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Abstract: Carbon fiber reinforced plastics (CFRP) have many mechanical properties that are superior to
those of conventional structural materials and are becoming more and more widely used. Monitoring
the curing process used to produce such composite material is important to ensure the quality of the
process, especially for the characterization of residual strains after the material has been manufactured.
In this study, we present a tilted fiber Bragg grating (TFBG) sensor used to monitor the curing of
CFRP composite materials. The TFBG sensor was embedded into the layers of CFRP laminates to
study the curing residual strain of the laminates. The experimental results showed that the curing
residual stress was about −22.25 MPa, the axial residual strain was −281.351 µε, and lateral residual
strain of 89.91 µε. The TFBG sensor was found to be sensitive to the curing residual strain of the
CFRP, meaning that it has potential for use in applications involving composite curing processes.
Moreover, it is indeed possible to improve the properties of composite materials via the optimization
and monitoring of their curing parameters.

Keywords: tilted fiber bragg grating; Carbon fiber-reinforced plastics; residual strain; curing
monitoring

1. Introduction

Carbon fiber reinforced polymers (CFRPs) have been widely used as structural materials in the
aerospace and engineering industries in recent years as they are lightweight, strong in terms of specific
strength, and resistant to acids, alkali corrosion, and fatigue load [1–3]. CFRP products will generate
residual strains during the curing stage of the process, and these residual strains cause defects before the
product is in service. Fiber deformation and internal delamination are difficult to observe by the naked
eye and will form a potential hazard. There is an urgent need for a convenient and low-cost method
for the on-line monitoring of residual strains generated in the curing process [4–7]. The measurement
of curing parameters for composite prepregs can be accomplished using conventional analytical
techniques, such as differential scanning calorimetry (DSC) [8,9], dielectric analysis (DEA) [10],
dynamic mechanical analysis (DMA) [11], and so on. The most commonly used of these techniques is
DSC, which is used primarily to calculate the amount of heat stored in a material as it heats up (heat
capacity) as well as the heat absorbed or released during chemical reactions or phase changes that
the difference in the amount of heat required to increase the temperature of a sample and reference
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is measured as a function of temperature, with both the sample and reference maintained at a same
temperature approximately throughout the experiment [12,13]. Using DSC, the properties of a resin,
including its curing process, can be characterized [14]. However, this method and the others mention
above are complicated and expensive, and cannot be used for real-time and in-situ shrinkage curing
monitoring. On the contrary, such monitoring is necessary to improve the mechanical behavior of
CFRP composites. In recent years, there have been many optical fiber sensing technologies used to
monitor the curing process of CFRP composites Compared with traditional monitoring technology,
these sensors have obvious advantages, due to their small size and high sensitivity. In this study,
we present a new method that employs a TFBG sensor for the real-time monitoring of the curing
process quality and the analysis of curing internal residual strains of CFRP.

TFBG have a certain tilt angle between the grating plane and the fiber cross section, such that
the transmission spectrum of the sensor produces many resonances, resulting in the occurrence
of more complex mode coupling. Since the tilt angle and refractive index modulation determine
the coupling efficiency and the bandwidth of cladding mode resonances [15,16], the transmission
characteristics of TFBG provide a great amount of information related to the optical fiber and grating
structures. TFBG have been widely applied in various fields, such as civil structure applications,
biological/biomedical and, aerospace including temperature [17], strain [18], and concentration
monitoring [19]. The TFBG sensor used in this study is small and suitable for combination with
common polymer materials. It can provide a non-invasive means of real-time monitoring due to it
can be easily embedded into the internal sensing area of polymer composite structure. Therefore,
TFBG is suitable for application as an embedded sensor element for CFRP materials. In 2007,
Buggy et al. [20] embedded a TFBG sensor in an epoxy resin to monitoring the variation of refractive
index. Comparing the experimental results of the refractive index sensing with the measurements
made using the technology based on optical fiber Fresnel reflection, and were found to be in agreement
to within 6 × 10−4 RIU. In 2010, Takeda et al. [21] embedded FBG sensors into CFRP to examine the
relationship between laminate thickness and internal residual strain following the curing process.
The experimental results indicated that spectral distortions of the CFRP specimen following curing
were caused by non-uniform axial strain on the given FBG sensor, which was attributed to the use of
carbon fibers. Final spectral calculations showed an inverse relationship between laminate thickness
and residual strain, and that the residual strains for the laminated layers 4, 8, and 13 were −1233 µε,
−1367 µε, and −1650 µε, respectively.

