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Abstract

Avri Helenius launched the field of enveloped virus fusion in endosomes
with a seminal paper in the Journal of Cell Biology in 1980. In the
intervening years, a great deal has been learned about the structures
and mechanisms of viral membrane fusion proteins as well as about the
endosomes in which different enveloped viruses fuse and the endoso-
mal cues that trigger fusion. We now recognize three classes of viral
membrane fusion proteins based on structural criteria and four mech-
anisms of fusion triggering. After reviewing general features of viral
membrane fusion proteins and viral fusion in endosomes, we delve into
three characterized mechanisms for viral fusion triggering in endosomes:
by low pH, by receptor binding plus low pH and by receptor bind-
ing plus the action of a protease. We end with a discussion of viruses

All enveloped viruses deliver their genomes into the cyto-
plasm of their host cell by fusing with a cellular membrane.
Ari Helenius inaugurated and has had a continual impact
on this field in three major ways. He and his coworkers
provided the first evidence that viruses can productively
enter cells following endocytosis and transport to endo-
somes (1-5). His group was among the first to demonstrate
that low pH is necessary and sufficient to trigger the fusion
activity of certain enveloped viruses that enter cells through
endosomes (1,2,6-10). And, extensive work led by Hele-
nius demonstrated that not only can enveloped viruses pro-
ductively enter cells through endosomes (Figure 1) but that
most do so [for recent reviews, see (14-16)]. The focus of
this review is on enveloped virus fusion in endosomes, in
particular on the diversity of endosomal cues that trigger

virus fusion.

that may employ novel endosomal fusion-triggering mechanisms. A key
take-home message is that enveloped viruses that enter cells by fusing
in endosomes traverse the endocytic pathway until they reach an endo-
some that has all of the environmental conditions (pH, proteases, ions,
intracellular receptors and lipid composition) to (if needed) prime and
(in all cases) trigger the fusion protein and to support membrane fusion.
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Virus Fusion in Endosomes: General
Considerations

Enveloped viruses that enter cells through endosomes
begin their journey after binding to attachment factors
and/or receptors on the cell surface followed by internal-
ization through a variety of endocytic processes (14-18)
(see Table 1 for definitions of terms). The major routes
of virus internalization are clathrin-mediated endocytosis,
used by Semliki Forest virus (SFV) (1) and vesicular stom-
atitis virus (VSV) (19), and macropinocytosis, used by vac-
cinia virus (20,21), Ebola virus (EBOV) (22-24) and oth-
ers (25,26). Some viruses, notably influenza, can use either
mode of internalization depending on which pathway is
functional in a given cell under given conditions (27 -30).

Other means of internalization are caveolar endocytosis,
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Figure 1: Enveloped virus entry through different endo-
somal compartments. Most enveloped viruses that enter the
cell via endocytosis traverse the normal endocytic pathway (early
endosome to late endosomes to endolysosome) and exit, by
membrane fusion, where the conditions are sufficient to trigger
the viral fusion protein; in some cases, the viral fusion protein is
also proteolytically primed in the endocytic pathway as a prereg-
uisite to fusion. [LCMV particles were found, however, to bypass
early endosomes and traffic directly to, and fuse in, late endo-
somes (11,12).] Examples of enveloped viruses that exit through
early endosomes, late endosomes and endolysosomes are indi-
cated. Viruses that enter through late endosomes or endolyso-
somes are termed ‘late penetrating viruses' (13). See text and
table legends for abbreviations.

used by certain non-enveloped viruses, as well as clathrin-
and caveolin-independent endocytosis.

Despite the various modes of internalization, most endo-
cytosed enveloped viruses traverse the canonical endo-
cytic pathway and enter the cytoplasm through either early
endosomes, late endosomes or endolysosomes depending
on which compartment has the proper environmental
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cue(s) to trigger and support fusion (Figure 1). While
entry through endosomes does not necessarily imply a
requirement for low pH for fusion (31-33), for most
endocytosed enveloped viruses a major determinant of
the entry site is the pH dependence of the viral fusion
reaction (Table 2). The pH dependence of fusion varies
among enveloped viruses (7), and these differences can
correlate with the endosomal site of fusion (41). Hence,
viruses with relatively high (~pH6) pH dependencies,
such as SFV (41) and VSV (42), generally fuse in early
endosomes, whereas those with lower pH dependencies
(~pH 5), including most strains of influenza, generally fuse
in late endosomes (13). The pH dependence for influenza
virus fusion varies by ~0.7 pH units among different
strains, with human influenza viruses generally requir-
ing lower pH than avian ones. This variation in pH trig-
gering has been proposed as an ‘acid stability marker’ as
part of risk-assessment analyses designed to predict the
human transmissibility of influenza virus (43-48). How-
ever, single-particle tracking analyses of several clinical and
laboratory-adapted H3 influenza viruses show that the typ-
ical acid stability assay (pH onset of syncytia formation)
may not provide enough information about the rates of
fusion and fusion inactivation to predict viral tropism in all
cases (49).

SEV, VSV and influenza represent relatively simple cases
for which low pH is sufficient to trigger fusion. For these,
the pH of fusion correlates with the pH needed to induce
fusion-activating conformational changes in the viral
fusion protein, which in turn generally correlates with
fusion in an early or a late endosome. However, even these
simple cases have modifiers, such as special target mem-
brane lipid requirements (6,50-54). In other cases, low
pH may be necessary, but not sufficient, to trigger fusion.
This applies for endosomal entry of certain retroviruses
and coronaviruses.

