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Abstract

Background: The hepatitis C virus (HCV) genome encodes a long polyprotein, which is processed by host cell and viral
proteases to the individual structural and non-structural (NS) proteins. HCV NS3/4A serine proteinase (NS3/4A) is a non-
covalent heterodimer of the N-terminal, ,180-residue portion of the 631-residue NS3 protein with the NS4A co-factor. NS3/
4A cleaves the polyprotein sequence at four specific regions. NS3/4A is essential for viral replication and has been
considered an attractive drug target.

Methodology/Principal Findings: Using a novel multiplex cleavage assay and over 2,660 peptide sequences derived from
the polyprotein and from introducing mutations into the known NS3/4A cleavage sites, we obtained the first detailed
fingerprint of NS3/4A cleavage preferences. Our data identified structural requirements illuminating the importance of both
the short-range (P1–P19) and long-range (P6-P5) interactions in defining the NS3/4A substrate cleavage specificity. A newly
observed feature of NS3/4A was a high frequency of either Asp or Glu at both P5 and P6 positions in a subset of the most
efficient NS3/4A substrates. In turn, aberrations of this negatively charged sequence such as an insertion of a positively
charged or hydrophobic residue between the negatively charged residues resulted in inefficient substrates. Because NS5B
misincorporates bases at a high rate, HCV constantly mutates as it replicates. Our analysis revealed that mutations do not
interfere with polyprotein processing in over 5,000 HCV isolates indicating a pivotal role of NS3/4A proteolysis in the virus
life cycle.

Conclusions/Significance: Our multiplex assay technology in light of the growing appreciation of the role of proteolytic
processes in human health and disease will likely have widespread applications in the proteolysis research field and provide
new therapeutic opportunities.
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Introduction

Hepatitis C is a viral disease with over 180 million people

infected worldwide. The virus primarily affects the liver and 80%

of infected patients develop chronic hepatitis. The HCV genome is

a single-stranded, 9600 nucleotide long RNA molecule of positive

polarity. This RNA has a long open-reading frame that is flanked

at both ends by short non-translated regions. Protein synthesis is

mediated by an internal ribosome-entry site (IRES) http://www.

nature.com/nrd/journal/v1/n11/full/nrd942.html – B5that

binds directly to ribosomes [1]. After infection of the host cell,

the liberated viral RNA is translated into a single polyprotein that

consists of three structural proteins (Core, E1 and E2) and seven

non-structural (NS) proteins arranged in the order NH2-C-E1-E2-

p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH. The precursor

is then proteolytically cleaved into ten individual proteins by viral

and cellular proteinases [2,3]. The structural proteins are used to

assemble new virus particles. The NS proteins participate in the

replication of the viral genome [4]. This replication is catalyzed by

the ATP-dependent NS3 helicase, which unwinds double-stranded

RNA into single strands, and the NS5B RNA-dependent RNA

polymerase [5]. In the course of RNA replication, the viral

genome acts as a template for the synthesis of negative-strand

RNA, which then acts as a template for positive-strand RNA [6,7].

There are six genotypes (1 through 6) of HCV, which are

unequally distributed in different parts of the world [8]. Genotype

1 is the most common HCV genotype in the US and Europe.

Approximately 80% of HCV infections in the US are of genotype

1. Because NS5B, the RNA-dependent RNA polymerase,

misincorporates bases at a high rate, HCV constantly mutates as

it replicates [9]. The process of constant mutation leads to multiple

quasi-species of HCV and helps the virus to evade both the host

immune response and anti-virals. These multiple mutations
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modify the polyprotein sequence and, as a result, make the virus

resistant to inhibitors [10].

The NS3 proteinase catalytic domain represents the N-terminal,

,180-residue, portion of the 631-residue NS3 protein. The C-

terminal domain of NS3 encodes the ATP-dependent RNA

helicase. The NS3 catalytic domain alone is inactive and requires

either the full-length NS4A co-factor or, at least, its 14-residue

hydrophilic central portion for cleavage activity in vitro and in vivo

[11–13]. NS4A is a 54 residue protein, with a hydrophobic N-

terminus and a hydrophilic C-terminus. Following binding with

NS4A, the NS3 domain is re-arranged leading to the proper

alignment of His-57, Asp-81, and Ser-139 of the catalytic triad

[14,15]. NS3/4A exhibits a Zn-binding site that comprises Cys-97,

Cys-99, Cys-145 and His-149, and that serves a structural role

[16]. The two-component HCV NS3 serine proteinase (NS3/4A)

is responsible for proteolytic processing of the viral polyprotein at

the NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B

junctions (Fig 1) [17,18]. The functional importance of NS3/4A

makes it a prime anti-viral drug target [19,20].

Current understanding of the cleavage preferences of NS3/4A

is based both on a few cleavage site sequences in the HCV

polyprotein and on the analysis of a limited set of synthetic

peptides [21–27]. Evidence suggests that NS3/4A exhibits narrow

cleavage specificity and a strong preference for Cys and Ser at the

P1 and P19 residue positions, respectively. Relative values of other

residues that are proximal to the substrate scissile bond are not

well established.

To elucidate the cleavage preferences of NS3/4A in depth and

to shed additional light on HCV polyprotein processing, we

employed a new approach for the multiplexed analysis of protease

activity. Analysis of these more extensive cleavage results clarified

the interactions of NS3/4A with its cleavage targets and provided

further evidence of the indispensable role of this proteinase in the

polyprotein processing and viral life cycle.

