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Effect of Kinetic Degrees of 
Freedom on Multi-Finger Synergies 
and Task Performance during Force 
Production and Release Tasks
Kitae Kim1, Dayuan Xu1 & Jaebum Park1,2

Complex structures present in a human body has relatively large degrees-of-freedom (DOFs) as 
compared to the requirement of a particular task. This phenomenon called motor redundancy initially 
deemed as a computational problem rather can be understood as having the flexibility to perform the 
certain task successfully. Hence, the purpose of our study was to examine the positive impact of extra 
DOFs (redundant DOFs) during force production tasks. For this purpose, an experimental setup was 
designed to simulate archery-like shooting, and purposeful organization of a redundant set of finger 
forces determined the stability of important performance variables as well as accurate and precise 
performance. DOFs were adjusted by changing the number of fingers explicitly involved in the task. The 
concept of motor synergy and computational framework of uncontrolled manifold (UCM) approach was 
used to quantify stability indices during finger force production. As a result, accuracy and precision of 
the task improved with an increase in DOFs. Also, the stability indices of net finger forces and moment 
increased with active DOFs of fingers. We concluded that the controller actively utilizes extra DOFs to 
increase the stability of the performance, which is associated with the improved accuracy and precision 
of the task.

The human body is a complex system of redundant forms in which the degrees-of-freedom (DOFs) of elements 
is generally larger than the DOFs (i.e., dimensionality) of task space, and this phenomenon has been postulated 
as the motor redundancy or the DOF problem1,2. The investigation on the strategies to govern a redundant set of 
elements in humans has been one of the most challenging issues, and no consensus has been made on the issue 
of the controller’s strategy to solve the redundancy. From the engineering or mathematical point of view, the 
redundancy has been considered a negative aspect of the system due to a computational difficulty on the control 
system. Therefore, several studies have been conducted to formulate computational models that examined an 
optimum solution by means of eliminating, freezing3, or coupling a redundant set of DOFs4–6. In the optimization 
of the redundant system, the existence of variability (or inconsistent combinations of elements) could reflect an 
erroneous neural process. An alternative idea suggests that the human controller utilizes redundant DOFs pos-
itively in such a way that the elements show purposeful covariations to satisfy a particular motor task resulting 
in forming a family of solutions as to portray flexible solutions. Also, the idea assumes that the variability within 
the family of solutions may be an indicator of the control process since there are task-related rules to form the 
family of solutions7. Thus, specific performance could be executed successfully in a flexible manner while having a 
purposeful organization of elements. Indeed, experimental evidence has supported that the various combinations 
of elements equally satisfy a specific motor performance and the organization of flexible combinations of the ele-
ments depends on either mechanical necessities of the motor tasks8,9 or choice of the controller for maintaining 
the stability of performance variables9–11. Stability in traditional terms refers to the ability of the system to return 
to its original state in response to external perturbations12. In the same context, the stability in the redundant 
system of human movements describes the ability to stabilize a specific performance variable by flexible sharing 
and error compensation among elements in task-specific manners13,14.
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The system of human hands and fingers has been modeled as a serial and parallel system, and the redun-
dancy of the human hand system is observed through both kinematic and kinetic variables. The previous studies 
regarding the solutions to the kinetic redundancy of the human hand system reported that individual finger 
forces co-vary to stabilize important performance variables that produces desired net mechanical outcomes such 
as net force or net moment of force9,11,15–18. On the other hand, a recent study of finger force organization during 
pressing task quantified and compared optimal combinations and variability associated with finger forces, which 
showed that the optimal patterns of finger forces and their variance components are compatible19. During a 
multi-finger pressing task, covariation patterns for the net torque stabilization is in conflict with the covariation 
pattern for the force stabilization if only normal forces of two fingers were considered while the two finger forces 
produced opposite directional torques to each other9. However, it is theoretically possible to stabilize both net 
force and moment simultaneously with the usage of more than two fingers, and a possible range of solutions relies 
on the number of redundant fingers involved in the task. Therefore, it may be advantageous to have a redundant 
set of fingers in producing and maintaining a certain amount of the net force and torque simultaneously with a 
more flexible pattern of finger force combinations. This expectation and experimental observation are in line 
with the concept of motor abundance2,20. Hence, “Redundant” elements may not cause computational problem 
or errors of the neuronal process. Rather, the system with redundant elements could be viewed as a prerequi-
site for flexibility (or stability) upon a proper organization of finger actions. The strategies of organizing family 
of solutions for successful performance is definitely a process of neural structure in the biological system, and 
term, synergy, has been proposed to describe and quantify the process and consequence of neural activities for 
governing a redundant set of finger forces. For the quantification of synergic actions of elements, the framework 
of the uncontrolled manifold (UCM) approach has been proposed21,22. The process includes selecting two lower 
dimensional subspaces within the space of elements. The first subspace is concerned with the manifold where 
the changes in the actions of elements have no net mechanical effect, and the second subspace is the orthogonal 
space to the UCM where the actions of elements do have net mechanical effect. If most of the force variance of 
individual fingers is confined within the UCM (i.e., VUCM) and the variance observed in the orthogonal space to 
the UCM (i.e., VORT) is relatively small, we may conclude that the net force is stabilized by the covaried adjustment 
of individual finger forces.