Viral Membrane Fusion Proteins: General
Considerations

Enveloped viruses vary in the number of different types
of glycoproteins that protrude from their membranes.
For example, retroviruses display a single transmem-
brane glycoprotein (Env), while most influenza viruses
display two: a hemagglutinin (HA) and a neuraminidase.
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Virus Fusion in Endosomes

Table 1: Definition of terms pertinent to viral membrane fusion proteins

Fusion protein

Fusion subunit

Class I, Il or Ill fusion proteins

Fusion peptide
Fusion loop

Prefusion conformation

The transmembrane protein on the surface of an enveloped virus that engages the target bilayer to
mediate virus—cell membrane fusion. Examples: influenza HA, HIV Env, Dengue E. All characterized viral
fusion proteins contain both a fusion peptide (or fusion loop) that engages the target membrane and a

transmembrane domain that anchors the protein in the viral membrane.
Certain viral fusion proteins (e.g. influenza HA and HIV Env) are trimers of heterodimers that consist of a

receptor binding and a fusion subunit, held together by either a disulfide bond (influenza HA) or
non-covalent interactions (HIV Env). In all of these cases the fusion subunit contains both the fusion

peptide (or fusion loop) and a transmembrane domain.
All characterized viral fusion proteins fall into one of three classes based on the structure of their fusion

protein/subunit: class |, largely a-helical; class II, largely p-structures; class Ill, contains both a-helical

and p-structures. See Table 3.
A fusion peptide is a relatively hydrophobic sequence found at the N-terminal end of a fusion subunit. It is

the portion of the fusion protein that engages the target membrane. See Table 3.
A fusion loop is a relatively hydrophobic sequence found internal to the fusion protein/subunit. Like a

fusion peptide, it is the region of the fusion protein that engages the target membrane. See Table 3.
The conformation of the viral fusion protein as it appears on the viral membrane after priming, but before

fusion triggering. See Figure 2, panel ii.
All characterized class | and class Il viral fusion proteins are primed to a state capable of responding to a

fusion trigger. This involves a proteolytic cleavage event in the fusion protein precursor or in a

All viral fusion proteins must be triggered for fusion. Triggering converts the prefusion conformation to a

postfusion conformation through a series of structural changes (Figure 2), and is induced by an
environmental cue (Figure 3) at the cellular fusion site (e.g. low pH in endosomes). In most cases, a
single trigger is sufficient, but in some cases (e.g. for ASLV Env), two triggers (receptor and low pH) are
required: for ASLV Env, one to convert the protein to a prehairpin and a second to convert the prehairpin

Priming

companion protein. See Table 3.
Triggering

to a hairpin.
Refolding

Refolding encompasses all of the conformational changes in the fusion protein/subunit during fusion. The

fold-back stage of refolding encompasses the changes that convert the prehairpin to the hairpin (see

Figure 2).
Postfusion conformation

The conformation of the fusion protein/subunit after the fusion reaction has been executed. For all

characterized fusion proteins, this state is a trimer-of-hairpins (Figure 2).

Fusion cascade

The fusion cascade encompasses all changes in the viral fusion protein as well as in the target and viral

membranes during the fusion reaction (panels ii to vi in Figure 2).

Other enveloped viruses display more than two surface
proteins. Nonetheless, for all characterized enveloped
viruses one glycoprotein is the fusion protein, the protein
that actually merges the viral and cellular membranes
(Table 3). For reviews on the structures and mechanisms
of viral fusion proteins, see references (60,61,65-69)
and primary citations within. For viruses that encode
a single transmembrane glycoprotein (e.g. retroviruses
and filoviruses) that glycoprotein is the fusion protein.
For viruses with two transmembrane glycoproteins (e.g.
orthomyxoviruses and paramyxoviruses), the fusion pro-
tein is one of the two (e.g. HA of influenza virus). As
reviewed in references (59,60,70,71), large DNA viruses

such as herpesviruses and poxviruses employ fusion
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machines, which consist of four (herpesviruses) or more
(poxviruses) proteins associated with the virus membrane.
However, at least for herpesviruses, one transmembrane
glycoprotein, gB, is the fusion protein. Another important
point is that despite their differing prefusion and post-
fusion structures, all characterized viral fusion proteins
share a common architecture in their postfusion forms, a

trimer-of-hairpins.
Priming and Triggering Viral Membrane
Fusion Proteins

The field has converged on a model for how viral fusion
proteins function [Figure 2; also see (60,61,65-70)]. All
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Table 2: Site and fusion-triggering mechanism for representative enveloped viruses

Family Virus Site Trigger

Retroviridae MLV Plasma membrane Receptor

Paramyxoviridae PIV5 Plasma membrane Receptor

Herpesviridae HSV-1 Plasma membrane Receptor

Coronaviridae SARS Plasma membrane or late endosome Receptor + protease
Rhabdoviridae VSV Early endosome Low pH

Togaviridae SFV Early endosome Low pH

Bornaviridae BDV Early endosome Low pH

Flaviviridae TBE Endosome Low pH

Orthomyxoviridae Influenza Late endosome Low pH

Arenaviridae LCMV Late endosome Low pH

Bunyaviridae UUKV Late endosome Low pH

Filoviridae EBOV Endolysosome Low pH + additional cue(s)
Asfarviridae ASFV Late endosome Low pH + additional cue(s)
Poxviridae W Late endosome Low pH [+ additional cue(s)]
Arteriviridae PRRSV Early endosome Low pH [+ additional cue(s)]
Hepadnaviridae HBV Late endosome

Information is for the specific virus listed (viruses of invertebrates only not included). Variations on entry sites and triggers exist for different family
members (see main text). ‘Endosome’ denotes that the specific endosomal entry site is not yet known. ‘Low pH + additional cue(s)’ denotes that low
pH is necessary but not sufficient; ‘low pH [+ additional cue(s)]" indicates that low pH is needed, but it is unclear if it is sufficient. Blank indicates

insufficient information.

PIV5, parainfluenza virus 5; TBE, tick-borne encephalitis virus; LCMV, lymphocytic choriomenengitis virus; UUKV, Uukuniemi virus; VV, vaccinia virus
(data are for the mature form, WR strain); ASFV, African swine fever virus; SHFV, simian hemorrhagic fever virus; BDV, Borna disease virus; HBV,
hepatitis B virus. Additional information for the table can be found in references (34—40). For HBV, entry appears independent of late endosomal pH,

but may require redox potential (38).

characterized class I and II viral fusion proteins must be
primed before they can be triggered to induce fusion. Prim-
ing entails a proteolytic event that converts the fusion
protein from a fusion-incompetent to a fusion-competent
state (Figure 2). For class I fusion proteins the cleav-
age occurs in the fusion protein (precursor), whereas for
class II fusion proteins, it occurs in a companion pro-
tein (Table 3). Depending on the viral fusion protein and
the cells infected, priming can occur in the Golgi, at a
cell surface or in an endosome. For example, for most
strains of influenza virus, cleavage of the HA precursor
(HAO) occurs in the extracellular space or at the cell
surface by trypsin-like proteases, but highly pathogenic
avian influenza viruses such as H5N1 are cleaved in the
Golgi by furin-like proteases based on the presence of
a multibasic cleavage site (73). Proteolytic priming sep-
arates HAO into a receptor binding (HA1) and a fusion
(HA2) subunit. Consequently, the fusion peptide is found
at the amino terminus of HA2. Aspects of HA prim-
ing, for example accessibility of the cleavage site within
HAO (including obstruction by carbohydrates) as well as
the host cells and tissues where priming occurs and the
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proteases involved, are thought to be critical determinants
of influenza pathogenesis (43,74,75). Other priming events,
as for the EBOV glycoprotein (GP) (76,77) and the F pro-
tein of henipaviruses (78-80), occur in endosomes, medi-
ated by cathepsins or other proteases. Most importantly,
irrespective of the cellular site where it occurs, the protein
(fusion or companion) cleaved or the proteases involved,
priming converts the fusion protein to a fusion-competent

state (Figure 2).

