARC0040638 SNP and HSD17B2
gene. In an earlier study, we mapped QTL for skatole,
as detected by a (human) sensory panel, by linkage ana-
lysis with a low density microsatellite marker map with
the closest marker SW1353 mapping to SSC6: 9.872 Mbp
(Sscrofal0.2 coordinates) [13]. Human estradiol 17-beta-
dehydrogenase 2 (HSD17B2) is involved in the synthesis of
the 17 beta-hydroxysteroids: delta 5-androstene-3 beta, 17
beta-diol, testosterone, 17 beta-estradiol and dihydrotes-
tosterone [38]. The HSD17B2 gene is thus important for
steroid hormone synthesis and is abundantly expressed
in pig liver, ureter and stomach (fundus), [36] (see also
(http://biogps.org). Another 17-beta hydroxysteroid dehyr-
dorgenase gene (HSD17B7) has been examined as a candi-
date gene for an androstenone QTL on SSC4 [39].

A significant effect on androstenone was found associ-
ated with the H3GA0016037 SNP on chromosome 5
explaining ~4% of the phenotypic variance. H3GA0016037
lies between the gene encoding transcription factor NEU-
ROD4 neurogenic differentiation 4 and the TESPA1 thymo-
cyte expressed positive selection association 1 locus. In
humans TESPA1 is involved in the selection of thymocytes
and T-cell development. It has been hypothesised that the
production of glucocorticoid steroids may in some way
regulate thymocyte selection [40]. The second most sig-
nificant GWAS result was for ASGA0025097 which is
located ~4 Mbp distal to the H3GA0016037 SNP on
chromosome 5. The genes of interest located within
this 4 Mbp region include the retinol dehydrogenase 5
(RDHS) and retinol dehydrogenase 16 (RDH16) genes. The
RDH gene encodes an enzyme which recognizes 5a-
androstan-3a,17(3-diol and androsterone as substrates and
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is expressed in liver, testes and other tissues in humans
[41]. RDHI6 is abundantly expressed in pig liver, testes
and placenta [36] (see also http://biogps.org). Another 17-
beta hydroxysteroid dehyrdrogenase gene (HSD17B6) is lo-
cated about 0.5 Mbp upstream of the ASGA0025097 SNP.
The 4 Mbp region between the two top SNPs is gene-rich
and exhibits high levels of LD in the Danish Landrace
population studied (Figure 3). Ironically, many of the genes
in this region encode olfactory receptors. The minor allele
frequency for both SNPs (ASGA0025097, H3GA0016037)
was 0.14 and the r* between them was 0.68. Fitting either
SNP results in the loss of the effect indicating that both
SNPs are tagging the same causal variant. This region has
been found to be significant for androstenone measured in
the fat of Duroc pigs, and for estradiol in Landrace pigs
[16], however this region has not previously been found to
be significant for effects on androstenone levels in Landrace.

Results from the regional heritability study reflected
the GWAS analysis with the greatest heritability for
androstenone on chromosome 5. This indicates that the
regional approach successfully identifies autosomes with
genetic variation attributable to the trait and that genetic
variance is not correlated to the length of autosomes as
seen by Yang et al. [24]. Here, the correlation of variance
explained, with length of autosome, was 0.02 (P < 0.93)
for androstenone. There was evidence of information be-
yond the GWAS results from the regional approach.
The method did point to an association of SSC2 and
SSC3 with androstenone not seen in the GWAS. Highly
significant effects for multiple QTL on these chromo-
somes associated with androstenone have been previ-
ously reported [11-13,16]. We cannot ascertain whether
the SNP effect on SSC17 associated with androstenone
is undetected by the regional approach or a spurious
artifact of the GWAS. One approach might be using se-
quence information for imputation to increase the num-
ber of SNP genotypes and subsequently to divide the
genome into many smaller regions providing greater
resolution. Combined results of multiple SNP genotypes
are less likely to yield spurious results from anomalies
such as population stratification and differing minor allele
frequencies at individual SNPs. The autosomes explaining
the most variation have a greater likelihood for housing
putative candidate genes and pathways. A further use for
the estimated SNP or region effects in this population
could be genomic prediction in unphenotyped individuals.
This potential application is of particular relevance in
traits that can only be measured post slaughter such as
boar taint where phenotypes are of high economic impact
and could result in rejection of the entire carcass.