Results

Multiplexed cleavage assay
We utilized a new approach for the scalable multiplexed

analysis of protease activity (Kozlov IA, Thomsen ER, Munchel

SE, Villegas P, Capek P, Gower AJ, Pond P, Chudin E and Chee

MS. A Highly Scalable Peptide-Based Assay System for Proteo-

mics, submitted). This novel profiling methodology employs

cDNA-peptide fusions and has been validated using thousands of

peptide sequences representing substrates for several proteinases,

including furin, enterokinase, thrombin, caspases, NS2B-NS3

proteinases of Dengue and West Nile viruses, and NS3/4A. This

methodology greatly accelerates determining the cleavage effi-

ciency of the peptide substrates leading to the in-depth

understanding of proteinase cleavage preferences.

For this project, the synthesized peptides contained constant N-

terminal and C-terminal sequences (Cys-Ala and Ala-Gly-Asn-

Ala-Ser-Ala-Ser-Ala, respectively) flanking an 8-residue sequence

derived from the HCV polyprotein. When specifying the peptide

sequences below, we normally omit the constant regions.

Therefore, statements that refer to 8-residue peptides are related

to the variable, HCV-specific portion of a longer peptide that is

conjugated to a cDNA oligonucleotide.

cDNA-peptide fusions were immobilized on magnetic beads

using an affinity tag attached to the N-terminus of all peptides.

Following proteolytic cleavage of the peptide portion of the fusion,

the corresponding cDNA template was released in solution. The

cleaved peptide substrates were then identified by sequencing the

released cDNA portion of the fusion. We used next-generation

sequencing to enable the high throughput readout of our screening

assay.

Global analysis of the NS3/4A cleavage preferences
To focus more specifically on the cleavage preferences of NS3/

4A and to span the entire sequence of the 3,011 residue HCV1

polyprotein precursor (GeneBank Accession P26664) we used a

two-residue protein walking approach. The sequence of the first 8-

mer peptide started from the N-terminus of the polyprotein

precursor. There was a two residue offset resulting in a 6 residue

overlap of the upstream and downstream peptides. Hence, each

residue position of the polyprotein was included in the sequence of

the multiple distinct peptides. As a result of this walking, the effects

of each of the P6–P49 residue positions on the NS3/4A cleavage

efficiency could be ascertained. The set of 1,503 peptide

conjugates (or 1,663 including all of the control peptides), tiled

in this fashion, fully covered the polyprotein sequence.

We also synthesized over 800 mutant peptides, the sequence of

which overlapped either with the sequence of the NS3-NS4A

(1652DLEVVTQSTWV1661), NS4A-NS4B (1706DE-

MEECQSQHL1715), NS4B-NS5A (1967ECTTPCQSGSW1976)

and NS5A-NS5B (2415EDVVCCQSMSY2424) junctions or with

those of the potential host cell targets of NS3/4A, interferon-b
promoter stimulator protein 1 (IPS-1) (160 peptides) and Toll/

IL1R (TIR) domain-containing adaptor molecule (TRIF;

TCAM1) (120 peptides) (Supplemental Tables S1, S2, and S3;

Tables 1 and 2). These peptide conjugates were also treated with

NS3/4A in vitro and their cleavage efficiency was measured in

parallel with the 1,503 original peptide conjugates. The combined

data were analyzed to generate a comprehensive representation of

the cleavage preferences of NS3/4A. The selected peptides were

also co-incubated with several additional proteinases including

furin and thrombin. The resistance of these peptides to these two

Figure 1. HCV polyprotein (genotype 1a; GenBank accession P26664) with the NS3/4A cleavage sites. Non-structural (NS) proteins are
shaded gray. Conventional NS3/4A cleavage sites in the NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B junction regions are shown by solid
arrows. The putative cleavage site (2429ALVTPC-AAEE2438) in the NS5A-NS5B junction is shown by a dashed arrow. The C–E1, E1–E2, E2–p7 and p7-NS2
junctions are cleaved by host cell signal peptidase. The NS2-NS3 junction is cleaved by NS2/3 auto-proteinase. C, core protein.
doi:10.1371/journal.pone.0035759.g001
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Table 1. Protein walking: cleavage islands in the HCV polyprotein.

Peptides Z-score

NS3-NS4A junction NS3/4A TR Furin

IMTCMSAD – – –

TCMSADLE – – –

MSADLEVV – – –

ADLEVVTS – – –

DLEVVTST – – –

LEVVTSTW – – –

EVVTSTWV – – –

VVTSTWVL – – –

TSTWVLVG – – –

TWVLVGGV – – –

VLVGGVLA – – –

VGGVLAAL – – –

GVLAALAA – – –

NS4A-NS4B junction

EVLYREFD – – –

LYREFDEM – – –

REFDEMEE – – –

FDEMEECS 8.8 – –

DEMEECSQ 7.0 – –

EMEECSQH 6.4 – –

MEECSQHL 6.6 – –

EECSQHLP 3.7 – –

CSQHLPYI – – –

QHLPYIEQ – – –

LPYIEQGM – – –

YIEQGMML – – –

EQGMMLAE – – –

NS4B-NS5A junction

LRRLHQWI – – –

RLHQWISS – – –

HQWISSEC 3.7 – –

WISSECTT – – –

SSECTTPC 5.8 – –

ECTTPCSG 4.3 – –

TTPCSGSW 4.3 – –

PCSGSWLR – 6.9 –

SGSWLRDI – – –

SWLRDIWD – – –

LRDIWDWI – – –

DIWDWICE – – –

WDWICEVL – – –

NS5A-NS5B junction

WSTVSSEA – – –

TVSSEANA – – –

SSEANAED – – –

EANAEDVV – – –

HCV Proteinase High-Throughput Cleavage Assay
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proteinases confirms the selectivity and accuracy of our cleavage

technology.

Specifically, the synthesized HCV peptides were incubated for

7.5, 15, and 240 min in the presence of purified NS3/4A at a 1:10

enzyme-substrate molar ratio and processed as described in an

accompanying paper by Kozlov IA, Thomsen ER, Munchel SE,

Villegas P, Capek P, Gower AJ, Pond P, Chudin E and Chee MS.

