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Simple Summary: Cancer is one of the major public health burdens in the world. To date, various
conventional cancer therapies have been used, but these therapies are less effective and have severe
side effects. Currently, in order to find a better cure for cancer, researchers have tried to explore
new approaches with minimal toxicity and fewer side effects. In recent years, nanotechnology
has been widely used in diseases management and holds a promising future in curing complex
incurable diseases, in particular cancer. Biosynthesized metallic nanoparticles are eco-friendly and
biocompatible, and can be used in cancer diagnostics, novel treatments, and drug delivery systems.
This review gives an overview of the recent advancements in the biosynthesis of metallic nanoparticles
(silver (Ag), gold (Au), zinc (Zn) and copper (Cu)) and their possible anti-cancer activities, with
particular emphasis on the mechanisms of action, and future research prospects of nano-therapeutics
are also discussed.

Abstract: Cancer is one of the foremost causes of death worldwide. Cancer develops because of
mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled
division and proliferation of cells. Various drugs have been used to treat cancer thus far; however,
conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal
delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and
has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost
effective, safe, and biocompatible and have got substantial attention from researchers around the
globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising
cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer;
among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The
anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in
cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death
pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au,
Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the
future prospects and opportunities of nano-therapeutics, are also highlighted.
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1. Cancer: A Global Public Health Issue

Cancer is one of the leading causes of death, resulting in about 10.0 million deaths
in 2020 alone [1]. Additionally, according to the World Health Organization (WHO), it is
anticipated that it will increase up to three folds by the end of 2040 [2,3]. Cancer causes
one in six deaths globally, resulting in more deaths than tuberculosis, malaria and acquired
immunodeficiency syndrome (AIDS) [4]. Around 70% of these deaths occur in low- and
middle-income countries owing to their lifestyle adaptations [3]. Chemotherapy, surgery,
radiations, immunotherapy, and hormone therapy are commonly used for cancer treatment,
but these approaches pose severe side effects in patients [5,6]. Chemotherapeutic agents
cause various toxicities, for example, a commonly used drug, 5-fluorouracil, is generally
associated with myelotoxicity, leukopenia, cardiotoxicity, and blood vessels constriction [7].
Similarly, cyclophosphamide and bleomycin, often used in combination therapy, are associ-
ated with bladder toxicity, pulmonary toxicity, and cutaneous toxicity [7–9]. Doxorubicin,
another anticancer drug, is reported for cardiotoxicity, myelotoxicity, and renal toxicity,
respectively [10]. In order to find a better cure with minimal toxicity, scientists are on
a quest to explore novel approaches and discover potent anticancer agents for effective
treatment against cancer with minimal side effects.

In the recent years, nanotechnology based therapeutic and diagnostic approaches have
shown significant potential to ameliorate cancer therapy [3,11]. Cancer nanotechnology
developed a new area of integrative research in biology, chemistry, engineering, and
medicine, and is concerned with major advances in cancer diagnosis, prevention and
treatment [12]. In past few years, nanoparticles (NPs) have become a subject of attraction for
scientists due to their maximal efficacy and safety [13]. Due to these applications, recently,
the US FDA has approved nanotechnology based anticancer drugs such as, Myocet™
(Perrigo, Dublin, Ireland), DaunoXome® (Gilead Sciences, Foster City, CA, USA), Doxil®

(Johnson & Johnson, New Brunswick, NJ, USA) and Abraxane® (Celgene, Summit, NJ,
USA) [14].

This article provides an insight into the green synthesis of metallic NPs and their
potential applications as therapeutics in cancer therapy. This review has mainly focused
on biosynthesis of silver, gold, zinc and copper NPs for cancer therapy and their in vitro
anticancer activities against cell lines. The basic mechanism behind cancer development
and a proposed mechanism involved in metallic NPs-mediated cytotoxicity in cancerous
cells have also been discussed in the current review.

2. Genome Instability: A Basic Mechanism in Cancer Development

The fundamental abnormality that leads to the development of cancer is the abnormal
cellular proliferation and division, which arise when their regulatory genes are mutated [15].
The protein product of these mutated genes can cause cancer by accelerated cell division
rates or inhibiting normal cell cycle control, such as programmed cell death or cell cycle
arrest [16]. The genes that mainly contributed to development of cancer fall into three
broad categories, involving proto-oncogenes, oncogenes, and tumor suppressor genes. The
proto-oncogenes (normal version of genes), when activated or mutated, become oncogenes
(mutated version of genes) and produce various onco-proteins that can affect cell division,
proliferation and survival, and results in cancer development [17,18]. A few of the many
known proto-oncogenes include HER-2/neu, RAS, MYC, SRC, BCL-2 and hTERT, and these
genes or their product modulate cellular cycle or control normal cell division or apoptosis
cell division [19–24]. On the contrary, tumor suppressor genes code proteins that repair
damaged DNA or destroy damaged cells, and when these molecular switches become
mutated, it leads to abnormal cell division and cellular growth. In this way, the abnormal
cells continue to survive and may eventually develop into a cancer [25].
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Cancer is mainly associated with loss of genome stability. Genome stability of cells
is mostly altered through certain DNA damaging agents from carcinogens. Fortunately,
our cells have proofreading machinery such as cell cycle checkpoints and a complex
interconnected network of pathways to repair the damage [26]. However, mutation can
occur in the regulatory genes and the cell will be unable to proofread such DNA breakages,
and eventually the normal cellular cycle and proliferation rate will be disrupted [27,28]. For
example, Rad54B is an important protein that exhibits a role in DNA repair and maintaining
genome stability after DNA damage [27]. Various studies [29–31] have revealed that
Rad54B mutation is involved in the development of some cancer’s cells, and such abnormal
proteins are unable to terminate the cell cycle and will lead to the progression of cancer.
Figure 1 shows regulation of cell cycle upon DNA damage and the role of Rad54B in the
development of cancer.
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Figure 1. Cell cycle regulation in response to DNA damage.