Conclusions
Significant associations were found for skatole on SSC14
and for androstenone on SSC5 in Landrace pigs. The
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study agrees with a body of evidence that the CYP2EI
gene has effects on skatole breakdown in the liver. Auto-
somal heritability estimates agree with the GWAS and
provide an opportunity to identify regions for further
study. Differences between the GWAS and the auto-
somal heritability suggest that for androstenone there is
variation explained by SSC2 and SSC3 that is not de-
tected by the GWAS and that the SNP on chromosome
17 does not appear to contribute variance at the level of
the autosome.

Methods

Animals

All the animals involved in this study were raised under
conventional pig production conditions and were not
subjected to any experimental procedures. All the sam-
ples for the study were collected post-mortem in a com-
mercial abattoir.

Taint measures

Tissue fat samples were assayed for skatole levels using a
calorimetric method in-house at the abattoir [42]. A second
tissue sample taken about an hour after slaughter was subse-
quently assayed for androstenone by the Norwegian School
of Veterinary Science using a modified time-resolved fluor-
oimmunoassay [43].

Heritabilities

A fixed effect of herd; and significant covariates meat per-
centage, slaughter weight and age at slaughter, were esti-
mated using a linear mixed model in software package
ASReml2 [44] (1). Fixed effects and covariates for skatole
were estimated using the entire population of 6,000 ani-
mals in order to achieve the greatest possible accuracy.
Heritabilities were estimated using pedigree relationships
in the entire population of 6,000 individuals for Skatole
and the 1,000 individuals phenotyped for androstenone.

Y=XB+Zu+e (1)

Where Y is an n x 1, vector of log phenotype, # is the
number of individuals, X is an incidence matrix relating so-
lutions for fixed effects of herd and covariates of age, mds
co-ordinates contained in P to individuals, u is an 7 x 1
vector of genetic effects, Z is an n x n incidence matrix re-
lating individuals to genetic effects, and e is an # x 1 vector
of individual residual effects. u~N(0, Aoc?), and e is dis-
tributed as e ~ N(0, I6%). A is the n x n genetic relationship
matrix estimated from pedigree relationships.

Genomic relationship matrices

SNP genotypes were used to estimate shared coancestry
or identity by state between individuals with rare SNPs
weighted more heavily. The n x n genomic relationship
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matrix (GRM) of relatedness at a population level between
n individuals gives the covariance structure for the pheno-
type based on the premise that the more related two indi-
viduals are, or the greater the amount of the genome they
share in common, the greater the expectation of pheno-
typic similarity. The proportion of alleles two individuals
share in common are summed across all markers weighted
by allele frequencies in the population in order to obtain
an accurate estimate of how related two individuals are
either across the entire genome or at a given region. Gen-
omic relationship matrices were estimated using GenABEL
[29] and GCTA [35] software.

Using the marker information for the 1,000 individ-
uals, heritabilities were estimated by fitting the SNP
based genomic relationship matrix from GenABEL in a
linear mixed model to estimate polygenic effects from
marker information (2). A genotypic correlation was es-
timated by a bivariate analysis of the two traits fitting
the genomic relationship matrix using ASReml 2 soft-
ware [44].

Y=XB+Wg+te (2)

Where g is an N x 1 vector of SNP effects, N is the num-
ber of SNPs, W is an n x N incidence matrix relating SNP
genotypes to g. G is the n x n genomic relationship matrix

estimated from SNP genotypes and g~N (0, Go‘ﬁ).

Association analysis

Single SNP association tests were performed using a GRAM
MAR [29] analysis (3) in GenABEL software. GRAMMAR
uses a score test to identify associations between SNP
genotypes and trait residuals after fixed and background
genetic or polygenic effects are accounted for in the linear
mixed model (2). Polygenic effects were estimated using a
grm estimated from the average relationship between indi-
viduals at all SNP markers (weighted by allele frequency)
across the genome.

y=SNP +e (3)
\ = Median (T}, T3, ....... ,T%)/0.456 (4)

Where T is test statistic for N SNPs from (3).

Where vy is a vector of trait residuals from (2), SNP is
a vector of SNP genotypes and e is a vector of random
residuals.