A Highly Scalable Peptide-Based Assay System for Proteomics,

submitted). The digest reactions were processed using our novel

cleavage array technology. The cleavage signals were expressed as

Z-scores. Under the hypothesis of no cleavage, z–scores have a

normal distribution with a mean value that equals to 0 and a

standard deviation of 1. We chose to reject the hypothesis of no

cleavage for peptides with a Z-score greater than 3, which

corresponds to p-value ,1.35e23. The recorded cleavage data are

presented in Supplemental Table S1. The data obtained after

cleavage of our 2,600 peptide set by NS3/4A are shown in Fig 2.

The peptides varied widely in their sensitivity to proteolysis by

NS3/4A. We established a direct relationship between the

cleavage efficiency of NS3/4A and the amino acid sequence of

Table 1. Cont.

NS5A-NS5B junction

NAEDVVCC 9.3 – –

EDVVCCSM 9.1 – –

VVCCSMSY 8.9 – –

CCSMSYSW – – –

SMSYSWTG – – –

SYSWTGAL – – –

SWTGALVT – – –

TGALVTPC* 4.6 – –

ALVTPCAA* 3.4 – –

VTPCAAEE* 3.9 – –

PCAAEEQK – – –

AAEEQKLP – – –

Over 2660 peptides were cleaved by NS3/4A and by thrombin and furin (controls). The cleavage data of the peptide sequences (P4–P49) which either overlap or are
proximal to the NS3-NS4A (1654EVVTQSTWV1661), NS4A-NS4B (1708MEECQSQHL1715), NS5AQNS5B (1969TTPCQSGSW1976) and NS5AQNS5B (2417VVCCQSMSY2424)
junction regions are shown here. Peptides which directly correspond to the known cleavage sites are both in bold and italicized. The asterisk marks the peptides
overlapping a putative additional NS3/4A cleavage site (2431VTPCQAAEE2438). Only the Z-score equal or above 3 are shown. Minus indicates Z-scores below 3. The
peptide PCSGSWLRQ was cleaved by a thrombin (TR) control while all of other peptides were resistant to both thrombin and furin controls. In addition, our set included
multiple control cleavage peptides for furin, such as RKKRQSTSA (Z-score = 6.0) and RRKRQYAIQ (Z-score = 7.2). These peptides were not cleaved by thrombin and
NS3/4A. Our set also included multiple control cleavage peptides for thrombin such as VVPRQGVNL (Z-score = 10) and IEPRQSFSQ (Z-score = 13) which were not
cleaved by furin and NS3/4A.
doi:10.1371/journal.pone.0035759.t001

Table 2. Alanine scanning mutagenesis of the NS3/4A cleavage sequences.

Positions
NS3-NS4A
1652DLEVVTQSTWV1661

NS4A-NS4B
1706DEMEECQSQHL1715

NS4B-NS5A
1967ECTTPCQSGSW1976

NS5A-NS5B
2415EDVVCCQSMSY2424

WT, P6-P29 DLEVVTST - DEMEECSQ 7.0 ECTTPCSG 4.3 EDVVCCSM 9.1

P6 ALEVVTST - AEMEECSQ 5.4 ACTTPCSG - ADVVCCSM 8.3

P5 DAEVVTST - DAMEECSQ 5.7 EATTPCSG - EAVVCCSM 9.1

WT, P4-P49 EVVTSTWV - MEECSQHL 6.6 TTPCSGSW 4.3 VVCCSMSY 8.9

P4 AVVTSTWV - AEECSQHL 4.1 ATPCSGSW 5.2 AVCCSMSY 6.5

P3 EAVTSTWV - MAECSQHL 3.2 TAPCSGSW 3.0 VACCSMSY 4.8

P2 EVATSTWV - MEACSQHL 5.6 TTACSGSW - VVACSMSY 8.8

P1 EVVASTWV - MEEASQHL - TTPASGSW - VVCASMSY 4.0

P1’ EVVTATWV - MEECAQHL 6.7 TTPCAGSW 5.0 VVCCAMSY 8.3

P2’ EVVTSAWV - MEECSAHL 6.9 TTPCSASW 4.5 VVCCSASY 8.4

P3’ EVVTSTAV - MEECSQAL 7.4 TTPCSGAW 5.5 VVCCSMAY 8.2

P4’ EVVTSTWA - MEECSQHA 5.1 TTPCSGSA 3.0 VVCCSMSA 8.3

Alanine scanning mutagenesis was used to systematically substitute amino acid residues at the P6–P49 positions of the NS3-NS4A (1652DLEVVTQSTWV1661), NS4A-NS4B
(1706DEMEECQSQHL1715), NS4B-NS5A (1967ECTTPCQSGSW1976) and NS5A-NS5B (2415EDVVCCQSMSY2424) junctions. Peptides were then cleaved NS3/4A. Two series of
the 8-residue peptides were tested: the peptides which corresponded to the P6–P29 and to the P4–P49 positions. Only Z-scores above 3 are shown. Minus indicates Z-
scores below 3.
doi:10.1371/journal.pone.0035759.t002
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its peptide substrates. This dependence is illustrated in the form of

sequence logos (Fig 3). The height of a character is proportional to

the frequency of the amino acid residue at the individual position

of the cleaved peptide.

In agreement with data of others [21–27], our results revealed

that NS3/4A strongly prefers Cys and Ser at the P1 and P19

positions, respectively. Clearly, because of the narrow cleavage

preferences of NS3/4A and because the peptide substrates were

derived from the HCV polyprotein, the C Q S pattern was

predominant at the P1–P19 positions. In turn, the promiscuity of

amino acid representation was high at the P4–P2 and P29–P49

positions of the cleavage peptides. Met, Gln, Gly or Ala were

frequently present at the P29 position of the efficient substrates of

NS3/4A. The presence of Cys, Pro and Glu at P2 and Thr, Val

and Glu at P3 correlated with increased efficiency of NS3/4A

proteolysis. The importance of P3 Val suggested in earlier work

[22] appears to have been overestimated because P3 Val was also

frequent in the poor substrates of NS3/4A and because both P3

Thr and Glu were frequent in the efficient NS3/4A substrates.