The development of cancer is preceded by the appearance of mutations in critical
cellular genes involved in regulatory pathways of the cell cycle. This is the initial stage
(initiation) of cancer development, an irreversible heritable alteration in DNA of normal
cell referred to as initiated cell [32]. Initiation is associated with high efficacy of DNA repair,
otherwise the initiated cell may ultimately die while progressing towards the development
of the preneoplastic focal lesions. The initiated cells in preneoplastic focal lesions starts
proliferating upon continual exposure to promoting agents, and further mutations during
promotion leads to development of metastasis or neoplasm [33]. Neoplasia, an abnormal
or uncontrolled growth of cells or tissues, can be benign (localized tumor) or malignant,
which tend to proliferate rapidly, or metastasize (spread the tissues around them or other
parts of the body) [34]. Figure 2 shows different stages of development of cancer; starting
from a mutation in normal cells (initiation), proliferation of mutated cells (promotion), and
uncontrolled growth of cells along with continued mutations in their genome, and their
spread to other parts of the body (metastasis).
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3. Green Synthesized Metallic NPs: An Insight

Several metals and their oxides have been used for production of NPs, including silver
(Ag), aluminum (Al), iron (Fe), gold (Au), silica (Si), copper (Cu), zinc (Zn), manganese
(Mn), cerium (Ce), titanium (Ti), platinum (Pt) or thallium (TI) [35]. NPs are generally
synthesized by via approaches, top-down approach and bottom-up approach, as shown in
Figure 3. The top-down approach for NPs synthesis includes lithographic techniques, laser
ablation, ball mining, sputtering, electro-explosion and etching. The bottom-up approach
includes the most effective methods for NPs synthesis, where NPs are prepared using
simpler molecules [36].

From all the approaches of NPs synthesis, green synthesis approach is considered the
most economic, sustainable, reliable and eco-friendly [37]. This approach of NPs synthesis
does not require toxic chemicals, high temperature, high pressure and does not cause harm
to human health and the environment [38]. At present, it is also considered a preferred
method for NPs fabrication because of utilization of low-cost and non-hazardous raw
material such as microorganisms fungi [39], algae [40], bacteria [41], plant extracts [42],
natural polymers and proteins [43]. These resources contain biomolecules such as proteins
including enzymes, polysaccharides, sugars, amides, ketones, aldehydes, and carboxylic
acids, but also more importantly various phytochemicals such as terpenes, alkaloids or
polyphenols including flavonoids that aid in immediate reduction (Figure 4).

For the reduction of metal ions, bacteria and fungi require a relatively extended in-
cubation period compared to water-soluble phytochemicals that do it immediately in a
much lesser time. Moreover, plants are considered better candidates for NPs synthesis as
compared to microbes such as fungi and bacteria because, in case of plants, the intricate
process of maintaining microbial cultures is eliminated. Another striking feature of bio-
logical synthesized NPs is their biocompatible nature. In contrast, the chemical route uses
toxic reducing agents, thus limiting their biomedical potentials, and posing a threat to the
ecosystem. Biological approach resolves this issue by using safe reducing agents and could
be used in cancer therapeutics [44,45].
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4. NPs for Cancer Therapy

At present, there are several treatment approaches are available for cancer, including
radiation therapy, chemotherapy, immunotherapy, photodynamic therapy, cancer vaccina-
tions, stem cell therapy and surgery, but these treatment options cause severe side effects
and have pharmacokinetics issues [46,47]. NPs are progressing as an attractive tool of
research to overcome these challenges [48]. NPs exhibit large surface to volume ratio,
which is responsible for their interaction with the biological system because at the cell
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level, the atoms are freely available to commence various reactions [49,50]. These unique
morphologies of NPs effect their insertion or entry into the cells. The charge present on the
surface of NPs affects their circulation time in the blood stream and their rate of uptake
and translocation. Cationic NPs apparently damage plasma-membrane integrity, hampers
organelles architecture, and imbalance the normal cellular function compared to anionic
NPs [51]. Hence, in this way, cationic NPs often show a higher rate of non-specific uptake
as compared to neutral and negatively charged NPs. However, the neutral and negatively
charged NPs exhibit shorter blood circulation time, which reduces their bioavailability [50].
It has been reported previously that positive groups like primary amine present at the
surface of polystyrene microparticles helped in faster internalization in cells as compared
to the microparticles, which contained hydroxyl, sulfate or carboxyl as surface groups [52].
Additionally, mesoporous silica NPs containing amine groups were used earlier in in vitro
and in vivo studies as gene delivery tools and exhibited improved internalization owing to
the positive groups on their surface [53].

NPs are attracting significant interest as carriers for diagnostic, hydrophobic medicine,
hyperthermia, therapeutics and especially in delivery of antineoplastic drugs/agents to
the cancerous tissues, where the delivered NPs can penetrate deep and deliver drug to
a specific targeted site [54]. In cancerous cells, NPs have been reported to increase the
intracellular concentration of drugs via either active targeting or passive targeting by
minimizing toxicity to the normal cells [55]. Moreover, as a targeted drug delivery system,
NPs have been developed as temperature- or pH-sensitive carriers. As a temperature-
sensitive drug delivery system, these NPs can deliver and release drugs in the tumor
area, by undergoing local changes in temperature via providing ultrasound waves or
magnetic fields. The pH-sensitive system can carry and release drugs efficiently in the
acidic environment of the cancerous cells [56]. These NPs can be further modified with
specific targeting moieties, such as antibody fragments, antibodies, specific molecules,
RNA aptamers and small peptides, which further enhance their ability to selectively bind
to cancerous cells and tissues [57].