Here, we would like to raise two follow-up questions regarding the organization of a redundant set of elements 
during multi-finger force production tasks. The first question is “How many kinetic DOFs of fingers would be best 
to stabilize net force and torque during multi-finger pressing task?” The second question is “Is the synergy beneficial 
to improve accuracy and precision of performance?” A shooting task could exemplify the topics raised by two 
questions, and the archery shooting with multiple combinations of fingers is a good candidate for motor tasks 
to examine the effect of kinetic DOFs and its further effect on the shooting performance. Apparently, successful 
shooting performance in the archery shooting depends on accurate and stable force production by multi-fingers 
during aiming, and quick release of the net finger force during force release to minimize the changes in momen-
tum23, which results in “good” shooting performance consistently. The terms, accuracy and precision, have been 
used to quantify the indices of the shooting performance23–25. The accuracy refers to the closeness of performed 
values to a required value, and the precision refers to the reproducibility of performances.

In the current study, we employed a multi-finger pressing task with a set of finger combinations (i.e., a set of 
DOFs of fingers) simulating the shooting motion of the archery. The main goal of the current study was to explore 
the effect of kinetic DOFs (i.e., number of involved fingers as force generators) on the stabilization of the total 
force (FTOT) and moment of force (MTOT, i.e., the product of finger forces and their lever arms) during stable force 
production. Further, we examined how the stability properties of multi-finger actions during a steady-state force 
production affect the shooting performance such as accuracy and precision. We tested the following hypoth-
eses: (1) the synergy indices of both total force and moment will increase with the number of fingers during a 
steady-state force production, and (2) the accuracy and precision as the indices of shooting performance will 
increase (i.e., improved accuracy and precision) with the number of fingers.

Results
The motor task in the current study imitated the finger actions of the archery in such a way that the participant 
produced a steady-state value of finger force followed by the release of the force quickly. In addition, the par-
ticipants performed the tasks with a set of finger combinations that was incorporated with the kinetic DOFs of 
actively involved fingers during the tasks. Shooting performance was quantified by the indices of accuracy and 
precision that refer to the distance to the target value and the reproducibility of repetitive attempts, respectively. 
The framework of uncontrolled manifold analysis was used to quantify force variance within two subspaces of fin-
ger forces and the synergy indices as a stability property of net force and moment production. Further, we exam-
ined correlations between the indices of task performance and multi-finger synergy indices. See the Methods 
section for more details.