A newly observed and striking feature of NS3/4A was a high

frequency of either Asp or Glu at both P5 and P6 positions in a

subset of the most efficient NS3/4A substrates. In turn,

aberrations of this negative charged sequence such as an insertion

of a positively charged or hydrophobic residue between the

negatively charged residues resulted in inefficient substrates. Thus,

the presence of either Leu, or Arg or Cys at the P5 instead of the

negatively charged Glu or Asp was observed in the inefficient

peptide substrates of NS3/4A.

Conventional NS3/4A cleavage sites in the HCV
polyprotein

The high number of peptide sequences we tested provided a wealth

of information for subsequent analysis. Our data indicate that the

peptides that span the known NS3/4A cleavage sites in the HCV

polyprotein were efficiently cleaved by the proteinase. Multiple

peptides from the NS4A-NS4B junction region (1705FDE-

MEECQS1712, 1706DEMEECQSQ1713, 1707EMEECQSQH1714,
1708MEECQSQHL1715 and 1709EECQSQHLP1716 with Z-scores of

8.9, 7.0, 6.4, 6.6 and 3.7, respectively), from the NS4B-NS5A

junction region (1965SSECTTPC1972Q, 1967ECTTPCQSG1974 and
1969TTPCQSGSW1976 with Z-scores of 5.8, 4.3 and 4.3, respectively)

and from the NS5A-NS5B region (2413NAEDVVCC2420Q
2415EDVVCCQSM2422 and 2417VVCCQSMSY2424 with Z-scores

of 9.3, 91 and 8.9, respectively), were efficiently cleaved by NS3/4A. In

contrast, NS3/4A did not cleave any peptides from the NS3-NS4A

1652-1661 junction region: the Z-score of multiple tested peptides was

in a 0.8–1.2 range.

The analysis of other, mutant peptides provided supporting data.

Thus, we tested multiple mutant peptides the sequences of which were

specifically derived from the NS3-NS4A (1652DLEVVTQST-

WV1661), NS4A-NS4B (1706DEMEECQSQHL1715), NS4B-NS5A

(1967ECTTPCQSGSW1976) and NS5A-NS5B (2415EDVVCCQ-

SMSY2424) junction regions. In these mutant peptides, a single

position, starting from the N-terminus, was stepwise randomized with

20 amino acids while the other seven positions were fixed. As a result,

we generated unique mutant peptides that exhibited 20 amino acids at

each of the P6–P49 positions (Supplemental Table S2). The cleavage

analysis of this mutant substrate set supports our conclusion that the

Figure 2. Results obtained after treatment of the 2,660 peptide substrate pool using NS3/4A. (A) A scatter plot of peptide abundances in
which Y-axis and X-axis represent the peptides following NS3/4A cleavage and untreated controls, respectively. The peptide abundances were
determined by sequencing counts of cDNAs corresponding to these peptides. The red points represent peptides that exhibited a statistically
significant change in abundance because of NS3/4A proteolysis. Z-score of 3 (p,0.0014) was set as a cutoff, which corresponds to a false discovery
rate below 0.01. (B) A set of the 21 overlapping 8-mer peptides derived from the NS5A-NS5B junction region sequence (2415EDVVCCQSMSY2424). The
Y-axis represents the Z-score for each peptide. The dotted red line represents Z-score = 3. Because the peptide sequences overlap, several adjacent
peptides may contain sufficient recognition sequence to be cleaved. Peptide sequences are written vertically. Residue positions of the known NS3/4A
cleavage site in the NS5A-NS5B junction region are highlighted (red boxes). The letter ‘‘A’’ at the start and at the end of each peptide sequence
represents Ala residue from the flanking common regions at the N- and C-termini.
doi:10.1371/journal.pone.0035759.g002
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NS3-NS4A 1652–1661 junction region is not efficiently cleaved by

NS3/4A in trans. Table 2 shows a subset our results in the alanine

scanning mutagenesis form. The alanine scanning P6–P49 mutagenesis

clearly indicated that multiple mutant peptide sequences derived from

the NS4A-NS4B (5 peptides), NS4B-NS5A (5 peptides) and NS5A-

NS5B (3 peptides) performed as efficient substrates of NS3/4A.

Naturally, the NS4A-NS4B and NS4B-NS5A peptides with the P1 Ala

instead of the essential P1 Cys resisted the proteolysis. In contrast, 13

partially overlapping peptides from the NS3-NS4A junction region

were resistant to NS3/4A proteolysis. Therefore, in agreement with the

results published by others 25,27], we conclude that the cleavage of the

NS3-NS4A junction region by NS3/4A takes place in cis whereas the

NS4A-NS4B, NS4B-NS5A and NS5A-NS5B junctions are readily

cleaved in trans.

NS3/4A proteolysis of host cell targets, IPS-1 and TRIF
In agreement with the above conclusions, peptides that

represented a potential cleavage site in IPS-1 (503EREVPC-

HRPS512), a potential host cell target of NS3/4A proteolysis [28],

were not cleaved in our cleavage tests. It is now clear that an

insertion of the positively charged P5 Arg between the Glu/Asp-

Glu/Asp negatively charged sequence makes the IPS-1 sequence

resistant to NS3/4A proteolysis. In agreement, substitution of the

P5 Arg with several amino acid residue types led to the noticeable

NS3/4A cleavage of the resulting peptide. In turn, the peptides

that span a potential cleavage site of TRIF (369STPC-SAHL376),

another proposed host cell target of NS3/4A proteolysis [29], were

readily cleaved by NS3/4A in vitro (Supplemental Table S3).