The next stage of fusion is triggering, which for viruses
that enter through endosomes is induced by an endoso-
mal cue(s). An early consequence of triggering is exposure
and repositioning of the fusion peptide (or loop) to engage
the target bilayer; before triggering, the fusion peptide/loop
is buried or tacked down in the fusion protein structure
(or, for VSV G, points to the viral membrane) and there-
fore inaccessible to the target membrane. Upon trigger-
ing the fusion peptide/loop is exposed and inserts into the
target membrane forming an intermediate termed a pre-
hairpin (Figure 2). The prehairpin is a unique biological
structure in which a single protein, the viral fusion protein,
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Virus Fusion in Endosomes

Table 3: Examples of viral membrane fusion proteins

Fusion Fusion Fusion
Virus  protein protein  Protein Priming peptide or
Family example (subunit) class  primed protease(s)? Metastable fusion loop Fusion trigger
Orthomyxoviridae Influenza HA (HA2) | HAO Furin, trypsin Yes Peptide Low pH
Paramyxoviridae ~ PIV5 F(F1) | FO Furin, trypsin Yes Peptide Receptor
Retroviridae HIV Env (gp41) I Env (gp160) Furin Yes Peptide Receptors
Coronaviridae SARS S(S2) | SO Trypsin, cathepsin Yes Peptide Receptor + protease
Arenaviridae LCMV GP (GP2 + SSP) | GPC SKI/STP Yes Peptide and  Low pH
loop
Filoviridae EBOV GP (GP2) | GP Cathepsins® Yes Loop Low pH + additional
cue(s)
Togaviridae SFV E1 Il pE2 Furin Yes Loop Low pH
Flaviviridae TBE E Il prM Furin Yes Loop Low pH
Bunyaviridae UUKV Ge I GPC Signal peptidase Yes Loop Low pH
Rhabdoviridae VSV G Il N/A N/A No? Loops Low pH
Herpesviridae HSV-1 9B Ml N/A N/A (Yes)® Loops Receptor
Bornaviridae BDV GP (GP2)f GP Furin Low pH + [additional
cue(s)]°
Poxviridae W EFC Low pH [+ additional
cue(s)]
Asfarviridae ASFV Low pH + additional
cue(s)
Arteriviridae PRRSV Low pH [+ additional
cue(s)]e
Hepadnaviridae ~ HBVY

Information is for the specific virus listed. Fusion proteins from most family members share structural class, metastability and presence of a fusion
peptide or loops (but see text: pesti- and hepaciviruses). Within families, differences exist in the priming proteases and triggering mechanisms (see
text). Information is not included for viruses that only infect invertebrates [but note that Baculovirus gp64 is a class Il fusion protein (55)], nor for
cell—cell fusion proteins from J paramyxovirus (56) or encoded by reoviruses (57). Blank indicates insufficient information.

HIV, human immunodeficiency virus; N/A, not applicable; SSP, stable signal peptide (58); EFC, entry fusion complex (59).

2Denotes furin- and trypsin-like proteases; SKI/S1P is a furin-family member.

EBOV GP is cleaved to GP1 and GP2 by furin, but requires cathepsins for priming (see text).

“See Table 2.

dySV G undergoes pH-reversible conformational changes..

#gB has been described as metastable (60), possibly due to interactions with gH/gL (60—63)

fThe fusion mechanism of BDV is not clear. Its single glycoprotein (GP) is cleaved by furin (to GP1 and GP2), this cleavage is important for fusion (34)
and GP2 is postulated to possess fusion activity (35). However, high-resolution structural information is not available for either GP1 or GP2.

9HBV encodes a preS surface protein that is processed to large (L), medium (M) and small (S) proteins, but which is/are the major player(s) in fusion
and how HBV fusion is activated remain to be clarified (64).

is simultaneously anchored in, and therefore bridges, two
distinct membranes: the target membrane via the fusion
peptide/loop and its own (viral) membrane through its
transmembrane domain (TMD). Class I fusion proteins are
trimers in their prefusion and postfusion states. Interest-
ingly, while all characterized class II fusion proteins are
dimers (that sit low on the viral surface) in their prefusion
states, they convert, through a monomeric intermediate,
to homotrimers once their fusion loops lodge in the tar-

get membrane (68,81,82). After prehairpin formation, the

Traffic 2016; 17: 593-614

fusion protein folds back upon itself, drawing the attached
target and viral membranes closer and closer together. The
final postfusion state of all characterized viral fusion pro-
teins is, therefore, a trimer-of-hairpins. Although there is
debate (83), it is commonly thought that multiple fusion
protein trimers act in concert (84-91) to induce the later
stages of fusion: close membrane apposition, formation of
a lipid stalk, opening of a small fusion pore and expan-
sion of the pore (92-95), to create a passage for the viral

nucleocapsid.

