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The incidence of multiple myeloma (MM), a bone marrow (BM) resident hematological

malignancy, is increasing globally. The disease has substantial morbidity and mortality

and remains largely incurable. Clinical studies show that autologous stem cell

transplantation (ASCT) remains efficacious in eligible patients, providing a progression

free survival (PFS) benefit beyond novel therapies alone. Conventionally, improved

PFS after ASCT is attributed to cytoreduction from myeloablative chemotherapy.

However, ASCT results in immune effects beyond cytoreduction, including inflammation,

lymphodepletion, T cell priming via immunogenic cell death, and disruption of the

tumor BM microenvironment. In fact, a small subset of patients achieve very long-term

control of disease post-ASCT, akin to that seen in the context of immune-mediated

graft-vs.-myeloma effects after allogeneic SCT. These clinical observations coupled with

recent definitive studies in mice demonstrating that progression after ASCT represents

immune escape as a consequence of T cell exhaustion, highlight the potential for

new immunotherapy maintenance strategies to prevent myeloma progression following

consolidation with ASCT.
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INTRODUCTION

Autologous stem cell transplantation (ASCT) occurs after treatment with varying combinations of
proteasome inhibitors, alkylating agents, immunomodulatory drugs (IMiDs), steroids and most
recently, monoclonal antibodies until a maximal response is achieved. At that point, eligible
patients typically undergo G-CSF-based stem cell mobilization followed by autologous stem cell
collection and storage. Patients then receive myeloablative chemotherapy, predominantly high-
dose melphalan (1), followed by autologous stem cell rescue and subsequent maintenance therapy
with an IMID, typically lenalidomide. This regimen remains a highly effective therapy and, despite
recent advances in anti-myeloma therapeutics, ASCT provides a progression-free survival benefit
beyond novel agents alone (2–5). Hitherto, the control of myeloma progression induced by
ASCT is largely attributed to the direct cytoreductive effects of myeloablative chemotherapy on
myeloma cells (6). However, there is a subset of patients that enter a plateau-phase of disease
control after achieving a complete response to ASCT, akin to immune-mediated graft-vs.-leukemia
effects after allogeneic-SCT (7, 8). In fact, there are several key immunological changes that
occur after ASCT that strongly suggest that long-term myeloma control after transplant is due to
more than just cytoreduction. In this perspective, we will outline key evidence from both clinical

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.651288
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.651288&domain=pdf&date_stamp=2021-03-12
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:grhill@fredhutch.org
https://doi.org/10.3389/fimmu.2021.651288
https://www.frontiersin.org/articles/10.3389/fimmu.2021.651288/full


Minnie and Hill ASCT Is Immunotherapy for Myeloma

observations and definitive preclinical studies that support the
concept that ASCT sets the stage for myeloma-specific immunity.

IMMUNOLOGICAL CONSEQUENCES OF

ASCT

Immune Reconstitution and

Myeloma-Specific T Cells
Natural killer (NK) cells usually reconstitute to normal levels
within 1month of ASCT;much faster than adaptive immune cells
such as B and T cells (9, 10). Importantly, NK cell dysfunction
has been associated with myeloma progression in non-transplant
murine models and patients with late-stage myeloma have
reduced NK cell numbers suggesting that these cells may play
an important role in myeloma control (11–13). NK cells have
been shown to be especially important in the context of IMiDs
such as thalidomide, lenalidomide, and pomalidomide, since
these agents stimulate IL-2 production that promotes NK cell
expansion and activation (14–16). However, NK cell-mediated
myeloma immunity was found to be dispensable for myeloma
control after ASCT in a murine model when donor T cells
were transplanted (17). Therefore, although NK cells are potent
mediators of myeloma immunity, they may not be critical when
a robust T cell response is generated post-ASCT. Whether this
holds true in patients after ASCT, particularly in those receiving
maintenance therapies with IMIDs requires further investigation.