Potential additional NS3/4A cleavage site in the HCV
polyprotein

Our cleavage data suggest that the 2427TGALVTPC2434Q,
2429ALVTPCQAA2436 and 2431VTPCQAAEE2438 peptides from

the 2427TGALVTPC-AAEE2438 sequence in the NS5A-NS5B

junction region are readily cleaved by NS3/4A in vitro (Supple-

mental Table S1, Tables 1 and 2). The 2427TGALVTPC-

AAEE2438 sequence is 14 residues downstream of the conventional
2415EDVVCC-SMSY2424 cleavage site in the exposed cytoplasmic

loop of the NS5A-NS5B junction (Fig 1). Processing of both

cleavage sites of the NS5A-NS5B junction in vivo may explain the

existence of predominant and minor species of NS5A as observed

earlier by Grakoui et al. [18,30]. The cleavage of the peptides,

which were derived from the 2427TGALVTPC-AAEE2438 region,

was observed, however, only following the extended co-incubation

with NS3/4A (Supplemental Table S1), thus, suggesting that

because of the P5 Leu, P6 Ala and P19 Ala this peptide sequence is

a sub-optimal substrate of NS3/4A.

Figure 3. Frequency plot of the cleavage sequences of NS3/4A in a Weblogo format. The size of the symbol indicates the frequency of the
individual residue occurrence at individual substrate positions relative to the P1–P19 scissile bond. The frequencies were calculated using over 2,660
peptide sequences derived from the polyprotein and from introducing mutations to the known NS3/4A cleavage sites.
doi:10.1371/journal.pone.0035759.g003

HCV Proteinase High-Throughput Cleavage Assay
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We also identified several additional peptide sequences, which

were efficiently cleaved by NS3/4A in vitro. These sequences

represented the internal regions of the E1 protein (269ATLC-

SALY276), the E2 protein (674VLPC-SFTT681), the NS3 helicase

domain (1312IIIC-DECH1319), and the NS5A (2169AVLT-

SMLT2176). These sequence regions, however, are either localized

at the opposite side of the membrane relative to NS3/4A (E1 and

E2) or in the central region of the NS3 helicase domain and of

NS5A and, in contrast with the 2427–2438 sequence of NS5A-

NS5B junction, are not readily accessible for NS3/4A proteolysis

under physiological conditions in vivo.

Proteolysis of the polyprotein in the HCV quasi-species
Because HCV continually mutates, multiple infective mutant

quasi-species of HCV are generated in humans. To corroborate

the importance of the NS3/4A cleavage sites we identified in the

polyprotein, we analyzed the sequence of the NS3/4A cleavage

sites in the known quasi-species of HCV. Our analysis revealed

Figure 4. Analysis of the NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B junctions in the known HCV isolates. The sequences
that correspond to the P4–P49 positions are shown. Substitutions relative to the HCV genotype 1a sequence (GeneBank Accession P26664) are in red.
The frequency of the isolate and the Z-score of the peptide sequences are shown.
doi:10.1371/journal.pone.0035759.g004
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that there are 1895 sequence variants, including EVVTSTWV,

EVITSTWV, EVTTSTWV, EVMTSSTWV, EIVTSTWV,

EVVTSSWV and EVVTNTWV, of the NS3-NS4A 1654–1661

sequence region of the HCV genotype 1a. In addition, there are

47 sequence variations of the NS3-NS4A cleavage site in the HCV

genotype 1b (EVATSTWV, EVVTGTWV, EVVTSAWV, EV-

VASTWV and EVVTSHWV). Peptides that corresponded to

these sequences, however, were not cleaved by NS3/4A in vitro.

These findings suggest that, exactly as in the HCV genotype 1b we

refer to, in all of the known quasispecies of HCV the NS3-NS4A

1654–1661 sequence is also processed by NS3/4A in cis.

In contrast, all of the sequence variants of the NS4A-NS4B

1708–1715 cleavage region (751 variants in the genotype 1a and 1

variant in the genotype 4a) were cleaved as the corresponding

peptides in our cleavage tests (Fig 4). All of the peptides that

correlated with the sequence of the NS4B-NS5A and NS5A-NS5B

junctions in 692 and 1371 HCV quasi-species, respectively, were

also cleaved by NS3/4A. We conclude that there are no mutations

in the infectious HCV species that make the NS4A-NS4B, NS4B-

NS5A and NS5A-NS5B regions resistant to NS3/4A proteolysis.

These results support the critical importance of the polyprotein

processing by NS3/4A at the NS4A-NS4B, NS4B-NS5A and

NS5A-NS5B junction regions in vivo.

Structural evidence for specificity of NS3/4A
To elucidate structural elements that determine the cleavage

preferences of NS3/4A, especially at the P5 and P6 positions, we

examined the structures of NS3/4A (PDB 3LOX) in its complex

Figure 5. Structural modeling of NS3/4A with a protein substrate. The 2411EANAEDVVCCQSMSYSWTGAL2430 peptide that corresponds to the
NS5A-NS5B junction region was used as a substrate in our modeling. (A) The structure of chymotrypsin – ecotin complex. This structure (PDB 1N8O)
was used as a template for modeling the protein substrate in the NS3/4A structure (PDB 3LOX). Black, the catalytic triad. (B) The structure of the NS3
proteinase domain with the 2411EANAEDVVCCQSMSYSWTGAL2430 modeled substrate. Black, the catalytic triad (His-57, Asp-81, Ser-139); yellow, Cys-
159. (C) Close-up of the modeled NS3 structure. The negatively charged P5 Asp and P6 Glu of the substrate interact with the positively charged
region of the NS3 proteinase that involves Arg-161, Lys-165 and Arg-123 (blue). (D) P5 Asp of the substrate interacts with Cys-159 of the NS3
proteinase. A dashed line shows a 3.8 Å distance between the carboxyl group of P5 Asp and the SH-group of Cys-159. (E) P6 Glu of the substrate
interacts with Arg-123 of the NS3 proteinase. A dashed line shows a 2.6 Å distance between the carboxyl group of P6 Glu and the hydrogen of the
guanidium group of Arg-123.
doi:10.1371/journal.pone.0035759.g005
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with a ketoamide inhibitor derivative of Boceprevir [31] and of

chymotrypsin in a complex with its inhibitor, ecotin (PDB 1N8O;

