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Simple Summary: Identification of new prognostic biomarkers and therapeutic targets could be
essential ways to improve the outcome of bladder cancer (BC) patients. In this study, we compre-
hensively analyzed the mRNA expression and prognosis of Annexin family members (ANXA1-11,
13) in BC through public analysis tools, including Oncomine, GEPIA2 and our in-house OSblca web
server, and found that several Annexins were aberrantly expressed and associated with prognosis
in BC. Then, we constructed and validated an Annexin-related prognostic signature (ARPS) in four
individual BC cohorts through LASSO and COX regression, indicating that ARPS was an independent
prognostic factor for BC. Briefly, our study was to determine the clinical significance of Annexins and
provided a potential prognostic model and potential therapeutic targets for BC.

Abstract: Abnormal expression and dysfunction of Annexins (ANXA1-11, 13) have been widely
found in several types of cancer. However, the expression pattern and prognostic value of An-
nexins in bladder cancer (BC) are currently still unknown. In this study, survival analysis by our
in-house OSblca web server revealed that high ANXA1/2/3/5/6 expression was significantly asso-
ciated with poor overall survival (OS) in BC patients, while higher ANXA11 was associated with
increased OS. Through Oncomine and GEPIA2 database analysis, we found that ANXA2/3/4/13
were up-regulated, whereas ANXA1/5/6 were down-regulated in BC compared with normal bladder
tissues. Further LASSO analysis built an Annexin-Related Prognostic Signature (ARPS, including
four members ANXA1/5/6/10) in the TCGA BC cohort and validated it in three independent GEO BC
cohorts (GSE31684, GSE32548, GSE48075). Multivariate COX analysis demonstrated that ARPS is
an independent prognostic signature for BC. Moreover, GSEA results showed that immune-related
pathways, such as epithelial–mesenchymal transition and IL6/JAK/STAT3 signaling were enriched
in the high ARPS risk groups, while the low ARPS risk group mainly regulated metabolism-related
processes, such as adipogenesis and bile acid metabolism. In conclusion, our study comprehensively
analyzed the mRNA expression and prognosis of Annexin family members in BC, constructed an
Annexin-related prognostic signature using LASSO and COX regression, and validated it in four
independent BC cohorts, which might help to improve clinical outcomes of BC patients, offer insights
into the underlying molecular mechanisms of BC development and suggest potential therapeutic
targets for BC.
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1. Introduction

Bladder cancer (BC) is one of the most common malignancies with high risk of tumor
recurrence and fatality in the urinary system. According to Global Cancer Statistics 2020,
there were about 573,000 new cases and 212,000 deaths of BC around the world [1]. Al-
though the significant advances in understanding of the underlying biology of BC have
improved the accuracy and effect of diagnosing and treating this disease in recent years,
BC still represents a spectra of diseases from recurrent noninvasive tumors to aggressive
or advanced-stage disease that requires multimodal and invasive treatment [2,3]. Fre-
quent postoperative recurrence and distant metastasis lead to the poor prognosis in BC
patients [4,5]. Identification of efficient therapeutic targets, as well as new prognostic
biomarkers are needed to improve the outcomes of BC patients.

Annexins belongs to a superfamily of calcium-dependent phospholipid-binding pro-
teins and contains 12 members (ANXA1-11, 13) [6]. In eukaryotic cells, Annexins are
involved in membrane trafficking and organization, such as vesicle transport, signal trans-
duction, cell proliferation, cell differentiation and apoptosis [7,8]. Recent studies found that
abnormal expression and dysfunction of Annexin proteins commonly occurred in tumor
tissue and indicated that the disordered Annexin proteins may play important roles in
tumorigenesis and progression, as well as chemoresistance in several types of cancer [9,10].
However, few studies reported the roles of Annexins in the carcinogenesis and prognosis in
BC. Yu et al. found that the expression of ANXA1 was related to disease-free survival in BC
patients and can be used as a recurrence biomarker for BC [11]. In addition, ANXA2 has
also been found to play a key role in the formation, progression and recurrence of BC [12],
and high expression of ANXA10 is significantly correlated with poor progression-free
survival in BC patients [13]. However, the roles and mechanisms of most Annexins in BC
remain unclear.