Angiogenesis (formation of new blood vessels) plays a key role in progression of a
tumor towards metastasis. Cancer cells display abnormal membrane structure because of
enhanced blood vasculature due to upregulated expression of angiogenic factors [58,59].
This dysregulated membrane architecture, can be of great interest to deliver anti-angiogenic
nano-based targets into the tumor microenvironment to inhibit excess production of an-
giogenic stimulators [60]. Owing to effectiveness of this therapy, several studies have
been reported to block signaling of VEGF, PDGF, EDGR, angiopoietin- key contributors of
neovascularization [61]. Nano anti-angiogenic therapy can be a good delivery option for
drugs that have a short half-life, poor oral availability, and distribution in tumor area [59].
Depending on their sizes, NPs can easily penetrate the tumor microenvironment and can
efficiently deliver antiangiogenic drugs. Through enhanced permeability and retention
effect (EPR), the NPs with optimum size can intrinsically approach the metastasized tumors
and can efficiently release loaded drugs as shown in Figure 5 [60].
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5. The Fate of Cancer Cells Exposed to NPs

Metallic NPs offer more cytotoxicity to cancerous cell lines as compared to normal
cells [62,63]. Various mechanisms have been proposed to explain the cytotoxicity mech-
anism of metallic NPs such as generation of reactive oxygen species (ROS), activation of
caspase-3, permeabilization of mitochondrial outer membrane, and specific DNA cleavage,
all of which lead to apoptotic, autophagic and necrotic death of the cancer cell [64]. Figure 6
demonstrates an overview of the proposed cytotoxicity mechanism of metallic NPs against
cancerous cells.

NPs of different sizes (either small or large) follow different mechanisms to enter
the cells. Smaller NPs get into the cells via receptor-mediated uptake by developing
interactions with the caveolin receptor present on the cell membrane. Larger NPs tend
to enter the cells via clathrin-mediated endocytosis. Once they make entry to the cells
NPs take different paths within the cell to perform their directed function, either they
directly interact with the proteins in cytosol, or they undergo some surface modifications
in the lysosome–endosome complex before release into the cytosol [64]. Inside the cell, NPs
trigger a cascade of ROS and start releasing metal ions, which tend to bind with the SH
groups of proteins and results in breakage of its S–S bridges. In this way, the physiology
of the cell is affected, resulting in activation of several signaling pathways that leads to
programmed cell death [65].

Apoptosis is often triggered either by intrinsic or by extrinsic pathways. Nanoma-
terials can activate apoptotic signaling by both intrinsic and extrinsic pathways. In case
of apoptosis triggered via intrinsic pathway, ROS generation results in mitochondrial
membrane depolarization, which leads to release of cytochrome c into the cytosol. This
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cytochrome c then leads to activation of caspase-9/3 apoptotic cascade by triggering
pro-apoptotic proteases in apoptosis initiated by extrinsic pathway [66].
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Autophagy is also a form of programmed cell death and is well controlled by autophagy-
related genes (ATGs). Autophagy is stimulated by extracellular or intracellular stress,
that is generally cytoprotective in nature and leads to cell survival, whereas an over-
stimulation of autophagy causes cytotoxicity and may lead to autophagic cell death [66].
Nanomaterials can initiate autophagy through various pathways such as, aggregation of
impaired proteins, which can cause organelle stress, oxidative stress, variation in gene
expression, and inhibition of kinase-mediated regulatory pathways [67]. The elevated
level of autophagic vacuoles in the cells as a response to nanomaterials could be a type
of adaptive cellular response. Previous studies showed that nanomaterials can generate
elevated levels of autophagic vacuoles as noticed in in vitro studies conducted on various
animals and human cells and in in vivo models [68]. Before entering the cytoplasm, silver
NPs undergo degradation within a double-membraned autophagosome compartment [69].

Programmed necrosis is also termed as programmed cell death, which involves
binding of death ligands to their receptors. The ligation to death receptor leads to a complex
formation, and this pro-necrotic complex further binds with metabolic enzymes and results
in increased ROS production, which activates necrosis. Nanomaterials can induce ROS-
mediated necrosis directly by affecting mitochondria or indirectly by elevating NADPH
oxidase and cellular calcium levels, to generate more ROS and undergo programmed
necrosis [65].



Cancers 2021, 13, 2818 9 of 22

Subcellular location of NPs also plays an important role in death of cancer cells. NPs
took 30–60 min for their release from the endosome, while NPs that are aggregated in
multi-vesicular bodies are removed within a period of 6 days. Similarly, Golgi apparatuses
also extruded the particles assembled in the microtubule [70].

6. Anti-Cancer Activities of Biosynthesized Metallic NPs

There are various advantages of using plants for NPs synthesis, because they are safe
to handle, are easily available and contain a vast variety of biomolecules or metabolites
that help in stabilization and reduction of NPs [71].

In modern medicine, plant-based nanotherapeutics drugs have become a potential
weapon in cancer therapeutics. In recent years, optimal methods for metallic NPs prepara-
tions with anti-cancer properties are widely being examined both in vivo and in vitro [72].
Plant extract and bioactive compounds of several medicinal plants have been reported for
their potential use as anticancer agents [73]. The mechanism of action of against cancer
have been extensively studied by researchers and found that the functional groups capped
on the NPs are involved directly or indirectly in improving the anticancer activity or reduc-
ing the toxicity or improving the bioavailability and uptake [74]. The anticancer properties
of different NPs also exhibit variations because of differences in phytocontent of biological
material used for their synthesis [75]. Figure 7 presents a schematic representation of
synthesis of plant-based metallic NPs and their application as anti-cancer therapeutics.
Here, it is worth mentioning that in order to keep this review article less verbose we have
only discussed plant based green synthesis of silver (Ag), gold (Au), zinc (Zn) and copper
(Co) metals and their inhibitory activities against several cancerous cell lines.
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6.1. Applications of Biosynthesized Silver NPs (AgNPs) as Anti-Cancer Therapeutics