Cambillau C., Spinelli S., Lauwereys M., Crystal structure of a

complex between bovine chymotrypsin and ecotin at 2.0 Å

resolution, to be published) (Fig 5A). Because the overall structure

of NS3/4A and chymotrypsin is similar, we used DaliLite software

[32] to superimpose 3LOX with 1N8O. Ecotin coordinates served

as a template for the binding of a long peptide substrate with NS3/

4A. In the 3LOX structure, we modeled the conformation of the

peptide substrate that follows main chain atoms of ecotin in

1N8O. Because of Glu and Asp residues are naturally present at

the P5 and P6 position of the NS5A-NS5B junction region, we

used the latter (2411EANAEDVVCCQSMSYSWTGAL2430) in

our modeling. The peptide bond between the middle C-S amino

acid residues is a scissile bond. We optimized the final position of

the substrate using molecular mechanical minimization and

limited molecular dynamics simulations using AMBER11 software

(33).

Fig 5B shows the modeling results. The P1 and P19 residues of

the substrate were placed in those positions relative to the catalytic

triad that are required for the catalysis. The scissile peptide bond

was constrained during the molecular mechanical optimization

procedure. The inset (Fig 5C) shows that P5 Asp and P6 Glu

interact with the positively charged regions of NS3/4A formed by

Arg-161, Lys-165 and Arg-123. In addition, our modeling suggests

that the carboxyl group of the P5 Asp of the substrate is at a short

distance (approximately 3.8 Å) from the SH-group of Cys-159 of

the NS3 catalytic domain implying that there could be a strong

hydrogen bond between these residues (Fig 5D). Furthermore, the

carboxyl group of the P6 Glu side-chain is at a short, 2.6 Å,

distance from the hydrogen of the guanidium group of Arg-123 of

the NS3 catalytic domain also suggesting a formation of a

hydrogen bond (Fig 5E).

Discussion

HCV is a causative agent of chronic liver disease worldwide

with millions of infected patients at risk of morbidity and mortality.

The HCV-encoded NS3/4A is essential for viral polyprotein

processing and viral replication and has long been considered a

promising drug target for pharmacological intervention in HCV-

infected patients. In the course of polyprotein processing, NS3/4A

cleaves the 1657Thr-Ser1658, 1711Cys-Ser1712, 1972Cys-Ser1973 and
2420Cys-Ser2421 scissile bonds in the NS3-NS4A, NS4A-NS4B,

NS4B-NS5A and NS5A-NS5B junctions, respectively, and

generates the essential late viral NS proteins. Based on the

cleavage sequence of the junctions, NS3/4A is likely to have a

preference for substrates with an acidic residue at P6, Cys at P1

and Ser or Ala at P19. Multiple substrate specificity studies using

synthetic peptides generally confirm this unusually narrow

specificity of NS3/4A. These studies resulted in defining a

consensus cleavage sequence of NS3/4A as D/E-X-X-X-X-C/

TQS/A-X-X-X, where X is any amino acid residue [22-

24,27,33]. Additional mutagenesis studies, however, have revealed

that the P6 residue is dispensable, that the P19 is tolerant to many

residue types (except Pro) and that Cys at the P1 is the dominant

determinant for cleavage efficiency [33]. Overall, because of the

limited number of synthetic substrates previously employed to

characterize NS3/4A, our knowledge of its cleavage preferences is

limited as yet. An in-depth knowledge of both cleavage preferences

and interactions of NS3/4A with its substrates is required for the

structure-based inhibitor design for this HCV proteinase, a prime

target of anti-virals.

To fill in this gap in our knowledge, we determined the cleavage

preferences of NS3/4A using a novel scalable assay. This assay

made use of 8-residue peptide sequences covering the full-length

HCV polyprotein. We also analyzed over 800 mutant peptides the

sequence of which overlapped those of the NS3-NS4A, NS4A-

NS4B, NS4B-NS5A and NS5A-NS5B junctions.

As expected, the CQS pattern was predominant at the P1–P19

positions of the efficiently cleaved peptides, supporting the

observations by others [18,23,27,33]. Multiple peptides derived

from the NS4A-NS4B, NS4B-NS5A and NS5A-NS5B junction

regions were efficiently cleaved by NS3/4A. Selective cleavage of

these peptide sequences corroborate the known NS3/4A cleavage

sites in the HCV polyprotein and, in addition, validate both the

precision and selectivity of our multiplex cleavage assay technol-

ogy. In turn, the peptides derived from the NS3-NS4A 1654-1661

junction region were highly resistant to NS3/4A proteolysis. The

resistance of the NS3-NS4A junction to the in trans cleavage by

NS3/4A are consistent with the results by others [3,27] and

suggests that the cleavage of this site in vivo takes place in cis.

Alternatively, the in vivo cleavage may require either structural re-

arrangements, which are not understood as yet, or additional co-

factors or both [34].

A new observation was that NS3/4A strongly prefers Asp and

Glu at the P5 and P6 positions in a subset of the efficient cleavage

substrates. Our data suggest that the presence of this negatively

charged residue pair at these substrate positions is a strict

requirement for the most efficient substrate cleavage by NS3/4A

in vitro. This feature explains the efficiency of NS3/4A in cleaving

the NS4A-NS4B, NS4B-NS5A and NS5A-NS5A junctions in vivo

each of which exhibits the negative charged pair at either the P6–

P5 or P7–P6 positions in multiple HCV quasispecies.