In this study, we comprehensively analyzed the mRNA expression and prognosis
of Annexin family members in BC through public analysis tools, including Oncomine,
GEPIA2 and our in-house OSblca web server, and found that several Annexins were
aberrantly expressed and associated with prognosis in BC. Then, we collected four BC
datasets, including 703 BC samples with survival information from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO), and constructed and validated an
Annexin-related prognostic signature (ARPS) in four individual BC cohorts through LASSO
and COX regression, indicating that ARPS was an independent prognostic factor for BC.
In addition, we further explored the biological functions and relevant pathways of ARPS
through gene set enrichment analysis (GSEA), and analyzed the correlation between ARPS
and the infiltrating immune cells using ssGSEA. Briefly, our study was to determine the
clinical significance of Annexins and provided a potential prognostic model and potential
therapeutic targets for BC.

2. Materials and Methods
2.1. Survival Analysis of Annexin Family Members in OSblca

OSblca (http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp, accessed on 2 December
2020) [14] is our in-house online survival analysis tool providing 1075 BC gene expression
profiles and accompanied patient clinical follow-up information from TCGA and GEO
databases. In OSblca, four types of survival endpoints, including overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval
(PFI) were provided for prognosis analysis. Each member of the Annexin family was
analyzed for the relationship between their mRNA expression and BC outcomes in OSblca
prognostic values of these genes were evaluated in all cohorts and survival terms, and, all
cutoff values in ‘splitting the patients’ were tested in each cohort to get the best cutoff value.

http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp


Biology 2022, 11, 259 3 of 18

2.2. Differential Expression Analysis of Annexin Family Members between BC and Adjacent Tissue
by Oncomine and GEPIA2

Oncomine (www.oncomine.org, accessed on 2 December 2020) [15] and GEPIA2
(http://gepia2.cancer-pku.cn/#index, accessed on 2 December 2020) [16] databases were
used to analyze the differential expression of Annexins between cancer and adjacent normal
tissues. Oncomine is an online database that provides differentially expressed gene analysis
using public microarray datasets. In Oncomine, mRNA expression of Annexin members
between cancer tissue and adjacent normal tissue were compared with the thresholds of
p-value < 0.05, |log2 (fold-change)| > 1, and the gene rank percentage < 10%. GEPIA2
provided the gene expression analysis based on TCGA and GTEx data. In GEPIA2, the
expression of Annexins were compared between 404 bladder cancer samples and 28 normal
samples with the threshold for p-value < 0.05 and |log2(fold-change) | > 1. In addition,
differential expression of Annexins members in distinct clinical stages was also analyzed
in TCGA bladder cancer samples using TISIDB database (http://cis.hku.hk/TISIDB/,
accessed on 3 December 2020) [17].

2.3. Construction and Validation of the Annexin-Related Prognostic Signature through LASSO

Four individual BC cohorts with both gene expression data and related clinical
follow-up information were downloaded from TCGA and GEO databases, including
one TCGA BC dataset [18] (Discovery cohort) and three GEO BC datasets (Validation
cohorts, GSE31684 [19], GSE32548 [20], GSE48075 [21]). Detailed information of each BC
cohort was summarized in Supplementary Table S1. The work-flow was illustrated in
Supplementary Figure S1. The ARPS was constructed using least absolute shrinkage and
selection operator (LASSO) Cox regression through R package “glmnet”. The optimal
parameter was determined through 10-fold cross validation with “family = cox, alpha = 1”,
and with all other parameters set to default. Ultimately, ARPS is developed according to
the following risk score formula:

risk score = ∑n
i (Coefi ∗ Expri)

where Coefi is the coefficient of gene i in LASSO and Expri is the FPKM value of the
included gene i.

Best cut-off risk score was calculated by using the “surv_cutpoint” function of R
package “survminer” (https://CRAN.R-project.org/package=survminer, accessed on
24 December 2020). According to the best cut-off risk score, TCGA BC patients were
divided into high- and low-risk groups and the prognosis between the two groups was
evaluated through Kaplan-Meier survival analysis with the log-rank test. In addition, the
expression heatmap of each Annexin member in ARPS and the risk score distribution and
survival of patients were visualized through “pheatmap” package. Similar analyses were
performed in three individual BC cohorts (GSE31684, GSE32548, GSE48075) to validate the
prognosis performance of ARPS in BC.

2.4. Independent Prognostic Performance Analysis of ARPS in BC Cohorts

In the TCGA BC cohort, univariate Cox regression models were used to identify the
prognostic clinical characteristics related to prognosis, and subsequently these significantly
prognostic factors were further tested their independent prognostic performance through
multivariate Cox regression models. Similar analyses were performed in other three indi-
vidual BC cohorts (GSE31684, GSE32548, GSE48075) to validate the independent prognostic
performance of ARPS in BC.