A correction factor or lambda [29,45] was estimated
from the distribution of test statistics to further account
for systematic bias (4). A factor greater than 1 is indica-
tive of systematic inflation of test results when compared
to a distribution of the expectation under the null hypoth-
esis. A factor less than one often results from over correc-
tion in a grammar analysis. The grammar function in
GenABEL adjusts for this deflation factor. Permutation
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analysis (100,000) was used to determine a rigorous
threshold for genome-wide significance accounting for
multiple testing and for any unaccounted for systematic
bias. A less rigorous FDR cut off of <0.05 was applied to
report SNPs of interest to aid the comparison of results
from past and future study populations.

As grammar analyses tend to underestimate true SNP
effects [29], genome-wide significant SNPs identified
with the grammar analysis were fitted individually as co-
variates in the linear mixed model using ASReml 2 soft-
ware to estimate SNP effects and to verify significance
(5). The additive genetic variance was estimated as
2p(1-p)a® where p is the allele frequency for the most
common SNP allele and « is the estimated effect. A fur-
ther check was that this estimate was consistent with
the difference in phenotypic variance when fitting, and
not fitting, SNP genotype as a covariate in the LMM.

y = ¢ + herd + bl * SNP + b2 * slaughter weight
+ b3 * age + b4 * meat percentage
+mds+a-+e (5)

Where y = log trait. Herd is fitted as a fixed effect. SNP
genotype, slaughter weight, age, meat percentage and co-
ordinates from the multi-dimensional scaling (mds) are fit-
ted as covariates, 4 is a random polygenic effect estimated
using a SNP-based relationship matrix and e is the random
residual.

Estimation of regional genetic contribution or ‘autosomal
heritability’

The linear mixed model (2) can be extended to divide
phenotypic variance into estimates of the genetic and
environmental variance containing information from ge-
notypes of a group of N SNPs spanning a region. This
method has been implemented in the GCTA software
package and it has been shown that the method can be
used to estimate genetic variation for any region of the
genome [35]. We divided the pig genome into the 18 au-
tosomes and estimated the contribution to heritability
from each autosome (6). For these analyses only SNPs
that mapped to Sscrofa 10.2 were used, any SNPs with-
out a position on the current assembly were omitted as
they could not be assigned to an autosome. Omitting
these SNPs (~13% of all SNPs) from the GRM made
very little difference to the estimate of total genetic vari-
ance. The heritability estimate dropped by 0.0065. This
indicates that this subset of annotated SNPs was suffi-
ciently large enough to accurately estimate relationships
between individuals and to capture the genetic variance.

18
Y=XB+ > Wug, +e (6)
chr=1
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To avoid confounding of genetic variation of the trait
and potential variation due to population stratification,
eigenvectors were estimated from the genetic relation-
ship matrix and the first 4 principal components fitted
as covariates in the linear mixed model. This is slightly
conservative and based on the results of the model based
clustering described earlier which showed that the data
forms 3 distinct clusters. The fixed effects and covariates
of herd, age, meat percentage and slaughter weight were
fitted into a linear mixed model together with eighteen
variance components - one for each of the eighteen auto-
somes requiring 18 separate genetic relationship matrices
to model the covariance structure and to partition the
genetic variance into estimates of autosomal heritability.

To test the significance of individual autosomes a like-
lihood ratio test (LRT) comparing a model fitting the in-
dividual autosome plus a variance component for all
SNPs in the grm (i.e. the equivalent of a genomic poly-
genic effect) was compared to a model fitting only the
polygenic effect (LRTpoly). All SNPs were used in the
polygenic effect to ensure that the models were truly
nested. This conservative approach ensures that the vari-
ance explained by an autosome is not inflated by back-
ground polygenic effects.

Two further approaches were used. Firstly, comparing
a model fitting a variance component estimated from
the SNPs on a single autosome with a null model
(LRTind). Secondly, a model fitting all 18 variance com-
ponents compared with a model dropping each of the
autosomes in turn (LRTdrop).

GCTA solves the linear mixed model (LMM) and ob-
tains estimates of genetic and residual variances by re-
stricted maximum likelihood (REML) using the average
information (AI) algorithm.

A test statistic was obtained using a standard LRT stat-
istic calculated as twice the difference between the log
likelihoods of the full model and the null or reduced
model that did not fit a genetic component. The LRT
was tested against a chi square distribution. The LRT for
one extra variance component is distributed as a mixture
of point 0 and 1degrees of freedom (df) [46]. To account
for this a P-value for a test assuming 1df was divided in
two.
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