Our in vitro data imply that there could be an additional site

(2431VTPCQAAEE2438) in the HCV polyprotein for NS3/4A

cleavages in vivo. This putative site is downstream of the

conventional 2417VVCCQSMSY2424 cleavage site in the NS5A-

NS5B junction. It is tempting to hypothesize that
2427TGALVTPC-AAEE2438 sequence comprises an additional

NS3/4A cleavage site in the HCV polyprotein. A possible

physiological significance of the putative 2431VTPCQAAEE2438

cleavage site is to release of the NS5B RNA polymerase, an

essential component of the HCV replicase complex.

HCV continually mutates while it replicates. As a result,

thousands of infective mutant quasi-species of HCV have already

been identified. There are multiple HCV isolates with mutations

in the NS3/4A cleavage site sequences. Our analysis, however,

revealed that there are no mutations that inactivate the NS3/4A

cleavage sites in over 5000 known HCV isolates. These results

indicate the critical importance of the polyprotein processing by

NS3/4A at the NS4A-NS4B, NS4B-NS5A and NS5A-NS5B

junction regions in vivo. Conversely, the NS3-NS4A junction

sequences from over 1500 isolates were resistant to NS3/4A

proteolysis in vitro, suggesting that there are no variants of HCV in

which the NS3-NS4A junction is cleaved by NS3/4A in trans.

To elucidate structural requirements, which determine the

preference of NS3/4A for a Glu-Asp pair at the P5 and P6

positions, we modeled NS3/4A in its complex with the peptide

substrate. For this purpose, we used the atomic resolution structure

of NS3/4A (PDB 3LOX) 31] and of the chymotrypsin-ecotin

complex (PDB 1N8O; Cambillau C., Spinelli S., Lauwereys M., to

be published). In the latter, ecotin, a tight-binding protein

inhibitor, acts as a substrate mimic. Ecotin coordinates from

PDB 1N8O were used as a template for modeling of our 20 amino

acid residue long peptide substrate which represented the NS5A-

NS5B junction region of the HCV polyprotein. As a result of this

HCV Proteinase High-Throughput Cleavage Assay

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35759



modeling, we now understand that the requirements for Cys at the

P1 and Ser at the P19 insufficiently describe the cleavage

preferences of NS3/4A and that long-range interactions with the

substrate are also critical for NS3/4A. Thus, it is likely that Asp

and/or Glu at the P5 and P6 positions interact with a positively

charged region in the NS3/4A molecule. This region is formed by

Arg-161, Lys-165 and Arg-123 of NS3/4A.

Our modeling also suggests that the carboxyl group of the Asp

P5 is at a short distance (3.8 Å) from the SH-group of Cys-159,

implying the existence of a strong hydrogen bond between the Asp

P5 and the functionally important non-catalytic Cys-159 residue

35]. Furthermore, the carboxyl group of the Glu P6 side-chain is

proximal to the hydrogen of the guanidium group of Arg-123

(2.6 Å) also suggesting formation of a hydrogen bond. It becomes

clear that the requirement for P5 and P6 Glu and Asp is

embedded in the NS3/4A structure. In turn, regardless the

presence of P1 Cys and P19 Ser in their sequence, peptides with

aberrations in the Asp-Glu P5–P6 tandem are inefficiently cleaved

by NS3/4A. Overall, our findings suggest the long-range

interactions with the substrate plays a significant role in the

NS3/4A functionality and that the (E/D)(E/D)XXXC Q S motif

represents the global signature of the NS3/4A cleavage prefer-

ences.

Materials and Methods

Reagents
Reagents were purchased from Sigma-Aldrich unless indicated

otherwise. NS3/4A was purchased from AnaSpec (Fremont, CA).

Furin and the two-component NS2B-NS3 proteinase from

Dengue and West Nile viruses were isolated and characterized

as described earlier [36–38].

Peptide synthesis and cleavage assay
Peptide synthesis and both the precise methodology of the in

vitro cleavage assay and of measuring and registering the peptide

cleavage levels will be published elsewhere (Kozlov IA, Thomsen

ER, Munchel SE, Villegas P, Capek P, Gower AJ, Pond P, Chudin

E and Chee MS. A Highly Scalable Peptide-Based Assay System

for Proteomics, submitted). Briefly, in vitro transcription was used to

convert a pool of DNA templates (prepared by a microarray-based

synthesis) into a pool of RNAs. In vitro translation was then used to

generate a pool of peptides covalently linked via their C-terminus

to their RNA templates [39]. To increase their stability, the

peptide-RNA fusions were converted to the corresponding

covalent peptide-cDNA fusions [40]. The peptide-cDNA fusions

were immobilized on magnetic beads using an affinity tag attached

to the N-terminus of all peptides. As a result of a proteolytic

cleavage of the immobilized peptide-DNA fusions, the corre-

sponding cDNA templates were released from the beads into

solution. Peptide substrates cleaved by a proteinase were identified

via high throughput sequencing of the released cDNAs using a

Genome Analyzer IIx (Illumina, San Diego, CA).