Shen [22] embedded FBG sensors into the different laminated layers of [0◦]28 carbon fiber epoxy
composite to measure residual strain. The measurement results indicated that the residual strain for the
middle layer was 370 µε. Gelation and solidification of the composite material could also be observed
when monitoring the curing process. In 2013, Kinet et al. [23] proposed to embed a tilted fibre Bragg
grating sensor to monitoring the strain inside a composite material laminate. The loading test resulting
shows the strain sensitivity about 0.021 pm/µε. From the above literature survey, it is clear that most of
the relevant past studies focused on measuring the mechanical properties of composite materials and
evaluating any damage sustained by them, but that they lacked any consideration of curing residual
strain monitoring in different layers with different angles of 0◦, −45◦, 90◦, and 45◦ laminates. The aim
of the current study, therefore, was to apply a TFBG sensor to monitor the characteristics of the curing
process in CFRP composite materials. To that end, a TFBG sensor was embedded into the lamina of
composite materials, after which the curing development as well as internal residual strain values
during the curing process were measured. However, in the case of CFRP curing, residual strain can also
appear, inducing modification of the cladding-mode variation. By tracking the wavelength shift of the
Bragg mode and cladding mode resonance, we observed a differential evolution that was attributable
to a surrounding refractive index (SRI) modification due to the polymerization of the CFRP. In this
case, if there is a residual strain applied on the sensor during the curing, this strain will affect the Bragg
peak shape, which is directly observed in the spectrum.
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2. Working Principle of TFBG Sensors

In TFBG, mode fiber coupling between the wave vectors of all vector fields occurs along the
fiber axis to form a uniform axial conduction mode structure that is defined by a flat phase plane
perpendicular to the guide shaft, as shown in Figure 1. The coupling occurs at resonant wavelengths,
λBragg, at which the phase matching condition for an ordinary fiber grating can be expressed by the
following Equation (1), is satisfied [23]:

λBragg = (neff,core + neff,core)Λg (1)
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Figure 1. A schematic of TFBG with a tilt angle θ inscribed in the core of photosensitive fiber.

The Bragg resonance wavelength is generated by the coupling between the forward-propagating
guided mode and the backward-propagating guided mode. For TFBG, due to the tilt angle of grating
surface with respect to the axis of the fiber, the grating period along fiber axis can be modified according
to the following equation:

Λg =
Λ

cos θ
(2)

Substituting Equation (2) into Equation (1) yields the following:

λBragg =
(
nco

eff + nco
eff

) Λ
cos θ

(3)

Due to the presence of the tilted angle, part of the light propagating in a forward direction through
the core mode will be coupled to the cladding mode of the backward propagation, and the resonance
positions of the corresponding cladding modes change accordingly. They will be determined by the
following equation [23]:

λCl,i =
(
nco

eff + ncl
eff,i

) Λ
cos θ

(4)

where nco
eff

and ncl
eff,i are the effective indices of the fiber core mode and cladding mode, respectively, Λ is

the grating period measured perpendicular to the grating planes, and θ is the tilt angle of the grating
planes relative to the plane of the fiber cross section. The shift in the Bragg wavelength (red shift)
occurs due to increase in effective refractive index which increases with surrounding refractive index.

TFBGs enhance the backward coupling of light from the fiber core to the cladding and are therefore
sensitive to the SRI [21,22]. Contrary to the core mode resonance, these modes are indeed sensitive to
SRI, as well as to temperature and strain. Equations (5) and (6) show how the Bragg wavelength and
cladding modes depend on temperature, strain, and SRI variations [24].

∆λBragg

λBragg
= αBragg∆T+βbraggε (5)

∆λcl,i

λcl,i
= αcl,i∆T + βcl,iε+ γcl,i∆SRI (6)
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where ∆λBragg and λcl,i are the wavelength shifts of the Bragg and the ith cladding mode resonances,
respectively. The wavelength shifts occur due to variations in temperature (∆T), strain (ε) and/or the
surrounding refractive index (∆SRI). The thermal coefficients (αBragg and αcl,i) are roughly identical,
whereas the strain coefficient βBragg is different from βcl,i, which also depends on the considered
mode (i) [24].