T cell reconstitution occurs more slowly after ASCT and
can take up to a year to return to pre-transplant numbers
(10). Interestingly, the recovery of T cell subsets occurs more
rapidly after transplantation with peripheral blood stem cells
(PBSC) compared to bone marrow (BM) (9, 10). In fact, CD3+

T cells represent >20% of the apheresis product collected after
granulocyte colony-stimulating factor (G-CSF) mobilization and
subsequently PBSC grafts yield substantially (>1 log) more T
cells than BM grafts (18, 19). More importantly, the T cell
reconstitution after ASCT is skewed toward CD8T cells and
provides a favorable CD8 effector T cell (Teff) to Treg ratio
(20, 21) which often underpins effective anti-tumor immunity.
Indeed, the addition of T cells to BM grafts dramatically
improved survival and reduced myeloma burdens in a murine
model of ASCT (17). While this effect was dependent on both
CD8 and CD4T cells, CD8T cells were the cognate effectors
of myeloma-specific immunity (17). Additionally, pre-existing
memory T cells frommyeloma-experienced donor mice were the
dominant mediators of myeloma-specific immunity after ASCT;
although myeloma-specific T cells could also be generated de
novo after ASCT from naïve T cells present in the graft (17).
Clinical studies also support a role for memory and effector
T cells in mediating myeloma-specific immunity, particularly
in the context of progression from MGUS to MM (22, 23).
Furthermore, there are detectable myeloma-reactive T cells
in patients with myeloma after ASCT and the expansion of
cytotoxic T cell clones after treatment with IMiDs has been
associated with improved outcomes (24–26). Together these data
suggest that T cells contaminating stem cell grafts could be the
predominant mediators of myeloma-specific immune responses

post-transplant. This carries significant potential clinical impact
as induction therapies are currently implemented without regard
for T cell recovery or function in the subsequently mobilized
donor stem cell graft.

Microenvironment Disruption and Changes

in Cytokine Production
Progression of malignancy is typically associated with
the development of an immunosuppressive tumor
microenvironment (TME) capable of subverting effective
anti-tumor immunity (27). Myeloma also generates an
immunosuppressive BM environment that is reminiscent
of that seen in solid tumors (28–30). As an example, the
accumulation of BM macrophages has been shown to protect
myeloma from apoptosis (31). Melphalan is most commonly
used in conditioning before ASCT due to its potent anti-myeloma
cytotoxicity (32). The minimal residual disease state, concurrent
with disruption of the bone marrow microenvironment
following ASCT thus provides a potential window of opportunity
to generate effective myeloma-specific immunity (33), mediated
by T cells (17).

Myeloablative conditioning preceding ASCT transiently
depletes regulatory T cells which has been shown to improve
the anti-tumor efficacy of adoptively transferred CD8T cells in
preclinical models (34, 35). However, conditioning itself also
results in a profound state of lymphodepletion which itself has
important ramifications for the generation of myeloma-specific
immunity. In particular, extensive cytoreduction minimizes
endogenous cellular competition for cytokine which results in
high cytokine availability to newly transferred T cells, enhancing
both proliferation and effector function (i.e., homeostatic
proliferation) (35). Specifically, this effect is mediated by
increased availability of both IL-7 and IL-15 since the ablation
of both cytokines abrogated enhanced anti-tumor efficacy seen
in irradiated vs. untreated mice. In patients with myeloma, it
has been shown that high-dose melphalan and ASCT results in
increased plasma levels of IL-6, IL-7, and IL-15. Furthermore, and
in support of preclinical findings, Condomines et al. postulated
that this increase in IL-7 and IL-15 may contribute to the
activation and survival of transplanted T cells from the donor
graft (36). In mice, melphalan also increases plasma levels of
several additional cytokines including IFN-γ, IL-27, IL-5, IL-
22, IL-10, and IL-18, as well as chemokines such as CCL2,
CCL7, CXCL10, and CXCL1; which augments CD4T cell-
dependent immunity (37). Thus, cytoreduction and lymphopenia
after ASCT are associated with changes in cytokine production
and immune activation which contribute to subsequent tumor-
specific immunity.