Among all the noble metals, silver has received major attention from researchers due
to its unique surface chemistry and morphologies [76].
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According to the literature, biosynthesized AgNPs have displayed significant an-
ticancer potential against the cervical cancer cell lines HeLa and Siha. Hexagonal and
triangular shaped AgNPs sizes ranging from 2–18 nm have shown notable inhibitory ac-
tions against Siha cancer cell line with an ≤4.25 µg/mL IC50 value [77]. In contrast, growth
of the HeLa cancer cell lines was successfully inhibited by AgNPs, which are spherical in
shape with sizes ranging from 5–120 nm. NPs preparation from different plants exhibited
a diverse range of IC50 values that depended on the method used for AgNPs synthesis
and the type of plant extracts used [78–86]. The spherically shaped bio-synthesized AgNPs
with sizes ranged between 7.39–80 nm have displayed inhibitory activities against colon
cancer cell lines HCT 15, HT29 cells and HCT-116, and their IC50 values ranged between
5.5–100 µg/mL [87–91]. Inhibition by biosynthesized AgNPs have been successfully car-
ried out against lung cancer cell line A549. The prepared NPs were spherical in shape
with sizes ranging between 13–136 nm and showed a dose-dependent inhibitory activ-
ity with different values of IC50 and LD50, as mentioned in Table 1 [77,92–99]. Spherical
biosynthesized AgNPs with sizes ranged between 5–50 nm inhibited the human gastric
adenocarcinoma (AGS) cell line with 21.05 µg/mL IC50 value [100].

Table 1. List of studies exhibiting biosynthesized silver NPs and their anticancer activity.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time Cancer Type/Cell Line IC50 Value Ref.

Moringa olifera Stem bark Spherical/38–40 24 h Cervical Cancer/HeLa Dose dependent [78]
Sargassum vulgare Whole plant Spherical/10 3 h Cervical Cancer/HeLa Dose dependent [79]

Melia azedarach Leaf Spherical,
cubical/78 10 min Cervical Cancer/HeLa 300µg/mL (LD50) [80]

Podophyllum
hexandrum Leaf Spherical/14 30–150 min Cervical Cancer/HeLa 20 µg/mL [81]

Syzygium cumini Leaf Spherical/<40 6 h Cervical Cancer/HeLa Dose dependent [82]

Azadiracht a indica Leaf Hexagonal,
triangular/2–18 - Cervical cancer/Siha ≤4.25 µg/mL [77]

Acorous calamus Rhizome Spherical/31.86 20 h Cervical cancer/Siha Dose dependent [83]
Calotropis gigantea Latex Spherical/5–30 24 h Cervical cancer/Siha Dose dependent [84]

Heliotropium indicum Leaf Spherical/80–120 2 h Cervical cancer/Siha 20 µg/mL [85]
Cymodocea serrulata Whole plant Spherical/17–29 2 h Cervical cancer/Siha 107.7 (GI50) [86]
Ulva lactuca (algae) Whole plant Spherical/56 10 min Colon Cancer/HT29 49 µg/mL [87]

Commelina nudiflora L. Whole plant Spherical,
triangular/24–80 24 h Colon Cancer/HCT-116 100 µg/mL [88]

Citrullus colocynthis Leaf Spherical/13.37 24 h Colon Cancer/HCT-116 >30 µg/mL [89]
Citrullus colocynthis Seeds Spherical/16.57 24 h Colon Cancer/HCT-116 >30 µg/mL [89]
Citrullus colocynthis Fruit Spherical/19.26 24 h Colon Cancer/HCT-116 21.2 µg/mL [89]

Vitex negundo Leaf Spherical/22 4 h Colon Cancer/HCT 15 20 µg/mL [90]

Rosa indica Petal Spherical/23.52–
60.83 1 h Colon Cancer/HCT 15 30 µg/mL [91]

Artemisia princeps Leaf Spherical/20 15 min Lung cancer/A549 Time dependent [92]
Gossypium hirsutum Leaf Spherical/13–40 3 min Lung cancer/A549 40 µg/mL [93]

Origanum vulgare Leaf Spherical/136 ±
10.09 Temp. dependent Lung cancer/A549 100 µg/mL (LD50) [94]

Rosa damascene Petal Spherical/15–27 0–25 min Lung cancer/A549 80 µg/mL [95]
Syzygium aromaticum Fruit Spherical/5–20 20 min Lung cancer/A549 70 µg/mL [96]

Acorous calamus Rhizome Spherical/31.86 20 h Lung cancer/A549 Dose dependent [77]
Cymodocea serrulate Leaf Spherical/29.28 1 h Lung cancer/A549 100 µg/mL (LD50) [97]

Olax scandens Leaf Spherical/30–60 2 h Lung cancer/A549 Dose dependent [98]
Scoparia dulcis Leaf Spherical/15–25 1 h Lung cancer/A549 Dose dependent [99]

Artemisia marschalliana Shoots Spherical/5–50 5 min Gastric cancer/AGS 21.05 µg/mL [100]

Taxus yunnanensis Callus Spherical/6.4–27.2 10 min Intestinal
cancer/SMMC-7721 27.75 µg/mL [101]

Cucurbita maxima Petal Spherical,
cuboidal/76 5–60 min Epidermoid

cancer/A431 82.39 µg/mL [102]

Acorus calamus Rhizome Spherical,
cuboidal/59 5–60 min Epidermoid

cancer/A431 78.58 µg/mL [102]

Alternanthera sessilis Shoots/Aerial
parts Spherical/10–30 6 h Breast cancer/MCF-7 3.04 µg/mL [103]

Andrographis echioides Leaf Pentagonal, cubic,
hexagonal/68.06 12 h Breast cancer/MCF-7 31.5 µg/mL [104]

Butea monosperma Leaf Spherical/20–80 2 h Breast cancer/MCF-7 Dose dependent [105]



Cancers 2021, 13, 2818 11 of 22

Table 1. Cont.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time Cancer Type/Cell Line IC50 Value Ref.