∆λBragg
λ

=

1−
n2

eff

2

[
p12 − υ

(
p11 + p12

)]εz =
(
1− pe

)
εz (7)

pe =
n2

eff

2

[
p12 − υ

(
p11 + p12

)]
(8)

where pe is the elasto-optic coefficient and p11 and p12 represent the elasto-optic tensor, with p11 = 0.113,
p12 = 0.252, neff = 1.458, and ν = 0.16. The relationship between TFBG wavelength shift and axial
and parallel strain are obtained [25–27]. The axial residual stress, axial strain, lateral residual stress,
and lateral strain in the TFBG sensor were calculated via spectrum central wavelength distances and
wavelength split crest distances before and after curing.

3. Experimental Method

3.1. The Manufacturing of the TFBG Sensor

The TFBG sensor used in this study was fabricated using Germanium/Boron co-doped
photosensitive fiber (Fibercore PS1250), which was manufactured using the phase mask method.
First, using a wire stripper to strip buffer layer 5 cm long lengths from the photosensitive fiber, after that
the alcohol was used to wipe clean the fiber. Next, the phase mask platform was rotated 10 degrees and
KrF excimer laser (COHERENT; Xantos XS 500, λ = 248 nm) irradiation was applied through phase
masks (Ibsen Photonics) with period of 1075.5 nm to produce the tilted grating formation. The tilted
grating formation was created in the fiber core by a transverse illumination with a UV interference
pattern that is formed by a pair of strong deep ultra-violet (DUV)-laser beams. An optical spectrum
analyzer (OSA) was then utilized to monitor the generation of the TFBG structure in the core of the
spectrum, as shown in Figure 2.
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Figure 2. Schematic diagram of the process for TFBG fabrication.

3.2. The Curing Monitoring Experimental Setup for Carbon Fiber-Reinforced Polymer Materials.

For the curing process, the 16 layers of thermosetting prepreg materials, which had a carbon/epoxy
composition (T700/3501), were used to lay up the composite laminate at direction angle 0◦, 45◦ and 90◦
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in sequence with the embedded TFBG sensor. The TFBG sensor was embedded between layers 8 and 9
of the prepreg material, as shown in Figure 3.
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The curing process was performed using modified diaphragm forming (MDF) with a vacuum
pump, heat chamber, and air compressor. First, a teflon fabric was laid in the mold to prevent adhesion,
followed by a layer of the prepreg material, another layer of teflon fabric, and then a diaphragm and
an O-ring for sealing, as shown in Figure 4. The upper mold and lower mold were connected by air
compressor and vacuum pump lines and laid into a thermal chamber in order to thermoform. Figure 5
shows the experimental setup of the CFRP composite curing monitoring with TFBG sensor. An optical
spectrum analyzer (OSA, Anritsu MS 9740 A) was used for measuring optical signal spectra, which has
a resolution of 0.05 nm. A light source (ASE-2200, ASE light source, NXTAR Technologies Inc., Tainan,
Taiwan) was attached to one end of the TFBG, while an optical spectrum analyzer was attached to the
other. The temperature of the curing process was recorded by data acquisition (DAQ) card (NI-9217,
National Instrument, Austin, Texas, USA). The CFRP was closely molded by the application of air
pressure beyond the diaphragm and the simultaneous removal of excess gas between the laminates
with vacuum pump. The curing process steps were composed of three stages. The process started with
the heating stage with 76 cm/Hg vacuum pressure applied in the mod and 6 kg/cm2 of air pressure
applied upon the diaphragm. The temperature was heated with uniform temperature from room
temperature to 190 ◦C at a rate of 3 ◦C/min. The second stage was the 30-min isothermal stage,
during which the temperature was consistently maintained at 190 ◦C. The 3rd stage consisted of cooling
to room temperature with natural cooling. The resin viscosity grew very high during this stage,
and the resin itself had increasing stability. Moreover, residual strain occurred at the end of the stage.
The curing condition parameters of the CFRP composite are shown in Figure 6.
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Figure 6. The conditions of the CFRP composite curing process.