597



White and Whittaker

Fusion Incompetent Prehairpin

C ] C

C ) C
Prime }

C )

C )

®

Fusion Competent

D

d C

) C

. Fusion
Trigger ) Peptide

) C )

D C )

Prebundle

Bundle

Trimer of Hairpins

Hemifusion

O, O,

Close Apposition Fusion pore

Figure 2: Model for how viral fusion proteins function. The model shown is for a class | fusion protein, but related models
apply to class Il and Il fusion proteins. The term for the state of the protein is given above each image. For most class | fusion proteins
[see (67) for paramyxovirus F proteins], prior to triggering (i and ii), the receptor-binding subunit (deep purple, rb) clamps the fusion
subunit (dark blue, f). Upon triggering, the receptor-binding subunit moves out of the way unclamping the fusion subunit so that it can
form a prehairpin embedded in the target membrane via the fusion peptide (red). The prehairpin then folds back causing the N- and
C-a-helical heptad repeats to form a six-helix bundle (6HB) and progressively pulling the target (pink) and viral (light blue) membranes
through stages of close apposition (iv), hemifusion (v) and fusion pore formation (vi). In some cases (e.g. for influenza HA), membrane
coalescence is aided by further packing of sequences C-terminal to the C-heptad in the grooves of the central N-heptad coiled coil (72).

Importantly, for all characterized viral fusion proteins, the final (postfusion) conformation (vi) is a trimer-of-hairpins.

Classes of Viral Fusion Proteins

The diagram in Figure 2 is for a class I viral fusion protein
(Table 3) such as the influenza HA (96,97). For these, the
fusion subunit is largely a-helical, containing an N- and a
C-helical heptad repeat. In the prehairpin, the N-heptad is
thought to sit atop the C-heptad in contiguous alignment.
During the fold-back stages, the three C-heptads bind in
the grooves of the trimeric N-heptad coiled coil creating a
six-helix bundle-containing trimer-of-hairpins (Figure 2).
Since the N- and C-heptads connect, respectively, to the
fusion peptide and the TMD, hairpin formation pulls the
attached membranes (cell and viral) together. Final inter-
actions between the fusion peptide and TMD are thought
to complete the event (98-101), possibly aided in some
cases by a ‘membrane proximal external region’, located
upstream of the TMD (102-106).

Based on structural criteria there are two other recog-
nized classes of viral fusion proteins (60,61,65-70). Class

IT fusion proteins are largely composed of p-strands and
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[-sheets, with a fusion loop(s) at the tip of an extended
-sheet domain (68). Class III fusion proteins contain
both a-helical and p-sheet regions, with fusion loops at
the tips of an extended f-sheet (55,60,61,70,107). Most
importantly, as for class I fusion proteins, the final ‘postfu-
sion’ structure for characterized class II and III proteins is
a trimer-of-hairpins (in which previously separated fusion
peptides/loops and TMDs, and their attached target and
viral membranes, have been brought together).

Fusion Peptides and Fusion Loops

The segments that engage the target membrane are termed
‘fusion peptides’ if at the N-terminus of the fusion subunit
and ‘fusion loops’ if internal to the polypeptide chain. Most
class I fusion proteins contain fusion peptides, but those
of avian sarcoma leukosis virus (ASLV) and filoviruses
contain a fusion loop. Arenavirus GPs may contain both
a fusion peptide and a fusion loop (58). The situation for
coronaviruses is not fully resolved, with most evidence for
a fusion peptide (108-110) (see below).
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In membranes or membrane mimetics, the fusion pep-
tide of influenza HA forms a kinked or hairpin o-helical
structure (111,112) while that of HIV Env forms a-helical
or B-structures depending on the target lipid composition
(113-115). These structures maximize interactions of
hydrophobic side chains with the hydrocarbon portion
of the bilayer. The EBOV GP, a class I fusion protein,
contains an internal disulfide-bonded fusion loop. At
neutral pH it adopts a relatively flat structure, as seen in
the prefusion trimer (116,117). At low pH the structure
bends to more firmly grasp the target membrane (117);
low pH-induced changes also occur in the influenza
HA fusion peptide (118,119). Where studied, specific
residues in fusion peptides and loops affect their struc-
ture, membrane insertion and function [for example,
see (119-121)]. Hence, the sequences and structures of
fusion peptides/loops are important; their noted struc-
tural plasticity may be relevant at different stages of
fusion.

Class II and III fusion proteins contain fusion loops at
the tips of extended p-sheet domains. While some class
IT fusion proteins have a single fusion loop (87,122-125),
others, as well as all characterized class III fusion proteins,
possess two fusion loops (per monomer) at the tip of a
[-sheet domain (126-132).

Fusion Triggering: General Considerations

There are four known ways by which a viral fusion protein
can be triggered: by binding to a receptor(s), by exposure
to low pH, by binding to a receptor followed by exposure
to low pH and by a binding to a receptor followed by pro-
teolytic cleavage (Figure 3). Interaction(s) with receptors is
sufficient to trigger fusion for most retroviruses, paramyx-
oviruses and herpesviruses (Table 2), reflecting their pre-
dominant fusion at the cell surface at neutral pH [for
reviews, see (60,67,70,133,134)]. Most enveloped viruses,
however, fuse in endosomes reflecting a requirement for
low pH. Low pH may be sufficient, or it may work in con-
cert with, or after binding to, a receptor. Alternatively, fol-
lowing receptor engagement, low pH may be needed for the
action of an endosomal protease (Table 4).

For some virus families, the fusion trigger is common to
all members. For examples, low pH is sufficient to trigger

Traffic 2016; 17: 593-614
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Figure 3: Different mechanisms by which class I, Il and
Il fusion proteins are triggered. The three known classes
of viral fusion proteins and the four confirmed mechanisms for
fusion protein activation are shown on the left and right sides,
respectively. Among fusion-triggering mechanisms (right), blue
denotes events that occur at neutral, and pink denotes ones
that require low, pH. Some receptor + protease mechanisms do,
whereas others do not, require low pH. Lines join ways in which
specific viral fusion proteins, from different structural classes, are
triggered. See text for details and abbreviations.

the fusion proteins of influenza, alpha-, flavi- and rhab-
doviruses. For other families, different members employ
different triggers. For example, the coronavirus infectious
bronchitis virus (IBV) is triggered by simple exposure
to low pH (135), while others, including severe acute
respiratory syndrome coronavirus (SARS-CoV), Middle
East respiratory syndrome coronavirus (MERS-CoV) and
feline coronavirus (FCoV), are activated by binding to
a receptor followed by protease action. Similarly, while
paramyxoviruses of the paramyxovirinae subfamily (e.g.
measles and mumps) fuse at neutral pH in response to
receptor binding (67), some metapneumoviruses (pneu-
movirinae subfamily) enter the cytoplasm following
endocytosis, and for some this correlates with low pH
enhancement of fusion activity (32,136,137). For respira-
tory syncytial virus (pneumovirus genus; pneumovirinae
subfamily), endocytosis appears to be followed by
pH-independent proteolytic activation of the fusion pro-
tein (25). Differences in neutral pH/cell surface versus low
pH-dependent/endosomal entry apply among retroviruses
(133,134,138-142) and to herpesviruses in some cell
types (143).
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Table 4: Examples of endosomal viral fusion triggers

Trigger Virus Fusion protein  Additional facilitating factors/other comments

Low pH Influenza ~ HA One study suggests a role for cathepsin W for influenza entry, but the
substrate (viral or cell) is not known. Events initiating nucleocapsid
uncoating require K*.