2.5. Association between ARPS and Clinicopathology

The chi-squared test was performed to determine the association of clinical features
between and ARPS in BC patients, where a p-value less than 0.05 indicates statistical signif-
icance. In addition, to verify the predictive effectiveness of ARPS in different subgroups,
Kaplan-Meier survival analysis was used to compare the prognostic capability between

www.oncomine.org
http://gepia2.cancer-pku.cn/#index
http://cis.hku.hk/TISIDB/
https://CRAN.R-project.org/package=survminer
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subgroups in certain clinical features including age, gender, grade, lymph invasion status,
T status, M status, and N status, TNM stage, and race.

2.6. Gene Interaction and Biological Functions of ARPS

GeneMANIA was used to analyze the protein interactions between Annexin members
in ARPS. To evaluate the biological functions of ARPS, differentially expressed genes
(DEGs) between the two ARPS risk groups were identified through limma R package, and
then were analyzed in the DAVID database to predict the gene ontology (GO) function and
KEGG pathway. Furthermore, GSEA was implemented to reveal the potential mechanism
that ARPS was involved in.

2.7. Correlation between ARPS Risk Score and Imune Cell Infiltration and Immune
Checkpoint Genes

In order to characterize the immune cell infiltration in the tumor microenvironment
of two ARPS risk groups, the immune cell abundance of the TCGA BC cohort was cal-
culated by estimate, timer, MCPcounter and xCell algorithm, and visualized through the
“pheatmap” package of R software. Correlations between ARPS risk score and different
immune cell abundances and immune checkpoint genes were analyzed through Pearson
coefficient analysis. Then, the levels of immune cell infiltration and immune checkpoint
gene expression between high- and low-risk groups were compared using the ‘limma’
package, which revealed the effect of ARPS risk score on BC immune microenvironment.

2.8. Statistical Analysis

Statistical analysis was performed using SPSS 16.0 and GraphPad Prism 5.0 software.
Differences were compared by the Student’s t test or one-way analysis of variance (ANOVA)
where appropriate. Statistical significance was determined by p-value less than 0.05.

3. Results
3.1. Survival and Differential Analysis of Annexins in Bladder Cancer

Survival analysis results revealed that the mRNA expression of more than half of
Annexin members were related to the prognosis of BC patients. As shown in Figure 1,
BC patients with high expression of ANXA1/2/3/5/6 had a shorter OS time in comparison
to those with low expression of ANXA1/2/3/5/6, while BC patients with high expressed
ANXA11 had a longer OS time. In particular, upregulated ANXA1/2/5 were significantly
associated with poor prognosis of BC in three or more datasets. In addition, the mRNA
expressions of Annexins were also related to DSS in BC patients (Figure 2). The results
indicated that BC patients with high expression of ANXA1/2/5/6/7/13 showed a shorter DSS
time than those with low expression, as opposed to the patients with high expression of
ANXA11. Moreover, high expression of ANXA5 and ANXA13 were found to be associated
with poor DFI and PFI in the BC cohort (Figure 3), indicating that these two genes might be
involved in recurrence and progression of BC.

Using the Oncomine database (Table 1), we found that most Annexins were sig-
nificantly differentially expressed between BC and adjacent normal tissues. Markedly
lower expressions of ANXA1/5/6 were found in BC tissues consistently, while the expres-
sion levels of ANXA2/3/4/13 were significantly increased in multiple BC cohorts. In the
GEPIA2 database, ANXA6 was significantly downregulated in TCGA BC samples com-
pared to normal samples (p-value < 0.05), while ANXA8 was significantly upregulated in
TCGA BC samples, and no significant differences were found for other Annexins in BC
(Supplementary Figure S1).
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Figure 3. Survival analysis of ANXA5 and ANXA13 in disease-free interval (DFI) and progression-free
interval (PFI) in BC patients using OSblca web server. Kaplan-Meier plotter of ANXA5 with DFI (A)
and PFI (B); Kaplan-Meier plotter of ANXA13 with DFI (C) and PFI (D) in OSblca.

Correlation between Annexin expression and clinical stage of BC are shown in Figure 4A.
The results showed that the expression levels of ANXA1/2/5/6 were positively correlated
with clinical stage, and ANXA10 showed negative correlation with clinical stage, while
no significant correlation was found in other Annexins. Additionally, high expression of
ANXA1/2/5/6 were found in BC patients with stage III/IV compared to those in BC patients
with stage I/II (Figure 4B–E), whereas low expression of ANXA10 were found in stage
III/IV BC patients (Figure 4F).