Citrullus colocynthis Roots Spherical/7.39 24 h Breast cancer/MCF-7 2.4 µg/mL [89]
Citrullus colocynthis Fruit Spherical/19.26 24 h Breast cancer/MCF-7 >30 µg/mL [89]
Citrullus colocynthis Leaf Spherical/13.37 24 h Breast cancer/MCF-7 >30 µg/mL [89]
Citrullus colocynthis Seeds Spherical/16.57 24 h Breast cancer/MCF-7 >30 µg/mL [89]

Erythrina indica Root Spherical/20–118 Overnight Breast cancer/MCF-7 - [98]
Olax scandens Leaf Spherical/30–60 2 h Breast cancer/MCF-7 Dose dependent [106]
Piper longum Fruit Spherical/46 24 h Breast cancer/MCF-7 67 µg/mL [107]
Rheum emodi Root Spherical/27.5 24 h Breast cancer/MCF-7 Dose dependent [108]

Syzygium cumini Flower Spherical/40 6 h Breast cancer/MCF-7 Dose dependent [82]
Taxus baccata Needles Spherical/56 10 min Breast cancer/MCF-7 37 µg/mL [109]

Syzygium aromaticum Fruit Spherical/5–20 20 min Breast cancer/MCF-7 70 µg/mL [96]
Ulva lactuca Whole plant Spherical/56 10 min Breast cancer/MCF-7 37 µg/mL [109]

Achillea biebersteinii Flower Spherical,
pentagonal/12 3 h Breast cancer/MCF-7 20 µg/mL [110]

Azadirachta indica Leaf Spherical/<40 6 h Breast cancer/MCF-7 Dose dependent [82]
Melia dubia Leaf Irregular/7.3 15 min Breast cancer/MCF-7 31.2 µg/mL [111]

Sesbania grandiflora Leaf Spherical/22 24 h Breast cancer/MCF-7 20 µg/mL [112]

Citrullus colocynthi s Callus Spherical/31 24 h Laryngeal
Cancer/Hep-2 3.42 µg/mL [113]

Suaeda monoica Leaf Spherical/31 5 h Laryngeal
Cancer/Hep-2

500 nM, AgNPs
conc. [114]

Ulva lactuca (algae) Whole plant Spherical/56 10 min Laryngeal
Cancer/Hep-2 12.5 µg/mL [109]

Rubus glaucus Benth Root Quasi-
spherical/12–50 48 h Hepatic cancer/Hep-G2 Dose dependent [115]

Citrullus colocynthis Root Spherical/7.39 24 h Hepatic cancer/Hep-G2 17.2 µg/mL [116]
Citrullus colocynthis Fruit Spherical/19.26 24 h Hepatic cancer/Hep-G2 22.4 µg/mL [116]
Citrullus colocynthis Leaf Spherical/13.37 24 h Hepatic cancer/Hep-G2 10.02 µg/mL [116]

Sargassum vulgare Whole plant Spherical/10 3 h Leukemia
cancer/HL-60 Dose dependent [79]

Dimocarpus longan Peel Spherical/8–22 2 h Leukemia
cancer/H1299 5.33 µg/mL [117]

Azadirachta indica Leaf Spherical/< 40 6 h Kidney cancer/Hek-293 Dose dependent [82]

Inhibition by spherical biosynthesized AgNPs with sizes ranged between 6.4–27.2 nm
was observed against the intestinal cancer cell line SMMC-7721 with above 27.75 µg/mL
IC50 value [101]. Bio-extract-derived AgNPs, which are spherical and cuboidal in shape
with sizes ranged between 59–94 nm, showed inhibitory actions against epidermoid carci-
noma cell line A431, where IC50 values ranged between 78.58–83.57 µg/mL [102]. Many
biosynthesized AgNPs were reported that inhibited the growth of the MCF-7 breast cancer
cell lines or showed toxicity against them. The shapes of AgNPs reported in these anticancer
studies varied such as cuboidal, hexagonal, spherical, and pentagonal with the sizes rang-
ing between 5–80 nm and their IC50 values ranging between 3.04–250 µg/mL. Additionally,
some studies outcomes suggested that the IC50 values of biosynthesized AgNPs varied in a
dose dependent fashion and depended on the dose of the extract used [82,89,96,98,103–112].
Spherical AgNPs that ranged from 31–56 nm in size repressed the laryngeal carcinoma
cell line Hep-2, with IC50 values ranged between 3.42–12.5 µg/mL [109,113,114]. The
hepatic cancer cell lines Hep-G2 were inhibited by spherically shaped AgNPs [115,116].
Inhibition by biosynthesized spherical AgNPs that were 8–22 nm in sizes was observed
against leukemia cell lines HL-60 and H1299 with 5.33 µg/mL IC50 value, and the inhibition
depended on the dose of extract used for preparation [79,117]. The kidney cancer cell line
Hek-293 was inhibited by 40 nm spherical AgNPs in a dose-dependent fashion [82]. Many
studies have been conducted for biosynthesis of AgNPs and to ascertain their impact on
various cancerous cell lines. AgNPs are known to possess anti-angiogenic properties. In
one of the studies, performed on bovine retinal epithelial cells (BRECs), AgNPs of 40 nm
size were shown to successfully reduce VEGF-induced angiogenesis by inhibiting the
PI3K/Akt signaling pathway [3].

The available data related to biosynthesized AgNPs against cervical cancer, colon
cancer, lung cancer, gastric carcinoma, intestinal cancer, epidermoid carcinoma, breast
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cancer, hepatic cancer, laryngeal carcinoma, leukemia, and kidney cancer are enumerated
in Table 1.