SFV E1 SFV fusion requires cholesterol and sphingomyelin in the target
membrane.

Rubella E1 Rubella virus fusion is enhanced by Ca** ions.

VSV G VSV fusion is enhanced by anionic lipids such as LBPA.

Dengue E Dengue virus fusion is enhanced by anionic lipids such as LBPA.

Andes Gc Andes virus fusion requires high levels of cholesterol in the target
membrane.

UUKV Gc UUKV fusion is enhanced by anionic lipids such as LBPA.

LCMV GP Low pH appears sufficient to trigger LCMV fusion (no known enhancing
factors).

Receptor + low pH ASLV Env ASLV Env is the best-characterized fusion protein activated in two
sequential steps by receptor (Tva) binding followed by exposure to low

H.

JSRV Env JSRR/ Env appears to require both interaction with its receptor (Hyal2) and
low pH, but details remain to be clarified.

HCV E1/E2 Fusion and entry mediated by HCV E1/E2 appears to require both binding
to cell surface receptor(s) and low pH, but details remain to be
clarified.

LASV GP LASV fusion is reported to require its intracellular receptor (LAMP1) and
low pH. The exact roles of LAMP1 and low pH remain to be clarified.

EBOV GP After priming GP1 to ~19 kDa, EBOV GP requires its intracellular receptor
(NPC1) and low pH for fusion, but the exact roles of NPC1, low pH and
additional factor(s) remain to be clarified.

Receptor + endosomal protease  SARS S SARS requires binding to its surface receptor (ACE2) plus cathepsin L for
endosomal entry. Low pH is not needed for fusion per se (rather for
cathepsin activity); trypsin can trigger ACE2-bound SARS at the cell
surface at neutral pH.

MERS S MERS fusion requires binding to its cell surface receptor (DPP4) followed
by proteolytic activation at the cell surface (by trypsin-like proteases) or
in endosomes (by furin or cathepsins). Fusion may be triggered at
neutral pH or under low pH conditions.

RSV F RSV fusion is triggered in a pH-independent manner in early endosomes

following two distinct furin-mediated cleavage events.

See text for references and details.

JSRV, Jaagsiekte sheep retrovirus. See text and other tables for other abbreviations.

An analysis of the ways in which different viral fusion
proteins are activated also reveals that the mechanism of
fusion triggering does not necessarily correlate with the
structural class of the fusion protein (Table 3, Figure 3).
Different class I fusion proteins can be activated by each
of the four characterized fusion-triggering mechanisms
(Table 3, Figure 3), while all characterized class II fusion
proteins are activated by exposure to low pH alone. And,
different class I1I fusion proteins can be activated either by
low pH alone (VSV G), by binding to a receptor at neutral
pH (e.g. most herpesviruses gB proteins in most cells) or by
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binding to a receptor followed by exposure to low pH (e.g.
certain herpesviruses gB proteins in certain cells).

A major, perhaps the major, consideration about enveloped
virus fusion in endosomes is that the specific endosome
that serves as the fusion site (Figure 1, Table 2) is the
endosome that possesses all of the necessary environmen-
tal cues to trigger the fusion protein. In some cases, this,
or an upstream, endosome must also possess prefusion
triggering priming factors. The endosomal fusion site will
therefore be dictated by where the pH, receptors, ions, lipid
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composition, proteases and other factors are all present to
(prime), trigger and support fusion.

Triggering by Simple Exposure to Low pH

Details of the fusion process were first elaborated for
the influenza HA (Figure 2), for which low pH is
sufficient to trigger all of the steps in the fusion cascade
(7-9,96,97,144 - 148). the pH
dependence for key conformational changes in HA corre-
lates with the pH dependence for fusion (43,149), which,
as mentioned previously, varies for different influenza

Unsurprisingly then,

strains. Low pH is also sufficient to trigger alpha-, arena-,
bunya-, flavi- and rhabdovirus fusion proteins (Table 3).
For each of these, encompassing class I (150-153), class
II (36,154-159) and class III (55,126,160,161) fusion pro-
teins, protonation of multiple residues (147,149,162,163),
in particular histidines (pKa ~ 6), is known or thought to
be involved (164). For viruses activated solely by low pH,
tusion in early or late endosomes is generally dictated by
the pH dependence for key conformational changes in the
viral fusion protein; those with higher pH thresholds gen-
erally fuse in earlier endosomes than ones requiring lower
pH (7,41). Exposure of certain enveloped viruses to low
pH can also elicit changes to the matrix layer underlying
the virus membrane. For influenza, protons can access the
matrix layer through the M2 channel in the viral envelope
(165,166). Exposure of the matrix to H* and K*, which
can also enter via the M2 channel, likely aids later stages of
fusion and/or uncoating (167-169). A related process may
occur for other endosomally entering enveloped viruses
(170,171).

Among viruses whose fusion activity is activated solely
by low pH, several have been shown to have specific
lipid or ionic requirements that can influence the specific
endosomal site of fusion (Table 4). Where studied, these
requirements reside at the level of either the initial inter-
action between the exposed fusion peptide/loop and the
target membrane or at a later step in the fusion process.
For example, SFV requires ~33 mol % cholesterol and
~1-2% sphingomyelin in the target membrane for opti-
mal fusion (6,50,51,172). The cholesterol requirement is for
stable insertion of the fusion loop (within its fusion pro-
tein, E1) into the target membrane prior to the fold-back
steps (68,173). Similarly, hantaviruses such as Andes virus
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require high levels of cholesterol in the target membrane
(in addition to low pH) for fusion (52).