3.2. Construction and Validation of the Annexin-Related Prognostic Signature

Through LASSO Cox regression, four Annexin members including ANXA1/5/6/10 were
identified and used to construct Annexin-related prognostic signature (ARPS) (Figure 5A–C).
Risk score of ARPS was calculated according to the formula, Risk score = 0.00083 × ExpANXA1
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+ 0.0017 × ExpANXA5 + 0.00016×ExpANXA6 − 0.00012 × ExpANXA10. Then, BC samples
were divided into high/low-risk groups by ARPS according to the best cut-off of risk score.

Table 1. Comparison of mRNA expression of Annexin family members between bladder cancer and
adjacent normal tissues (Oncomine database).

Gene Datasets Tumor (Cases Number) Normal (Cases Number) Fold Change p-Value

ANXA1 Lee et al. Superficial Bladder Cancer (126) Bladder Mucosa (68) −2.916 9.51 × 10−14

Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) −1.466 1.90 × 10−2

Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −2.131 7.07 × 10−4

ANXA2 Sanchez et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 1.493 6.23 × 10−5

Superficial Bladder Cancer (28) Bladder (48) 1.371 2.00 × 10−3

Dyrskjot et al. Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 2.085 4.41 × 10−4

ANXA3 Sanche et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 2.323 5.55 × 10−8

Dyrskjot et al. Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 2.607 2.00 × 10−3

ANXA4 Sanchez et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 1.731 3.28 × 10−8

Superficial Bladder Cancer (28) Bladder (48) 2.506 2.28 × 10−13

Dyrskjot et al. Superficial Bladder Cancer (28) Bladder (9) Bladder Mucosa (5) 2.770 2.84 × 10−5

Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 1.915 2.00 × 10−3

ANXA5 Lee et al. Superficial Bladder Cancer (126) Bladder Mucosa (68) −2.392 1.01 × 10−13

Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) −1.417 4.00 × 10−3

Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −2.428 4.70 × 10−10

Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) −1.473 6.43 × 10−7

Blaveri et al. Superficial Bladder Cancer (26) Bladder (3) −4.211 3.00 × 10−3

ANXA6 Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −8.011 5.24 × 10−25

Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) −2.846 3.69 × 10−14

Dyrskjot et al. Stage 0is Bladder Urothelial
Carcinoma (5) Bladder (9) Bladder Mucosa (5) −1.295 4.60 × 10−2

Superficial Bladder Cancer (28) Bladder (9) Bladder Mucosa (5) −1.558 1.00 × 10−3

ANXA13 Lee et al. Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) 1.033 2.70 × 10−2

Blaveri et al. Infiltrating Bladder Urothelial
Carcinoma (41) Bladder (2) 2.374 8.64 × 10−4

Superficial Bladder Cancer (21) Bladder (2) 2.239 1.00 × 10−3

The prognostic performance of ARPS in the BC cohort was evaluated in the TCGA
dataset (Discovery cohort) and validated in three independent GEO datasets (Valida-
tion cohorts, GSE31684, GSE32548, GSE48075). As shown in Figure 5D, Kaplan-Meier
plot showed that BC patients in the high ARPS risk group had shorter OS time than
those in the low ARPS risk group (p < 0.0001, HR = 2.232). The gene expression heat
map indicated that high expression of ANXA1, ANXA5, and ANXA6 but low expres-
sion of ANXA10 were shown in the high-risk group in comparison to the low-risk group.
In addition, high ARPS risk score were consistently related to short OS in GSE31684
(p = 0.0079, HR = 1.987, Figure 5E), GSE32548 (p = 0.0005, HR = 4.255, Figure 5F) and
GSE48075 (p = 0.0296, HR = 1.999, Figure 5G). In addition, the high ARPS risk group had a
shorter DSS and PFI than those with low ARPS risk in the TCGA BC cohort and GSE31684
BC cohort (Supplementary Figure S2).
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Univariate and multivariate COX regression were performed to explore whether
the ARPS was an independent prognostic predictor for BC. In the univariate analysis
of the TCGA dataset (Discovery cohort), risk score, grade and age were all correlated
with OS, and then included in subsequently multivariate analysis. Multivariate analysis
showed that high ARPS risk score was associated with poor prognosis in both discovery
BC cohort [(p < 0.0001, HR= 2.045 (1.485–2.817), Table 2] and three independent validated
BC cohorts GSE31684 [p = 0.0010, HR= 2.259 (1.375–3.711), Table 3], GSE3254 [(p = 0.0060,
HR = 3.591(1.453–8.872)] and GSE48075 [(p = 0.0100, HR = 2.291 (1.224–4.286)]. Overall,
these results all confirmed that the ARPS risk score is an independent survival predictor
for BC patients.
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3.3. Associations of ARPS with Clinicopathological Features of BC