In our current study, we produced an over 2,660 peptide set

that contained two groups of 8-mer peptide sequences. The first

group consisted of 1,503 overlapping peptide sequences that, when

combined, covered the full-length sequence of the HCV

polyprotein. There was a two residue offset resulting in a 6

residue overlap of the upstream and downstream peptides. The

second group consisted of over 1,000 mutant peptides which

represented variations of the NS3-NS4A, NS4A-NS4B, NS4B-

NS5A and NS5A-NS5B junctions. To monitor the assay

performance, this set also included positive and negative controls

(68 peptides). Positive controls included the known cleavage

sequences of thrombin, furin, enterokinase, the NS2B-NS3

proteinase from West Nile virus, and several additional commer-

cially available proteinases. Negative controls included deca-Gly,

deca-Ala, (Gly-Ala)x5, (Ala-Gly)x5 peptides, and no peptide. The

methods described in the current publication were also validated

using other proteinases including furin, thrombin, enterokinase,

and NS2B-NS3 and NS3/4A proteinases from West Nile virus

and HCV, respectively. According to our cleavage results, there

was no overlap among the specific peptide sets each of which was

predominantly cleaved by the expected proteinase alone.

Proteinase assay
The cDNA-peptides fusions were immobilized on magnetic

beads via the N-terminus and treated with HCV NS3/4A

proteinase. Reactions without proteinase added were used as

negative controls (no proteinase controls). DNA molecules released

by peptide cleavage were collected from each sample and

sequenced following the attachment of adapter sequences by

PCR [41].

Cleavage data analysis
Peptide abundance in solution was quantified by counts of DNA

reads corresponding to each peptide sequence. The cleavage levels

were estimated by comparing the log-transformed counts in the

proteinase-treated versus the untreated samples. We used a locally

weighted scatter plot smoothing fit as implemented in the lowess

(locally weighted scatterplot smoothing) function from the

statistical analysis package R to adjust for sequence-specific

variance in abundance levels. The residuals of the fit were

modeled as arising from a mixture of two distributions with

different means. The main peak with mean of residuals equal to 0

(due to lowess robustness) corresponded to the intact peptides and

the second peak with positive mean corresponded to cleaved

peptides. The robust standard deviation of residuals was computed

using the median absolute deviation estimator after which

residuals were converted to Z-scores. After this transformation,

Z-scores of intect peptides were assumed to be distributed as a

standard normal variable. Statistical significance was inferred by

converting Z-scores to p-values and adjusting for multiple

hypotheses testing using false discovery rate (FDR) [42]. We

chose to reject the hypothesis of no cleavage at Z-score .3, which

corresponds to nominal p,0.0014 and FDR,0.01. When in

question, the identity of the scissile bonds in certain peptides was

confirmed in the cleavage experiments followed by mass-

spectrometry analysis of the digest.

The sequence logos were obtained by calculating cleavage

efficiency for NS3/4A over the entire set of substrates and then

selecting the substrates with the cleavage efficiency equal or above

the Z-score = 3 threshold. These substrates were considered

susceptible to NS3/4A proteolysis. In turn, the substrates with the

cleavage efficiency below threshold form a separate group which

was considered resistant to NS3/4A proteolysis. The resulting

logos were created by a web-based IceLogo program [43].

Sequence analysis of HCV quasi-species
The HCV peptides, containing identified cleavage sites, were

aligned against known HCV genomes using BLAST [44]. The

alignment data were processed using Biopython [45], which is a

collection of tools for computational biology and bioinformatics,

written in the Python scripting language. Quasi-species with

multiple substitutions in the regions of interest were excluded from

the analysis.
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Modeling
Molecular mechanical calculations were performed using the

Amber11 molecular modeling package [46] and ff99SB force field

[47]. We applied the Generalized Born method [48] to represent

solvent as a continuous medium in all calculations. Optimization

of the built NS3 proteinase-substrate complex involved consecu-

tive short molecular dynamics simulations followed by the energy

minimization of the substrate. In the course of the molecular

dynamics and minimization steps, the orientations of the backbone

heavy atoms of the P1 and P19 residues were kept constrained to

the positions that are required for proteolytic cleavage to occur.

Supporting Information

Table S1 The sequence and cleavage efficiency of the 8-
residue peptides we synthesized and tested in the
cleavage reactions with NS3/4A. The cleavage efficiency of

these peptides by NS3/4A was measured in the 7.5, 15 and

240 min cleavage reactions. The peptides with Z-scores above 3

are shaded pink.

(XLSX)

Table S2 NS3/4A proteolysis of the mutant peptides
derived from the NS3-NS4A, NS4A-NS4B, NS4B-NS5A
and NS5A-NS5B junction regions. The sequence of the 8-

residue peptides was specifically derived from the NS3-NS4A

(1652DLEVVTQSTWV1661), NS4A-NS4B (1706DE-

MEECQSQHL1715), NS4B-NS5A (1967ECTTPCQSGSW1976)

and NS5A-NS5B (2415EDVVCCQSMSY2424) junction regions.

A single position, starting from the N-terminus, was stepwise

randomized with 20 amino acids while the other seven positions

were fixed. As a result, a set of mutant peptides that exhibited 20

amino acids at each of the P6-P49 positions was synthesized. The

cleavage efficiency of these peptides by NS3/4A was measured in

the 7.5,15 and 240 min cleavage reactions. The peptides with Z-

scores above 3 are shaded pink. The wild-type sequences are grey.

Yellow color indicates a few peptides that failed our internal

quality control indicating a problem with synthesis.

(XLSX)

Table S3 NS3/4A proteolysis of the mutant peptides
derived from the sequence of TRIF and IPS-1. The

sequence of the 8-residue peptides was specifically derived from

the potential NS3/4A cleavage sites in TRIF and IPS-1

(369STPCQSAHL376 and 503EREVPCQHRPS512, respectively).

A single position, starting from the N-terminus (except the P1 and

P19 positions), was stepwise randomized with 20 amino acids while

the other seven positions were fixed. As a result, a set of mutant

peptides that exhibited 20 amino acids at each of the P6–P49

positions was synthesized. The cleavage efficiency of these peptides

by NS3/4A was measured in the 7.5,15 and 240 min cleavage

reactions. The peptides with Z-scores equal or above 3 are shaded

pink. The wild-type sequences are grey.

(XLSX)
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