Another intriguing case is dengue virus, which requires
anionic lipids such as lysobisphosphatidic acid (LBPA)
in the target membrane for fusion. Although dengue
virus E protein displays conformational changes at a pH
compatible with fusion in early endosomes, it traffics to
late endosomes for fusion and entry (53,174), which was
attributed to higher concentration of anionic lipids in later
endocytic organelles (53). Other flaviviruses (175,176)
as well as the rhabdovirus VSV (54,177,178) and the
bunyavirus Uukuniemi (UUKV) (179) show higher rates
and/or efficiencies of fusion when anionic lipids (including
LBPA) are present in the target membrane. However, the
physiological roles of specific anionic lipids in specific
endosomal compartments for specific stages of fusion
and/or capsid release are not fully understood. Some have
argued that LBPA is needed for back-fusion of intraluminal
vesicles laden with already fused virus particles, and hence
capsid release (175,178).

In another twist, a recent study showed that in addition to
low pH, rubella virus (RV) requires Ca** for fusion (128).
The RV fusion protein (E1) contains two fusion loops,
which are closely associated through a metal ion-binding
site in the postfusion structure (129). Ca*™* appears to
be needed to properly position the two fusion loops for
coordinated stable target membrane interaction (Figure 2)
and hence for RV fusion (128).

Triggering by Binding to a Receptor Followed
by Exposure to Low pH or the Action of a
Protease

Below, we will discuss how engagement of a host cell recep-
tor can play an active, albeit not exclusive, role in triggering
certain viral fusion proteins that function in endosomes, As
a prelude, we review how viruses that fuse at neutral pH are
activated by their host cell receptors.

Paradigms from viruses that fuse at neutral pH
following receptor binding

Most enveloped viruses that fuse at neutral pH are trig-
gered solely by binding to a host cell receptor(s) (Figure 3,
Tables 2 and 3). Some neutral pH fusing viruses (most
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retroviruses) possess a single glycoprotein (Env) whereas
others (e.g. herpesviruses) have more. Retroviral Envs
are class I fusion proteins. Binding of the receptor(s), to
the receptor-binding subunit of Env, unclamps the fusion
subunit, which then proceeds through conformational
changes that mediate fusion (Figure 2). An interesting case
is Env from murine leukemia virus (MLV), a y-retrovirus.
MLV Env contains a thiol exchange motif (CXXC) in
its receptor-binding subunit. Engagement of the host
cell surface receptor activates this motif, which then iso-
merizes a disulfide bond between the CXXC motif and
a CX,CC motif in the fusion subunit. By breaking this
critical disulfide bond, the fusion subunit is unclamped
and executes the fusion cascade (180). A similar isomer-
ization occurs in Env of human T-cell leukemia virus,
a O-retrovirus (181). Human immunodeficiency virus
(HIV), a lentivirus within the retrovirus family, presents
a different case. The two subunits of HIV Env are not
disulfide-bonded and HIV Env does not contain a thiol
exchange motif. For most HIV strains Env engagement
with its primary receptor (CD4) elicits a change in its
receptor-binding subunit that reveals a binding site for
a co-receptor (CXCR4 or CCR5). When the co-receptor
binds it unclamps the fusion subunit allowing the fusion
cascade to follow (138,182-184). While it had been
thought that all of these events happen at the plasma mem-
brane, some findings suggest that the (posthemifusion)
content mixing stage of HIV fusion requires endocyto-
sis and dynamin (but not low pH) (31). However, the
exact site of fusion for specific strains of HIV in specific
(physiologically relevant) cell types is currently under
study (133,134).

Most, but not all, paramyxoviruses and herpesviruses
fuse at neutral pH at the plasma membrane. In most
of these cases, binding of a host cell receptor to a viral
receptor-binding protein induces conformational changes
(in the viral receptor-binding protein) that are relayed to
the fusion protein, thereby sparking the fusion cascade. For
paramyxoviruses, the relay is generally from the binding
protein (HN, H or G) to the fusion protein (F) (67), with
findings converging on a (receptor-binding protein) ‘stalk
exposure’ model for fusion triggering (67,185,186). For
herpesviruses, the relay goes from the binding subunit
(gD for HSV-1) to an intermediate complex (gH/gL for
HSV-1) to the fusion protein (gB) (60,70).
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Triggering by binding to receptors followed

by exposure to low pH

Unlike the cases described so far where either low pH
alone or binding of a receptor(s) alone triggers the viral
fusion protein, some viruses, notably the retrovirus ASLYV,
utilize a hybrid, two-step process. The fusion protein of
ASLV (Env) is a class I fusion protein. Unlike MLV Env,
ASLV Env does not contain a thiol exchange motif in
its receptor-binding subunit (SU). In this case, binding
of the ASLV receptor (Tva) to SU triggers conforma-
tional changes in SU (187,188) that release the clamp
on the fusion subunit, thereby allowing Env to form a
prehairpin embedded in the target membrane via its
fusion loop (189-191). Subsequent exposure to low pH
induces the fold-back events that generate a six helix
bundle-containing trimer-of-hairpins (Figure 2) and
hence fusion and viral entry (139-142,152,192-195). A
His residue in the chain reversal region (between the N-
and C-heptads) of the fusion subunit influences the pH
dependence of fusion (152). This and a nearby His also
influence the stability of the ASLV six-helix bundle at
low pH (196). Interestingly, differences among six-helix
bundles in terms of their dipole moments, stability at low
versus neutral pH as well as the types of stabilizing inter-
actions employed correlate with the pH dependence of
fusion for certain retroviral (and filoviral) fusion proteins
(196). ASLV Env is the only viral fusion protein currently
known to use a clear-cut two-step mechanism where
receptor binding triggers prehairpin formation and low
pH triggers the fold-back steps leading to hemifusion and
fusion pore formation. However, the Env glycoprotein of
the Jaagsiekte sheep retrovirus appears to use a two-step
process involving its receptor and low pH (197).

EBOV (discussed below) and Lassa virus (LASV) have
recently been shown to employ intracellular receptors,
located in late endocytic compartments, for produc-
tive entry. For EBOV the intracellular receptor is
Niemann-Pick C1 (NPC1); for LASV it is LAMPI1
(197-200). Both viruses require low pH for entry. In
the case of LASV, both LAMP1 and low pH appear to
be needed to induce LASV GP-mediated cell - cell fusion
(199). A recent study employing electron cryotomography
reported small changes in the membrane distal region of
LASV GP1 at pH 5.0 and upon binding LAMP1 at pH 5.0,
as well as shedding of GP1 at pH 3.0 (201). However, future
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work is needed to determine if LAMP1 and physiological
low pH elicit clear-cut sequential conformational changes
in LASV GP akin to those induced by Tva and low pH
(pH 5.0) in ASLV Env.