In order to better understand the role of ARPS in clinical outcomes of BC, we further
investigated the relationships between ARPS and the pathological features of BC, including
age, gender, grade, lymph invasion status, pT stage, pN stage, pM stage, TNM stage and
race. Chi-squared test (Table 4) demonstrated that the clinicopathological features including
gender, grade, pT stage, pN stage, TNM stage and race showed significant association with
ARPS risk score. Further subgroup analyses were performed to determine whether ARPS
could predict prognosis of BC patients under certain clinicopathological circumstances.
Kaplan-Meier survival analysis (Figure 6) revealed that worse OS was noted in the high-risk
ARPS groups regardless of age (Figure 6A), gender (Figure 6B), and pT stage (Figure 6D).
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However, ARPS is more potent to predict the outcome for higher TNM stages (Figure 6C),
pN0 stage (Figure 6E), pM0 stage (Figure 6F), high grade (Figure 6G), and white (Figure 6H)
than lower TNM stages, pN 1/2/3, pM 1, low grade and non-white, respectively.

Biology 2021, 10, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Construction and validation of Annexin-Related Prognostic Signature (ARPS). LASSO 
algorithm was used to construct a prognosis model (A–C); Kaplan-Meier curve, distribution dia-
gram of risk score and survival status in TCGA BC patients (discovery cohort) between 
high/low-risk groups (D); Kaplan-Meier curve, distribution diagram of risk score and survival 
status in three BC validation cohorts GSE31684 (E), GSE32548 (F) and GSE48075 (G). 

The prognostic performance of ARPS in the BC cohort was evaluated in the TCGA 
dataset (Discovery cohort) and validated in three independent GEO datasets (Validation 
cohorts, GSE31684, GSE32548, GSE48075). As shown in Figure 5D, Kaplan-Meier plot 
showed that BC patients in the high ARPS risk group had shorter OS time than those in 
the low ARPS risk group (p < 0.0001, HR = 2.232). The gene expression heat map indicated 
that high expression of ANXA1, ANXA5, and ANXA6 but low expression of ANXA10 
were shown in the high-risk group in comparison to the low-risk group. In addition, high 
ARPS risk score were consistently related to short OS in GSE31684 (p = 0.0079, HR = 1.987, 
Figure 5E), GSE32548 (p = 0.0005, HR = 4.255, Figure 5F) and GSE48075 (p = 0.0296, HR = 
1.999, Figure 5G). In addition, the high ARPS risk group had a shorter DSS and PFI than 
those with low ARPS risk in the TCGA BC cohort and GSE31684 BC cohort (Supple-
mentary Figure S2). 

Figure 5. Construction and validation of Annexin-Related Prognostic Signature (ARPS). LASSO
algorithm was used to construct a prognosis model (A–C); Kaplan-Meier curve, distribution diagram
of risk score and survival status in TCGA BC patients (discovery cohort) between high/low-risk
groups (D); Kaplan-Meier curve, distribution diagram of risk score and survival status in three BC
validation cohorts GSE31684 (E), GSE32548 (F) and GSE48075 (G).
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Table 2. Univariate and multivariate Cox analyses of ARPS risk score with OS in TCGA.

Covariates
Univariate Cox Analysis Multivariate Cox Analysis

p Value HR 95% CI p Value HR 95% CI

Age (>65 vs. ≤65 years) <0.0001 **** 2.039 1.426–2.916 <0.0001 **** 1.981 1.384–2.837
Gender (Male vs.

Female) 0.3460 0.846 0.598–1.198 - - -

Stage (III/IV vs. I/II) <0.0001 **** 2.531 1.670–3.836 0.0010 ** 2.084 1.366–3.180
Grade (High vs. Low) 0.1310 21.473 0.400–1151.678 - - -
Lymph (Yes vs. No) <0.0001 **** 1.931 1.366–2.792 0.0010 ** 1.843 1.271–2.671

Race (White vs.
Non-white) 0.3230 1.291 0.778–2.140 - - -

Risk score (High vs.
Low) <0.0001 **** 2.144 1.559–2.950 <0.0001 **** 2.045 1.485–2.817

Note: Where **, p < 0.01 and ****, p < 0.0001.