Immunogenic Cell Death and Antigen

Presentation
Immunogenic cell death (ICD) is classically characterized by
surface expression of calreticulin (CRT), release of ATP, and
secretion of high mobility group box 1 (HGMB1) from the
nucleus (38). This stimulates DC recruitment to the TME
that enhances phagocytosis and subsequent (tumor-derived)
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antigen presentation (38, 39). The induction of ICD by
cyclophosphamide and bortezomib, two drugs commonly used
in myeloma, is well-described however it is less clear whether
melphalan has similar effects (40, 41). Inmyeloma,melphalan has
been shown to induce exosome release and cytokine production
fromNK cells in anHSP70-dependent manner (42). A preclinical
study in mice found that melphalan induced ICD, which was
associated with the release of inflammatory cytokines and
enhanced antigen uptake by DCs (37). Specifically, CRT was
expressed on the surface of a B-cell lymphoma cell line in
response to melphalan with extracellular release of HMGB1.
Melphalan also resulted in activation of CD8T cells due to
increased antigen uptake and presentation by tumor associated
DCs, Treg depletion and a transient reduction in myeloid-
derived suppressor cells (MDSC) (37). This provides preclinical
evidence that melphalan induces desirable immunomodulatory
activities akin to other alkylating agents like cyclophosphamide.
However, it should be noted that melphalan may not only elicit
beneficial immunomodulatory effects. For example, melphalan-
induced IL-6 production could be problematic given it behaves
as a growth factor for myeloma and may contribute to immune
escape post-ASCT (17).

IMMUNE ESCAPE IN THE CONTEXT OF

ASCT

We postulate that ASCT establishes a state of myeloma-immune
equilibrium followed by immunological escape and subsequent
myeloma progression. Immunological escape is known to be
facilitated by a multitude of factors including alterations in
cytokine production, T cell exhaustion, and accumulation of
macrophages and MDSCs within the TME (43–45). Immune
escape in the broad context of myeloma has been reviewed
elsewhere (46, 47) and this perspective will focus on immune
escape that may occur specifically in the context of ASCT.

Interleukin-6
T cell-mediatedmyeloma control can be influenced by alterations
in the cytokine milieu in the TME that either directly suppress
effector T cell function or via alteration of differentiation
such that cytolytic T cell subsets are replaced by those that
promote tumor growth. One such cytokine is IL-6, which is
known to not only directly promote myeloma growth and
survival, but also contributes to the expansion of pathogenic T
helper 17 (Th17) cells (48–50). Additionally, IL-6 is known to
confer resistance in myeloma cells to bortezomib, melphalan,
and in particular, dexamethasone-induced apoptosis (51–53).
Interestingly, there is both clinical and preclinical evidence
that IL-6 is one of the cytokines markedly upregulated by
melphalan (36, 37, 54). Given themyeloma-promoting properties
of IL-6, disrupting this pathway appeared to be an attractive
approach to improve myeloma control. In mice, IL-6 deficient
BM and T cell grafts significantly reduced myeloma relapse
post-ASCT (17). However, in patients with relapsed-refractory
multiple myeloma (RRMM), there was no benefit to the
addition of siltuximab, an IL-6 inhibitor, to bortezomib and/or

dexamethasone-containing treatment regimes in non-transplant
settings (55, 56). A study utilizing preclinical myeloma models
demonstrated that siltuximab enhanced melphalan-mediated
cytotoxicity (52); possibly by mitigating melphalan-induced IL-6
production. Nonetheless, although IL-6 inhibition is capable of
impacting myeloma growth in vitro and in preclinical models,
it has been largely unsuccessful in the clinical setting; which
may be unsurprising given the immune-suppressive nature of an
established TME in RRMM. This strategy will likely continue to
be ineffective without also promoting a state of minimal residual
disease (MRD) and immune-mediated clearance of tumor, the
latter being particularly challenging in a relapsed/refractory
setting due to the concurrence of T cell exhaustion. Thus, studies
combining IL-6 inhibition with immunotherapies such as ASCT,
immune checkpoint blockade or CAR T cells could be potentially
synergistic and may warrant further investigation.