Triggering by binding to receptors followed by the
action of a (low pH-dependent) protease

In some cases, viral fusion proteins are triggered by bind-
ing to a receptor followed by the action of a protease,
which may or may not be low pH-dependent. Such trig-
gering mechanisms are employed by some coronaviruses
and also by the paramyxovirus respiratory syncytial
virus (RSV). SARS-CoV has been studied extensively
in this regard. Following its interaction with the ACE2
receptor, SARS-CoV is activated by proteolytic cleavage;
cathepsin L activates the virus in late endosomes in a
pH-dependent manner (202-204), but the virus can also
be activated by trypsin-like proteases at the cell surface
in a pH-independent manner (205-207). As first identi-
fied with SARS-CoV (208), coronaviruses are somewhat
unusual in that they have two distinct cleavage sites within
their spike proteins (209) termed S1/S2 and S2’. In the case
of SARS-CoV either cathepsin L or trypsin-like enzymes
cleave at both positions but likely in a sequential manner
(S1/S2 followed by S2’) (208). The use of each protease may
be different in different cell types (e.g. Vero cells versus
respiratory epithelial cells).

The currently emerging MERS-CoV shares many fea-
tures with SARS-CoV with regard to membrane fusion
(210-212), but has wider cell tropism. While both cathep-
sin L and trypsin-like enzymes can activate MERS-CoV
following binding to its receptor (DPP4), there is an addi-
tional ability to use furin as an activating enzyme (213),
which may explain its broader tropism. As with SARS-CoV,
the use of a given activating protease may be different in
distinct cell types. Notably, MERS-CoV is activated at the
S2’ site by endosomal furin in a pH-dependent manner
(213,214). It is unclear if the effect of low pH reflects a role
in activation of furin or for conformational changes in the
spike protein. Given that coronavirus fusion can function
under neutral pH conditions, it is possible that the pH
dependency is related to the level of proteolytic cleavage,
with decreased cleavage of S compensated by fusion at
low(er) pH. If so, this would be reminiscent of findings
with a p62 cleavage site-defective mutant of SFV (215).
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While SARS-CoV does not appear to be able to use
furin for cleavage activation, furin is commonly used by
many other coronaviruses. In most cases, furin appears
to prime the S precursor (S0) at the S1/S2 location likely
during biosynthesis, as first shown with mouse hepatitis
virus (MHV) (216). In general, coronaviruses appear
to be quite flexible with regard to their postreceptor
means of fusion activation, and this can profoundly
affect viral pathogenesis. For instance, feline coronavirus
and the human coronavirus HCoV-OC43 show distinct
modulation of their pathogenesis based on sequence
alterations in their furin cleavage sites (217-219). The
second (endosomal or cell surface) protease likely acts at
S2’, in close proximity to the fusion peptide (109,110), to
drive the fusion reaction. While many details remain to
be resolved, studies of MHYV have provided firm evidence
for an endosomal activation pathway (214) driving mem-
brane fusion following proteolytic activation at a fusion
peptide-proximal position, ie. S2’ (214,220). Another
coronavirus that has been used to demonstrate postre-
ceptor triggering of fusion is porcine epidemic diarrhea
virus (PEDV), in this case in a trypsin-dependent manner
at S2' (221) following interaction with the APN recep-
tor. The action of trypsin on PEDV is considered to be
pH-independent.

As mentioned previously, the avian coronavirus IBV
appears to be an exception, with fusion based solely on
low pH triggering (135). In this case, S may be cleaved
at S2’ during biosynthesis (208,222), but any role of a
yet-to-be-identified receptor is unknown.

RSV is a paramyxovirus whose fusion protein (F) has two
cleavage activation sites. RSV F shares many features with
MERS-CoV S, with furin activating at both cleavage posi-
tions and with the fusion peptide-proximal cleavage event
occurring in early endosomes (25). However, the second
RSV cleavage event appears to be pH-independent and is
selective for furin, unlike for MERS-CoV.

Other endosomal proteases that have been implicated in
virus entry include cathepsin E for porcine reproductive
and respiratory syndrome virus (PRRSV) (37) and cathep-
sin W for influenza virus (223). In these cases, it is not yet
known if the proteases act on the virus or on a host factor
within the endosomal network.
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Cases for Which the Triggering Mechanism Is
Not Yet Clear

There are several viruses that enter cells through endo-
somes for which the mechanism of fusion triggering is
unclear. Three, touched on above, are why certain her-
pesviruses require endocytosis and low pH for entry into
certain cell types, whether an endosomal factor plays an
active role in HIV fusion in all cell types and the precise
roles of LAMP1 and low pH in triggering LASV fusion.
Here, we elaborate on two important viruses that may use
novel fusion-triggering mechanisms: EBOV and hepatitis
C virus (HCV).

Triggering EBOV GP for fusion

EBOV fusion and entry are mediated by its sole GP, a
trimer of a heterodimer containing a receptor-binding
subunit (GP1) disulfide bonded to a fusion sub-
unit (GP2) (224-227). Following internalization by
macropinocytosis (22,23), EBOV traffics to and fuses in
endolysosomes (Figure 1) that contain its intracellular
receptor, NPCI1, and two-pore channel 2 (TPC2), which
is also required for EBOV entry (198,228-233). Before
or upon arrival in endolysosomes, low pH-dependent
cathepsins remove the mucin-like domain and glycan
cap from GP1 (76,77,116,234,235). This priming step
converts EBOV GP1 (formerly 130kDa) to a 19-kDa
species. Importantly, the fusion subunit (GP2) is still
clamped in 19kDa-GP1-S-S-GP2 (236,237). Priming (to
19-kDa GP1) has two important consequences: it exposes
residues in GP1 critical for binding to NPC1 (228,235)
and it appears to potentiate 19 kDa-GP1-S-S-GP2 for
fusion triggering (236). An important observation about
primed 19kDa-GP1-S-S-GP2 is that it still requires
low pH and a factor(s) thwarted by the cysteine pro-
tease inhibitor E64d to mediate entry (77,230,233,238).
Concordantly, low pH and binding to NPC1 are neces-
sary, but apparently not sufficient, to trigger productive
19 kDa-GP1-S-S-GP2-mediated virus - cell fusion (228).