Table 3. Univariate and multivariate Cox analyses of ARPS risk score with OS in three BC validation datasets.

Covariates

Univariate Cox Analysis Multivariate Cox Analysis

GSE31684 GSE32548 GSE48075 GSE31684 GSE32548 GSE48075

p Value HR
(95% CI) p Value HR

(95% CI) p Value HR
(95% CI) p Value HR

(95% CI) p Value HR
(95% CI) p Value HR

(95% CI)

Age
(>65 vs. ≤65

years)
0.8710 1.047

(0.605–1.811) 0.3750 1.487
(0.619–3.569) 0.0230 * 2.371

(1.129–4.979) - - - - 0.0080 ** 2.786
(1.304–5.956)

Gender
(Male vs.
Female)

0.9660 0.988
(0.560–1.741) 0.6300 1.273

(0.477–3.393) - - - - - - - -

Grade
(High vs. Low) 0.1230 3.035

(0.741–12.43) 0.0290 * 2.790
(1.112–6.999) - - - - 0.1460 2.014

(0.783–5.182) - -

Stage
(III/IV vs. I/II) 0.0110 2.162

(1.192–3.922) - - - - 0.0080 ** 2.237
(1.230–4.068) - - - -

Risk score
(High vs. Low) 0.0020 ** 2.200

(1.340–3.613) 0.0010 ** 4.248
(1.761–10.250) 0.0330 * 1.939

(1.056–3.559) 0.0010 ** 2.259
(1.375–3.711) 0.0060 ** 3.591

(1.453–8.872) 0.0100 * 2.291
(1.224–4.286)

Note: Where *, p < 0.05 and **, p < 0.01.
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Table 4. Association of ARPS risk score with clinicopathological features in TCGA BC cohort.

Characteristics Sample (n = 406)
Risk Score

χ2 p ValueHigh Risk Score
(n = 173)

Low Risk Score
(n = 233)

Age 2.173 0.1410
>65 years 246 112 134
≤65 years 160 61 99
Gender 4.592 0.0320 *

Male 299 118 181
Female 107 55 52
Grade 12.360 0.0004 ***
High 383 172 211
Low 20 1 19

Lymph invasion 0.582 0.4450
Yes 149 62 87
No 130 60 70

TNM Stage 6.403 0.0110 *
I-II 273 128 145

III-IV 131 44 87
pT Stage 9.258 0.0020 **

T0-T2 122 49 73
T3-T4 251 143 108

pN Stage 4.166 0.0410 *
N0 236 110 126

N1-N3 128 74 54
pM Stage 0.155 0.6940

M0 195 77 118
M1 11 5 6

Race 6.265 0.0120 *
White 323 147 176

Non-White 66 19 47

Note: Where *, p < 0.05, **, p < 0.01, and ***, p < 0.001.

3.4. Gene-Gene Interaction Network and Function Analysis of ARPS in BC

A gene-gene interaction network of ARPS was constructed using the GeneMANIA
database. As shown in Figure 7A, the top five genes displaying the greatest correlations with
ARPS included U2AF2, RASA1, ANXA4, COL10A1 and DYSF. Functional analysis revealed
that these genes showed the greatest correlation with calcium-dependent phospholipid
binding, lipase inhibitor activity, phospholipid binding S100 protein binding and enzyme-
inhibitor activity. The predictive power of ARPS in predicting recurrence risk of BC
patients could be attributed to their crucial roles in tumor development or metastases.
Therefore, we further explored the underlying biological functions of ARPS through GO,
KEGG, and GSEA pathway enrichment analyses. Gene differential analysis identified that
there were 2439 differentially expressed genes (DEGs) between these two groups with
high/low ARPS risk, including 1604 upregulated genes and 1710 downregulated genes.
GO analysis (Figure 7B) showed that DEGs were mainly involved in cell-cell signaling
(GO:0007267), immune response (GO:0006955) and chemokine-mediated signaling pathway
(GO:0070098), and KEGG pathway enrichment (Figure 7C) revealed that the DEGs were
mainly enriched in cytokine-cytokine receptor interaction (hsa04060), chemokine signaling
pathway (hsa04062), and drug metabolism (hsa00982). Moreover, GSEA enrichment results
(Figure 8A–C, Supplementary Figure S4) showed that immune related pathways such as
epithelial–mesenchymal transition, IL6/JAK/STAT3 signaling, inflammatory response and
TNFA signaling via NFKB were enriched in the high-risk groups (Figure 8B), while the
low-risk group mainly regulated metabolism-related processes, such as adipogenesis, bile
acid metabolism, oxidative phosphorylation and peroxisome (Figure 8C).
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3.5. Relation between ARPS and the Degree of Immune Cell Infiltration