Microbiota
There is increasing clinical evidence for the role of the
microbiome in dictating responses to immunotherapy and even
endogenous tumor immunity (57). This is of particular relevance
in the context of transplantation where microbial diversity in
the GI tract is dramatically impacted by conditioning regimens
and antibiotic exposure (58, 59). Patients undergoing ASCT for
myeloma, lymphoma, or amyloidosis who had above-median
microbial diversity in the GI tract had a reduced risk of
progression suggesting a relationship between microbiota and
patient outcomes (58). Preclinical data further supports a role
for the microbiome in myeloma progression whereby migration
of pathogenic IL-17-producing cells to the BM is driven by
Prevotella heparinolytica to promote myeloma growth (60).
We demonstrated that IL-17A, a highly microbiota-dependent
cytokine (61), is pathogenic after ASCT and acts directly on
myeloma cells in the BM to promote relapse (17). Inmice, IL-17A
inhibition withmonoclonal antibodies (mAbs), both in untreated
myeloma and after ASCT, attenuates myeloma progression (17,
60), thus representing a potential therapeutic strategy that is
under clinical investigation (NCT03111992).

T Cell Exhaustion
There is significant preclinical and clinical evidence to support
a role for CD8T cell exhaustion/dysfunction, including loss
of IFNγ and CD107a production, in facilitating myeloma
progression (21, 29, 62–64). Additionally, there are several
studies that have found CD8T cells with increased expression of
immune checkpoint receptors, including TIGIT, PD-1, LAG-3,
TIM-3, and CTLA-4 in patients withmyeloma (21, 62, 63, 65, 66).
In the context of ASCT, one study found that inhibitory receptors
are expressed both pre- and post-ASCT with increased PD-
1 on a subset of CD8T cells after ASCT (21), while another
reported an increase in LAG-3 expression post-ASCT (67).
Furthermore, there is clinical evidence that ASCT induces global
transcriptional changes in peripheral CD4 and CD8T cells that
are associated with a reduced CD4/CD8 ratio and enhanced T
helper 1 differentiation, exhaustion, activation, senescence, and
molecular aging (67–69). The functional implications of these
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latter phenotypes, particularly increased molecular aging after
ASCT are currently unclear.

Preclinical data suggests that ASCT both enhances pre-
existing myeloma-specific T cell immunity derived from
the stem cell graft and primes new myeloma-specific T
cells after transplant. Myeloma progression after SCT is
associated with T cell exhaustion, such that the prevention
of T cell exhaustion in the peri-transplant window is crucial
to promote long-term disease control. This is supported by
several murine models of myeloma that demonstrate some
immunotherapies are ineffective unless utilized in combination
in the setting of RRMM. Alternatively, demonstration of
single agent efficacy requires administration early after ASCT
[i.e., anti-PD-1 (29, 62)] with a loss of efficacy seen when
initiated when significant myeloma burdens exist (17, 70).
The lack of efficacy of PD-1 blockade in patients with active
myeloma, either as a monotherapy or in combination with
IMiDs further support this concept (71, 72). Thus, there is a
critical need to further study CD8 and CD4T cell function,
phenotype, and myeloma-specific immunity within the BM
TME of myeloma patients after ASCT in order to define the
optimal timing for immunotherapy approaches. Notably, new
immunotherapy approaches will need to be administered
in conjunction with existing standard-of-care maintenance
therapies (e.g., lenalidomide). Previous combinations of
pembrolizumab and lenalidomide were associated with toxicity
in patients with relapsed/refractory myeloma (72) and so new
combinations and the timing of their administration with the
disease course (e.g., early vs. late) will need to be carefully
considered. Since some immune checkpoint inhibitors are
likely to be more effective than others when combined with
IMiDs, due to non-overlapping immunological mechanisms
of action and toxicities, there is a need for comprehensive
preclinical testing to provide a clear rationale for potential
clinical combinations.