Three lines of evidence indicate that low pH plays a role
in triggering 19kDa-GP1-S-S-GP2 beyond its role for
optimal cathepsin activity. The first is that the fusion
loop (in GP2) undergoes a low pH-dependent confor-
mational change contingent on residues important for
GP-mediated entry (117,121). The second is that low
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pH stabilizes the postfusion (six-helix bundle) form of
EBOV GP2 (239-241). The third is that in vitro-induced
conformational changes in primed EBOV GP occur more
readily at low pH (236). While a recent study detected
cell-cell fusion mediated by 19kDa-GP1-S-S-GP2 at
neutral pH, the fusion pores formed were small and
non-expanding (242), likely not large enough to pass a
viral nucleocapsid. Moreover, the latter findings (242)
are difficult to reconcile with the observations that
19 kDa-GP1-S-S-GP2-mediated
are potently inhibited by both bafilomycin and E64d
(77,230,238), and that only small structural changes were
observed in the 19 kDa-GP1-S-S-GP2 ectodomain bound
to the NPC1 C-loop and crystallized at pH 5.0 (243). Col-
lectively, these findings suggest that in addition to NPC1

entry and infection

and low pH, another factor(s) is needed to mediate EBOV
fusion in a manner that will lead to productive infection.

The sensitivity of 19kDa-GP1-S-S-GP2-mediated fusion
and entry to E64d (77,229,230,233,238) suggests that
further action of a cysteine protease may be required.
However, neither the factor(s) responsible for the E64
sensitivity nor its target (19 kDa-GP1-S-S-GP2 or a host
constituent) has yet been identified. The roles of other
potential triggering factors also remain unclear. Interest-
ingly, the fusion subunits of EBOV GP and ASLV Env share
structural and functional similarities (152,196). Both con-
tain a CX6CC motif, but neither of their receptor-binding
subunits contains a thiol exchange motif (CXXC), as seen
in the MLV and HTLV Envs, which use disulfide bond
isomerization for fusion (see above). Hence, an analogous
fusion-triggering mechanism for EBOV GP would require
exogenous reducing activity. While disulfide reducing
agents (at low pH) can induce the 19 kDa-GP1-S-S-GP2
ectodomain to bind to target membranes (236), there is
no evidence for a physiological role for disulfide bond
reduction for EBOV entry. Even the role of NPCI is still
unclear. As for LAMP1 in LASV entry, does NPC1 play
an active role in fusion triggering (i.e. induce significant
conformational changes in 19 kDa-GP1-S-S-GP2 at phys-
iological temperature) or is a main role, for example, to
direct fusion to the limiting membrane of the endolyso-
some (i.e. away from the numerous small vesicles found
within endolysosomes)? The role of TPC2 also remains
to be elucidated (230,232). Hence, triggering of primed
19 kDa-GP1-S-S-GP2 to form a productive fusion pore
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is complex, and it may represent a novel mode of fusion
triggering.

Triggering HCV E1/E2 for fusion

HCV is a member of the Flaviviridae (Hepacivirus genus).
Within the family, it groups most closely with pestiviruses
(Pestivirus genus). Evidence suggests that the fusion mech-
anism of these viruses is novel. Both express two type
I transmembrane glycoproteins (E1 and E2) required for
fusion (244-250), but which is the bona fide fusion pro-
tein has been the subject of debate. While it was originally
predicted that pestivirus and hepacivirus E2 proteins were
class II fusion proteins, new evidence suggests this is not
the case. First, the structures of the pestivirus (251,252)
and HCV (253,254) E2 ectodomains do not conform to
the class II fusion protein fold. Second, at low pH, the
N-terminal domain of pestivirus E2 is disordered (252), as
seen for the E2 protein (the receptor binding, not fusion,
protein) of Sindbis virus. Third, a consensus is emerging for
a fusion loop (residues 264-293) in HCV E1 (255-257).
Fourth, a structure of the 79-residue N-terminal domain
of HCV E1 (which does not include the predicted fusion
loop) reveals a novel fold (258).

Additional findings point to a novel fusion mechanism
for pestiviruses and hepaciviruses. Fusion for both viruses
requires low pH (247,259,260), likely protonation of one
or more histidines (251,261), but simple low pH treatment
of cells with prebound viruses does not lead to infection.
While the combined action of low pH and a disulfide bond
reducing agent induced a low level of pestivirus infection
via fusion at the plasma membrane (262), similar treat-
ments did not induce HCV infection (260). Instead, for
HCV, a 60-min incubation at neutral pH and 37°C fol-
lowed by alow pH pulse induced some infection (259,260).
One study (263) suggested a role for binding of HCV E2
to CD81, one of the HCV receptors (264,265), during the
60-min preparatory period. However, details of the mech-
anism of HCV fusion remain to be resolved.

Concluding Remarks

The field of enveloped virus fusion in endosomes has
come a long way since the inaugural paper by Helenius
and coworkers (1). As elaborated above, detailed fusion
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mechanisms - encompassing key structural elements
and key structural changes in the fusion protein, and key
environmental triggering cues (low pH, receptors and
proteases) — are now known for representatives of class
L, II and III fusion proteins. Many questions remain. For
examples: Are there additional classes of enveloped viral
fusion proteins? Are there additional fusion-triggering
mechanisms? What are the common principles by which
proteases trigger fusion proteins post receptor binding?
How is fusion triggering orchestrated in multicomponent
fusion machines? In another vein, recent work suggests
that enveloped virus-membrane fusion can spark sig-
naling responses that trigger innate immune responses
(266,267), and that cells can use interferon-inducible
transmembrane proteins to block virus-—cell fusion (268).
For their part, some viruses, notably HIV, have evolved
means to counter attempts by cells to thwart virus—cell
tusion (269,270). How exactly are these battles between
enveloped viruses and cells enacted? And lastly, while there
are drugs in use, in development or under consideration
that block enveloped virus fusion (271), can we develop
antifusion antiviral strategies that are broadly applicable,
cost-effective, non-toxic and potent?
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