Immune cell infiltration of BC cases with high/low ARPS risk were estimated and
compared by estimate algorithm (Figure 9A–D). The result showed that the risk score
of ARPS was significantly positively correlated with immune infiltration level, and BC
cases with high ARPS risk score had greater ESTIMATE score (Figure 9A), immune score
(Figure 9B) and stromal score (Figure 9C), but unsurprisingly lower purity than those in the
low ARPS risk group (Figure 9D). Through Timer, MCPcounter and xCell algorithm, we
compared the immune cell abundance between the high- and low-risk groups and found
that several types of immune cells, including CD8+ T cells, neutrophils, macrophages,
myeloid dendritic cell, Tregs, and cancer-associated fibroblasts were significantly more
abundant in the high-risk group than those in the low-risk group (Figure 9E). Moreover,
we compared the different expression of several immune check genes between the high-
and low-risk groups. The results revealed that elevated expression of most immune check
genes, including CD274, CD276, CD28, CD80, CD86, ICOS, ICOSLG, LAG3, PDCD1 and
PDCDLG2, were found in the high-risk group compared to those in the low-risk group
(Figure 9F).
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4. Discussion

Although the advance of surgical methods and medical therapies have improved the
treatment of bladder cancer, high rate of recurrence after operation and frequent metastasis
lead to poor prognosis of BC patients. Identification of new prognostic biomarkers and
therapeutic targets could be essential ways to improve the outcome of BC patients. In this
study, we comprehensively analyzed the gene expression and prognosis of Annexin family
members in BC, and constructed and validated an ARPS, which could be an independent
prognostic biomarker in four individual BC cohorts.
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During our evaluation of the gene expression and prognostic value of Annexins in BC,
we found that several Annexins were aberrantly expressed and associated to prognosis in
BC. For example, high expression of ANXA2/3/13 were found in BC compared to normal
tissue (Table 1) and related to poor prognosis in BC patients (Figures 2–4). ANXA2 is mainly
distributed in the nucleus and cytoplasm, and important role in cancer progression and
invasion has been reported [22]. Previous studies reported that ANXA2 was significantly
elevated in tumor issues and related to poor prognosis in breast cancer [23], glioma [24],
gastric cancer [25] and liver cancer [26]. ANXA3 was also reported as an important role in a
variety of tumor development processes [27]. Overexpressed ANXA3 could promote tumor
proliferation and metastasis in breast, lung, liver, and ovarian cancer, and was associated
with chemotherapy resistance [28,29]. In addition, increased expression of ANXA13 could
promote the proliferation and migration of lung cancer cells in vitro and was associated
with poor survival in lung adenocarcinoma patients [30]. Moreover, Wu et al. (2021)
recently reported that the expression of Annexins were related to the molecular subtypes of
MIBC [31]. They found that ANXA1/2/3/5/6/7/8 were highly expressed in basal-subtype
MIBC, while ANXA4/9/10/11 were mainly expressed in luminal-subtype MIBC, which
might be used as potential markers for subtype classification of BC. Their results could
show that the abnormal expression of Annexin members were common in several types of
cancer and might play key roles in carcinogenesis and cancer progression, including BC.

We then constructed an ARPS using the machine learning algorithm LASSO and
demonstrated that BC patients in the high ARPS risk group had a shorter OS/DSS/PFI in
BC cohorts than those with low risk through KM-survival analysis (Figure 5). Additionally,
Cox regression analysis showed that ARPS was an independent prognostic predictor in both
the discovery BC cohort and three independent validation cohorts, respectively. Moreover,
ARPS can even predict the prognosis of BC patients within different subgroups stratified
by clinical characteristics, including age, gender and T stage. Overall, these results all
confirmed that the risk score derived from ARPS could accurately and stably predict the
survival outcome of BC patients independently.