Suppressive Myeloid Populations
Cytoreductive therapy can invoke undesirable immunological
effects, including the accumulation of suppressive myeloid
populations within the TME; an effect described in both
preclinical models and patients (73–75). In myeloma, colony
stimulating factor 1 receptor (CSF-1R) expressing tumor
associated macrophages (TAM) have been shown to promote
disease progression and CSF-1R inhibition prolongs myeloma-
specific immunity, particularly after ASCT (29, 31, 76). Myeloid-
derived-suppressor cells (MDSC) are also key inhibitors of anti-
tumor immune responses and are increased in the bone marrow
of patients with myeloma where they suppress T-cell-mediated
immune responses (77, 78). Studies also suggest that there is a bi-
directional relationship between MDSC and myeloma whereby
the myeloma cells induce differentiation of healthy PBMCs into
MDSC (78). Importantly, a study utilizing S100A9 knockout
mice, which do not accumulate MDSC in the TME, found that
early MDSC accumulation in the BM was sufficient to inhibit
myeloma antigen-specific CD8T cell responses (77). Clinically,
the role of circulating MDSCs on ASCT outcomes has recently
been described in a cohort of 100 patients (79). The study

showed that increased monocytic MDSCs (M-MDSCs) prior to
ASCT were associated with a shorter time to progression post-
transplant. Further in vitro studies, where myeloma cells were
co-cultured with M-MDSCs and then treated with melphalan,
suggested that this was associated with the ability of M-MDSCs
to protect myeloma cells from melphalan-mediated cytotoxicity.
This M-MDSC-mediated protection was mitigated by CSF-1R
blockade in vitro, although this effect was not confirmed in vivo
(79). Together, these data support the pathogenicity of CSF-1R-
expressing macrophages and MDSCs in myeloma, particularly
in the context of ASCT, and highlight a clinically tractable
population to improve the depth and duration of immune
responses after transplant.

Suppressive myeloid cells are also known to express CD38,
the target for several FDA approved monoclonal antibodies
including daratumumab and isatuximab. CD38 is also expressed
on myeloma cells and regulatory T cells; the depletion of
all three cellular compartments is thought to underpin the
promising clinical efficacy of this class of drugs (80–83).
Response rates to CD38 mAbs are consistently encouraging in
myeloma when combined with current standard of care (84, 85),
even in the relapsed/refractory setting (80, 81), such that the
addition of daratumumab to standard induction therapy (pre-
ASCT), and consolidation post-ASCT has recently been reported
(86, 87). Early results from two clinical trials (CASSIOPEIA
and GRIFFIN) studying the addition of daratumumab in this
fashion have shown an increase in the frequency of MRD
negative responses, and a larger phase 3 randomized trial is
currently underway (NCT03710603) (86, 87). However, these
studies lack long-term follow up and the broader immunological
consequences of depleting putatively activated, myeloma-specific
CD38-expressing CD8T cells has yet to be ascertained (88).
Given the striking efficacy of CD38 mAbs in combination
with current therapies, the loss of CD38+ CD8T cells may
be manageable. Nevertheless, in circumstances where the
activation of T cell-specific immunity is being actively elicited
for therapeutic benefit (e.g., immune checkpoint inhibition),
combination therapy will require more careful consideration.

CONCLUSION: ASCT IS A PLATFORM

IMMUNOTHERAPY

High-dose chemotherapy, particularly melphalan, produces
immunomodulatory effects including inflammatory cytokine
production, immunogenic myeloma cell death, enhanced
antigen presentation, microenvironment disruption and
lymphodepletion. Together, these effects culminate in an ideal
environment for subsequent priming, activation and expansion
of transplanted donor T cells. The combined immunological
and cytoreductive consequences of ASCT as consolidation
therapy for myeloma thus positions this therapy as an ideal
platform for maintenance immunotherapy with the aim of
amplifying immune control and preventing or delaying disease
progression. Thus, T cell targeted immunotherapies such as
immune checkpoint inhibitors, monoclonal antibodies, tumor
vaccination, bispecific T cell engagers and CAR T cells [reviewed
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elsewhere (46)] are all viable strategies to prevent relapse and
could be trialed as consolidation and/or maintenance therapies
after ASCT, once early phase safety data has been established.
Importantly, restricting the use of novel agents that rely on a
competent T cell response, or at the very least reversible T cell
exhaustion, to relapsed/refractory patients where irreversible
stage T cell dysfunction invariably exists is likely to limit the
development of agents that may be highly effective in earlier
settings of minimal residual disease. Finally, these principals
also suggest that the ability of various induction therapies (and
combinations thereof) to preserve immune competence prior to
and during stem cell mobilization deserves further consideration.
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