4. Results and Discussion

4.1. DSC Analysis of CFRP Materials

The glass transition is the transition between rubbery state and glassy state. When the temperature
exceeds the Tg of the CFRP, degradation of resin will occur. It possibly causes defects and reduces the
workpiece strength. Base on the dilatometer method, the Tg is the turning point in the coefficient of
thermal expansion curve. The DSC, as shown in Figure 7. Finally, the Tg of CFRP obtained is 138.51 ◦C.
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4.2. The Result of CFRP Curing Monitoring with TFBG Sensor

The curing process was divided into three stages, namely, the heating stages, isothermal stages,
and cooling stages. In the heating stage, the temperature was increased from room temperature to
190 ◦C. Figure 8 shows the transmission spectra of the TFBG sensor during the heating stage of the
curing process. At 30 ◦C, a Bragg mode resonance dip was generated as a result of the pressurizing
effect of the vacuum pump and air compressor, and the transmission loss of resonance dip was
−2.693 dB. Throughout the heating stage, the transmission loss of spectrum exhibited little variation.
The transmission loss showed increasing trend before the temperature reached 80 ◦C. During the
heating stage, the resonance dip wavelength exhibited a red-shift trend.
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Figure 9 shows the temperature dependence of wavelength and transmission loss when heating stage.
The transmission loss of Bragg mode showed a gradually increasing trend after the temperature increased
above 80 ◦C. This phenomenon occurred because the increasing temperature caused the resin to melt
and coat on the TFBG. After the temperature increased above 110 ◦C, the resonance dip decreasing trend
began to rebound because of the decreased pressure applied to the TFBG by the air compressor, vacuum
pump, and resin, as the resin transformed from melted liquid into a gel state. When the temperature
reached 120 ◦C, the increasing slope of the transmission loss was significantly larger. This phenomenon
was supposedly linked to the curing cross-linking reaction. The CFRP began to solidify, causing the
influence of tensile strain on the TFBG to be decreased. When the temperature increased to 170 ◦C,
the increasing slope took a new turn and stabilized, presumably because the most intense temperature for
the crosslinking reaction had been reached, after which the reaction tended to ease.
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In the cooling stage, the composite was cooled from 190 ◦C to room temperature. Figure 10
shows the transmission spectra of the TFBG sensor during the cooling process. The Bragg mode
exhibited a slow trend of shifting toward short wavelengths. When the temperature reached 30 ◦C,
the transmission loss reached its minimum at −3.178 dB.
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Figure 11 shows the temperature dependence of wavelength and transmission loss when cooling
stage. The transmission loss of Bragg mode of the overall spectrum during the cooling process was
stable. After cooling to 60 ◦C, the wavelength was greatly red-shifted and then became stabilized
after 50 ◦C was reached, at which point the transmission loss increased significantly. All of the above
phenomena were caused by the cooling effect, which caused the lateral contraction force to begin to
increase, while the lateral residual stress affected the spectrum, causing peak splits of Bragg mode.
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Figure 11. Temperature dependence of wavelength and transmission loss when cooling stage.

Figure 12 illustrates the transmission spectrum before and after the curing process. After the
curing process, the wavelengths were shifted toward shorter wavelengths, which may have been due
to compressive residual strain, as proposed in the photoelasticity theory. There were split peaks in
the TFBG sensor Bragg mode transmission spectrum. According to FBG theory, it was estimated that
birefringence occurred in the TFBG sensor Bragg mode due to lateral residual strain. The split into two
peaks occurred in the TFBG sensor Bragg mode due to the residual strain of the isotropic laminate.
The axial residual stress, axial strain, lateral residual stress, and lateral strain in the TFBG sensor were
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calculated via spectrum central wavelength distances and wavelength split crest distances before and
after curing (Table 1).
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Table 1. TFBG sensor residual stresses and residual strains.

TFBG Sensor

σz σx σy

−22.25 −10.70 −5.27

εz εx εy

−281.351 −89.91 0

Stress (σ) unit: MPa; Strain (ε) unit: µε.

5. Conclusions

In this paper, we successfully used TFBG with a 3◦ tilt angle and a diameter of 125 µm to
monitor the curing of CFRP composite. The results showed that residual stress was generated from
the innermost to outer most laminates (0◦, −45◦, 90◦, and 45◦ isotropic laminates). Thus, it can be
assumed that the material directions affect the order in which stress is generated and determines the
type of strain (compression or stretching) that occurs. Double-cleavage also occurred in the TFBG
sensor. It was assumed that the refractive index of the TFBG sensor changed due to anisotropic
ellipse polarization caused by isotropic laminate residual stress. The experimental results showed
that the TFBG sensor embedded into CFRP composite had a residual stress of about −22.25 MPa,
an axial residual strain of −281.351 µε, and a lateral residual strain of 89.91 µε. The proposed CFRP
curing residual stain monitoring technology can be applied to the manufacturing quality and damage
monitoring of aerospace composites.
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