KEGG pathway and GSEA analysis revealed that EMT and its regulators pathways
(TGF-β signaling pathway, TNF-alpha/NF-kappaB, PI3K/AKT/mTOR) were found to
be differentially enriched between the high- and low-risk groups. EMT is a process by
which epithelial cells lose their epithelial properties and obtain a mesenchymal phenotype,
and could transform tumor cells from inactive cancer to malignant phenotypes [27,28].
Previous studies have indicated that EMT was a key controller in tumor progression and
metastasis of BC [32–34]. Upregulation of EMT transcription factors, such as TWIST1,
ZEB1/2 and SNAI1/2 have been reported to promote migration and invasion of tumor
cells in many types of tumors [35–38]. In addition, several EMT regulatory pathways, such
as TNF-alpha/NF-kappaB and TGF-β were significantly highly enriched in the high-risk
ARPS group. Li et al. revealed that activation of TNF-alpha/NF-kappaB could induce
EMT through upregulation of EMT transcription factor Twist1 and contribute to metastatic
BC [39]. Upregulation of TGF-β can activate Wnt signaling pathways and play a synergistic
role to start the EMT process [40]. Moreover, the PI3K/AKT/mTOR pathway participated
in numerous cell biological processes. Activated AKT and mTOR can increase E-cadherin
expression and promote EMT activation [41]. Therefore, the cross-talk of these signaling
pathways may contribute to the poor prognosis of the high ARPS risk group through
promoting tumor recurrence and metastasis by the EMT process.

In order to escape the anti-tumor immune response, tumor cells could secrete immuno-
suppressive and anti-apoptotic factors or recruit suppressive immune cells to generate
a highly immunosuppressive microenvironment through different mechanisms [42,43].
In BC TME, accumulated immunosuppressive cells (e.g., myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs) and regulatory T cells (T regs) and
evaluated expression of immune checkpoints (e.g., CTLA-4 and PD-1) were reported to
induce immune evasion of tumor cells [44,45]. Therefore, we evaluated the landscape
of immune cell infiltration for the high and low ARPS risk groups by ESTIMATE, Timer,
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MCPcounter and xCell algorithm, which revealed that a higher degree of immune cell
infiltration and greater abundance of immunosuppressive cells including Tregs, TAMs and
MDSCs were found in the high ARPS risk group than these in the low ARPS risk group.
Previous studies have proved that increased infiltration of Tregs, TAMs and MDSCs were
found in BC tissue and were associated with poor prognosis of BC patients [46–48]. As key
cellular components of TME, Tregs could facilitate immune evasion of cancer cells through
secreting inhibitory cytokines [49], and TAMs could greatly contribute to form a tolerogenic
TME by directly exhausting CD8 T cells, and supporting to traffic Tregs [50]. Additionally,
MDSCs can also inhibit the immune response by suppressing CD4 T-cells, CD8 T-cells,
and NK cells, inducing Tregs and facilitating TAMs polarizing into M2 phenotype [46].
Notably, MDSC-induced immunosuppression has been demonstrated to accelerate the
tumor progression and enhance the formation of metastatic lesions through promoting
the EMT process [51,52]. Moreover, our study suggested that the high-risk ARPS prog-
nostic group showed high expression of CD274, CD276, CD28, CD86, LAG3, PDCD1 and
PDCDLG2, and may be more sensitive to anti-PD1 treatment. Based on above findings, we
deliberate that the high-risk group might be related to a high degree of immunosuppression
and low immunoreactivity in TME, thereby promoting tumor recurrence and metastasis
through EMT-related pathways. As a result, the high-risk group might get more benefits
from immunotherapy.

5. Conclusions

In conclusion, we found that several Annexins were aberrantly expressed and asso-
ciated with prognosis in BC through public tools and identified and validated an ARPS
comprised of four members, ANXA1/5/6/10, proving that ARPS was an independent
prognostic factor in four individual BC cohorts. This model might be helpful for clinicians
to guide the treatment strategy and eventually benefit BC patients. These results could
also provide insights into the underlying molecular mechanisms of development and
progression of BC and offer potential therapeutic targets for BC.
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(GEPIA2). ANXA1-11 (A-K) and ANXA13 (L); where * p < 0.05, Figure S3: Survival analyses of
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GSE31684 (C-D) BC cohorts, Figure S4: Primary figure of Heat map of differential expression genes
between the high/low risk groups (Figure 8A), Table S1: Clinical characteristics of the BC patients
collected in this study.
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