6.2. Applications of Biosynthesized Gold NPs (AuNPs) as Anti-Cancer Therapeutics

Besides silver, gold is also considered a good candidate for NPs synthesis, showing
high dispersion owing to their small size and large surface area. Moreover, due to its
resistance to oxidation by moisture, air and acids and biocompatible nature, it has gained
attention in the biomedical field, particularly in areas of cell targeting, tumors detection,
drug-delivery and cancer therapy [118]. It was reported recently that AuNPs are more
effective in drug delivery due to their self-assembled natural [119] and for hyperthermia
because of their optical excitation properties [120].

A series of in vitro studies has been conducted on various cancer cell lines, to evaluate
the anticancer potential of biosynthesized AuNPs. Biosynthesized AuNPs, which are
spherical in shape with sizes ranged between 12–30 nm, showed inhibitory actions against
MCF-7 breast cancer cell lines and their IC50 values depended on the method used for
AuNPs synthesis and the type of plant extracts used for their preparation [121,122]. Spheri-
cal and triangular shaped AuNPs of sizes ranged between 13–28 nm showed cytotoxicity
against MCF-7 breast cancer cells with a 257.8 µg/mL IC50 value [123].

In other studies, AuNPs which were spherical in shape with sizes ranged between
22–30 nm showed cytotoxicity against MDA- MB-231 breast cancer cell lines by activating
apoptotic cell death pathways [124]. Bio-extract derived AuNPs with 14.6 nm size exhibited
inhibitory actions against breast cancer cells through DNA damage and necrosis [125].
Spherically shaped biosynthesized AuNPs with average sizes of 95 nm repressed the
growth of breast cancer cells MCF-7 by regulating the expression of anti-apoptotic (p53)
and pro (Bcl-2) proteins with a 4.76 µg/mL IC50 value [126]. In another study, inhibition
of breast cancer cell line HBL-100 was shown by spherically shaped AuNPs [127]. In-
hibition by biosynthesized AuNPs that exhibited spherical and aggregated morphology
was observed against A549 lung cancer cell lines. The size of these AuNPs ranged be-
tween 80–120 nm and offered cytotoxicity to cancerous cell lines by up-regulating many
proinflammatory genes such as tumor necrotic factor-alpha (TNF-α) and interleukins IL-10
and IL-6 [128]. Inhibition of A549 lung cancer cell lines was shown by AuNPs, which are
spherical in shape with 14 µg/mL IC50 value [129].

Biosynthesized AuNPs, which were hexagonal, triangular, and quasi-spherical in
shape with sizes ranged between 6.03–150 nm repressed the A549 Lung cancer cell lines by
offering low toxicity [130,131]. Pentagonal and triangular shaped biosynthesized AuNPs
with sizes ranged between 10–50 nm showed substantial anticancer potential against
cervical cancer cell lines HeLa by inhibiting their proliferation with an IC50 value of
100 µg/mL [132]. Other studies against cervical cancer using HeLa cell lines demonstrated
the inhibitory activities of biosynthesized AuNPs derived from various plant extracts, their
sizes and IC50 values varied and were dependent upon the type and dose of respective
plant extracts used [133–136]. Moreover, cytotoxicity testing of biosynthesized AuNPs has
been conducted on various other cell lines such as kidney [122,137,138], leukemia [139],
and liver [140], as mentioned in Table 2.

Table 2. List of studies exhibiting biosynthesized gold NPs and their anticancer activity.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time Cancer Type/Cell Line

Used IC50 Value Ref.

Azadirachta indica Leaf Spherical, triangular,
hexagonal 48 h Cervical cancer/HeLa No toxicity [133]

Genipa americana L. Fruit Spherical/30.4 ± 14.9 48 h Cervical cancer/HeLa No toxicity [134]
Dracocephalum kotschyi Leaf Spherical/11 24 h, 48 h, 72 h Cervical cancer/HeLa 152.16 µg/mL [135]

Zataria multiflora Leaf Pentagon,
triangular/10–50 48 h Cervical cancer/HeLa 100 µg/m [132]

Areca catechu Nut Spherical/22.2 24 h Cervical cancer/HeLa 25.17 µg/mL [136]
Mimosa pudica Leaf Spherical/12 24 h, 48 h Breast cancer/MCF-7 6 µg/mL [121]
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Table 2. Cont.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time Cancer Type/Cell Line

Used IC50 Value Ref.

Musa paradisiaca
(banana) Stem Spherical/30 24 h Breast cancer/MCF-7 Low toxicity [122]

Antigonon letopus
Hook. and Arn. Aerial part Spherical,

triangular/13–28 48 h Breast cancer/MCF-7 257.8 µg/mL [123]

Corallina officinalis Aqueous Extract Spherical/14.6 NA Breast Cancer/MCF-7 NA [125]
Phoenix dactylifera flower Near spherical/95 24 h Breast Cancer/MCF-7 4.76 µg/mL [126]

Vites vinefera Aqueous Extract Spherical/20–45 24 h Breast Cancer/HBL-
100 NA [127]

Acalypha indica Leaf Spherical/20–30 30 min Breast Cancer/MDA-
MB-231 NA [124]

Alternanthera
bettzickiana Leaf Spherical and

aggregated/80–120 10 min Lung Cancer/A549 NA [128]

Sesuvium
portulacastrum Leaf Mostly

Spherical/35–40 0–8 h Lung Cancer/A549 14 µg/mL [129]

Star anise (Illicium
verum) Pod Hexagonal,

triangular/20–150 48 h Lung cancer/A549 Low toxicity [130]

Star anise (Illicium
verum) Pod Hexagonal,

triangular/20–50 48 h Lung cancer/A549 Low toxicity at
200 nM [130]

Musa paradisiaca
(banana) Stem Spherical/30 24 h Kidney

cancer/HEK293 >80 nM [122]

Ficus religiosa Bark Spherical/20–30 24 h Kidney cancer/HEK
293 No toxicity [138]

Hibiscus sabdariffa Leaf, stem Near spherical/10–60 48 h Kidney cancer/HEK
293 2 ng/mL [137]

Couroupita guianensis Flower
Polydispersed,

spherical, triangular,
tetragonal/7–48

5 min Leukaemia/HL-60 NA [139]

Cajanus cajan Seed coat Spherical/9–41 24 h Liver cancer/HepG2 6 µg/mL [140]

Available data regarding anticancer activities of biosynthesized AuNPs against the
cell lines mentioned above for cervical cancer, breast cancer, lung cancer, kidney cancer,
leukemia and liver cancer are summarized in Table 2 with their citations.

6.3. Applications of Biosynthesized Zinc and Zinc Oxide NPs (Zn/ZnO-NPs) as
Anti-Cancer Therapeutics

Biological synthesis of zinc and zinc oxide NPs are of great interest in recent years for
the fabrication of eco-friendly NPs because of presence of phytochemical components like
flavonoids, phenolics or alkaloids [141]. The specific physicochemical properties of ZnO
NPs helps in their cellular uptake and their innate toxicity against cancerous cells can induce
intracellular ROS generation, which ultimately leads to death via an apoptotic pathway,
these characteristics make them an attractive candidate for biomedical applications [142].

Different parts of the plants have been extensively studied for the biosynthesis of ZnO
NPs and their anticancer effects have been investigated in vitro using various cancerous cell
lines. Spherical and hexagonal shaped bio-extract-derived Zn NPs have shown cytotoxicity
in lung cancer cell lines A549 and Calu-6. These NPs exhibited various sizes and IC50
values depending on the types of plant extracts used for their preparation and their
doses used [142–146]. Spherical and hexagonal biosynthesized ZnNPs with sizes ranging
between 22.5–50 nm, prepared from different plant extracts, inhibited the WEHI-3 leukemia
cancer cell lines, with IC50 values ranging between 2.25–12.4 µg/mL [147,148]. Spherical
biosynthesized ZnNPs of cell lines and their IC50 values varied in a dose dependent
manner and dependent upon the type of plant extracts used [106,149–155]. Biosynthesized
hexagonal ZnNPs with sizes 10± 1.5 nm showed inhibitory actions against CaOV-3 ovarian
cancer cell lines with IC50 value of 10.8 ± 0.3 µg/mL [156]. Inhibition by biosynthesized
spherical ZnNPs that were 47 nm in sizes was observed against colon cancer cell lines
HT-29 with 9.5 µg/mL IC50 value, respectively [157]. Similarly, biosynthesized ZnO-NPs
showed potential inhibitory activities against epidermoid carcinoma cell lines A43 with
an IC50 value of 16.5 ± 1.6 µg/mL [158], and against liver cancer cell lines Hep-G2 with
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an IC50 value of 14.1 ± 0.7 µg/mL [159]. Table 3 explains anticancer activities of ZnO NPs
against lung cancer, breast cancer, ovarian cancer, colon cancer, epidermoid carcinoma, and
liver cancer cell lines.

Table 3. List of studies exhibiting biosynthesized zinc NPs and their anticancer activity.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time Cancer Type/Cell

Line IC50 Value Ref.

Abutilon indicum Leaf Spherical/35.2 ± 2.3 2–3 h Lung cancer/Calu-6 9.34 ± 0.4 µg/mL [143]
Calotropis gigantea Leaf Spherical/30–35 3 h Lung cancer/Calu-6 11.6 ± 0.9 µg/mL [144]

Laurus nobilis Leaf Hexagonal/47.27 4 h Lung cancer/A549 11.3 ± 0.9 µg/mL [142]
Cannabis sativa Leaf Hexagonal/40 ± 1.5 3 h Lung cancer/A549 18.3 ± 1.3 µg/mL [145]

Calotropis procera Leaf Spherical/5–40 4 h Lung cancer/A549 15.2 ± 1.6 µg/mL [146]
Withania Somnifera Leaf Hexagonal/51.34 2–3 h Leukemia/WEHI-3 12.4 ± 1.6 µg/mL [147]
Sargassum muticum Leaf Spherical/22.5 ± 3.5 3–4 h Leukemia/WEHI-3 2.25 ± 0.4 µg/mL [148]

Tabernaemontana
divaricate Leaf Spherical/36 ± 5 3 h Breast cancer/MCF-7 30.6 µg/mL [149]

Tabernaemontana
divaricate Leaf Spherical/36 ± 5 4 h Breast cancer/MCF-7 30.6 µg/mL [150]

Tabernaemontana Leaf Spherical/36 ± 5 3–4 h Breast cancer/MCF-7 30 µg/mL [151]
Borassus flabellifer Leaf Spherical/55 3 h Breast cancer/MCF-7 0.125 µg/mL [152]

Embelia ribes Root Spherical/130–150 2 h Breast cancer/MCF-7 9.62 ± 1.9 µg/mL [153]
Saccharum officinarum Juice Spherical/19 ± 2.3 4 h Breast cancer/MCF-7 16.7 ± 0.5 µg/mL [106]

Anabaena variabilis Phyco-bili
pigment Spherical/42 ± 3 5–6 h Breast cancer/MCF-7 16.5 1.6 µg/mL [154]

Atropa belladonna Leaf Hexagonal/34 ± 3.2 2 h Breast cancer/MCF-7 12 ±0.9 µg/mL [160]

6.4. Applications of Biosynthesized Copper/Copper Oxide NPs (Cu/CuO-NPs) as
Anti-Cancer Therapeutics

Copper NPs have also gained significant attention as cytotoxic nano-entities because of
their low cost, easy availability, and great similarity in properties with the noble metals [161].
Copper and copper oxide NPs are extensively used as a tool for cancer imaging owing to
their highly effective light-to-heat transformation property under influence of near-infrared
laser irradiation [162].

Different biologically synthesized Cu/CuO NP have been shown to be cytotoxic
against multiple cancerous cell lines. Plant-mediated biosynthesized CuO NPs, which
were spherical and hexagonal in shape with sizes of 26.6 nm exhibited inhibitory actions
against cervical cancer cell lines HeLa by initiating ROS mediated apoptotic pathways [163].
Similarly, spherically shaped CuO NPs of 12 nm sizes, prepared from aqueous leaf extracts
of different plants showed cytotoxicity against cervical cancer cell lines HeLa, breast cancer
cell lines MCF-7 and lung cancer cell lines A549, and their IC50 values varied depending on
the types of plants used [164]. Inhibition of MCF-7 breast cancer cell lines were carried out
using biosynthesized spherically shaped CuO NPs of 26–30 nm sizes with a 56.16 µg/mL
IC50 value [165].

In another study, aqueous leave extract derived CuO NPs, which are spherical in
shape with sizes ranging between 20–50 nm, showed the highest anticancer activity against
AMJ-13 breast cancer cell lines with an IC50 value of 1.47 µg/mL and against SKOV-
3 ovarian cancer cell lines with a 2.27 µg/mL IC50 value [166]. Biosynthesized CuO
NPs with 577 nm sizes displayed cytotoxicity against lung cancer cell lines A549 through
apoptosis initiated via nuclear fragmentation and showed an IC50 value of 200 µg/mL [167].
Similarly, spherically shaped CuO NPs of different sizes were tested against cervical cancer
cell lines HeLa and lung cancer cell lines A549 [168]. Cytotoxicity of spherically shaped
biosynthesized CuO NPs with about 4.8 nm sizes were tested against prostate cancer cell
lines PC-3 [169]. Table 4 shows anticancer activities of Cu/CuO NPs against cervical cancer,
breast cancer, ovarian cancer, lung cancer, and prostate cancer cell lines.
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Table 4. List of studies exhibiting biosynthesized copper/copper oxide NPs and their anticancer activity.

Plant Plant Part Used Morphology/Size
(nm) Exposure Time CancerType/Cell

Line IC50 Value Ref.

Azadirachta indica Leaf Spherical/12 1 h Cervical
Cancer/HeLa 0.89 µg/mL [164]

Phaseolus vulgaris Seed Spherical/26.6 7–8 h Cervical
Cancer/HeLa NA [163]

Calotropis procera L. Latex Spherical/5–30 24 h Cervical
Cancer/HeLa No toxicity [168]

Azadirachta indica Leaf Spherical/12 1 h Breast cancer/MCF-7 27.4, 45.3,
37µg/mL [164]

Olea europaea - Spherical/20–50 24 h Breast cancer/AMJ-13 1.47 µg/mL [166]
Acalypha indica Leaf Spherical/26–30 48 h Breast cancer/MCF-7 56.16 µg/mL [165]
Ficus religiosa Leaf Spherical/577 24 h Lung cancer/A549 200 µg/mL [167]

Calotropis procera L. Latex Spherical/55 24 h Lung cancer/A549 No toxicity [168]
Azadirachta indica Leaf Spherical//12 1 h Lung cancer/A549 26.7, 21.6,µg/mL [164]

Olea europaea - Spherical/20–50 24 h Ovarian
cancer/SKOV-3 2.27 µg/mL [166]

Broccoli Whole plant Spherical/∼4.8 2 h prostate cancer/PC-3 No toxicity [169]

7. Nano-Toxicity, the Concern/Bottleneck

Despite their promising potential in biomedical field. there are certain adverse health
effects linked with their use [170]. For instance, agglomeration is one of the leading
problems in translating this therapy into medicines as it poses toxicity in organ systems.
Even if not agglomerated, it causes cellular injuries [171]. Toxicity offered by NPs is
generally attributed to their morphology and surface reactivity. The toxicity associated with
NPs can be controlled by including free groups at their surfaces such as –COOH groups,
which are considered less toxic than –OH group and –NH2 groups [172]. Toxicity can also
be minimized by controlling the size (30–100 nm) of metal NPs [173]. For specific and
targeted use of nanomaterials, it is essential to understand the possible interactions between
biological systems and the NPs, in this way the aggressive reactions can be minimized. To
reduce toxicity, biological synthesis of NPs is preferred due to occurrence of biocompatible
phytoconstituents [174,175]. Some studies also indicated that polyphenol compounds are
nontoxic to healthy cells while exhibiting toxicity against cancerous cells [176].

8. Conclusions and Future Prospects

Despite all the recent advancements in cancer diagnosis and treatment, cancer remains
one of the main causes of death globally. To date, no efficient treatment has been discovered
to treat cancer, and all of the available anticancer drugs hold potential side effects. Thus, in
a quest to find better diagnostics and treatment with maximal efficiency, specificity and
lesser toxicity, scientists are looking to develop novel approaches. Recently, biological, or
green, synthesis of NPs has gained significant attention in the biomedical field. Green
synthesis is cost effective, less toxic and eco-friendly as compared to other methods of NPs
formulation. The higher biocompatibility, lesser agglomeration rate, maximal clearance and
lesser toxicity are the main aspects to be considered, this review article gives a compendious
idea about the green synthesis of metallic NPs (Ag, Au, Zn/ZnO and Cu/CuO) and their
mechanism of action and explored their therapeutic potential in vitro against various
cancer cell lines. The effect of NPs varied from one type of cancer to the other, indicating
that besides the specific properties of NPs, the cellular response is also important. ROS is
an initiator molecule in autophagic, apoptotic and necroptotic death pathways and hence,
it can be considered as the precursor component of cell death.

Metallic NPs showed remarkable promises in case of nano-based medical treatments,
but their 3D tumor model studies and clinical trials remain unexplored. Therefore, their
clinical trials are compulsory for leading the future direction regarding their applications.
Currently, analysis into their dose, route of administration and biodegradability are the
main hurdles that need to be tackled in the clinical trials.
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