Performance indices. Root mean squared error (RMSE). The root mean squared error normalized by 
reference force (RMSENORM) during a steady-state force production was relatively larger in the z-axis (i.e., the 
axis of normal force) compared to the RMSENORM of the other two axes. In addition, the RMSENORM decreased 
with the number of fingers (DOFs) in the y-axis (superior-inferior) and z-axis. The RMSENORM of the x-axis 
(medial-lateral) was similar between the conditions (Fig. 1). A two-way repeated measure ANOVA supported 
these findings with factors Axis (three levels: x-, y-, and z-axis) and Finger DOF (three levels: IM, IMR, and 
IMRL), which showed significant main effects of Axis (F[0.08,7.57] = 77.97, p < 0.001, ηp² = 0.92) and Finger DOF 
(F[2,14] = 5.65, p = 0.02, ηp² = 0.54) with a significant Axis × Finger DOF (F[1.80,12.58] = 8.70, p < 0.001, ηp² = 0.55). 
A significant factor interaction reflected the fact that a significant effect of Finger DOF was observed only in the 
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y- and z-axis. Pair-wise comparison confirmed that the RMSENORM of IM > IMR, IMRL for the y-axis (p < 0.05) 
and IM, IMR > IMRL for the z-axis (p < 0.05).

Release time (RT). The participants performed 25 repetitive trials for the multi-finger force production and 
release (FPR) task for each DOF condition. Generally, there was no significant difference in the average release 
time across the trials (RTAVG) between the conditions. However, the standard deviation of RT (RTSD) decreased 
with the number of fingers. In other words, the RT was more consistent when the number of involved fingers 
was increased. A one-way repeated measure ANOVA with factor Finger DOF (three levels: IM, IMR, and IMRL) 
on RTSD supported these findings (F[2,14] = 5.42, p = 0.02, ηp² = 0.44). Post-hoc pairwise comparisons confirmed 
RTSD of IM, IMR > RTSD of IMRL (p < 0.05).

Accuracy index (ACI) and precision index (PRI). The indices of accuracy (ACI) and precision (PRI) decreased 
together with the number of finger DOFs (i.e., the larger the number of fingers for the task, the better accuracy 
and precision for the performance). These findings were supported by one-way repeated measure ANOVAs with 
factor Finger DOF (three levels: IM, IMR, and IMRL) separately on ACI (F[1.10,7.72] = 57.53, p < 0.001, ηp² = 0.89) 
and PRI (F[2,14] = 29.73, p < 0.001, ηp² = 0.81). Post-hoc pairwise comparisons confirmed that the IM > IMR and 
IMRL for ACI (p < 0.05), and the IM > IMR > IMRL for PRI (p < 0.05).

Multi-finger synergy indices. Force stabilization hypothesis. First, we compared mean differences of each 
component of variances per DOF for the force stabilization hypothesis (VUCM

F and VORT
F) between the conditions 

and axes. The variances were normalized by the square of the relevant reference force (FREF) about the z-axis. In 
general, both VUCM

F and VORT
F decreased with the number of finger DOFs for all three axes. In particular, VUCM

F 
was smaller than VORT

F in the x-axis, while VUCM
F was larger than VORT

F in the z-axis (axis of normal force) 
(Fig. 2). Two-way repeated measure ANOVAs with factors Finger DOF (three levels: IM, IMR, and IMRL) and 
Variance (two levels: UCM and ORT) were performed separately on the variances of each axis. The results showed 
significant main effects of Finger DOF (x-axis: F[2,14] = 7.66, p = 0.01, ηp² = 0.52; y-axis: F[1.16,8.11] = 5.13, p = 0.05, 
ηp² = 0.42; z-axis: F[2,14] = 6.53, p = 0.01, ηp² = 0.48) and Variance (x-axis: F[1,7] = 9.52, p = 0.02, ηp² = 0.58; z-axis: 
F[1,7] = 6.53, p < 0.01, ηp² = 0.78) without factor interactions.

Further, we quantified the indices of synergies for the force stabilization (ΔVF) during the steady-state force 
production. Overall, ΔVF increased with the number of finger DOFs for all three axes, and the stabilization of 
normal force (ΔVF

Z) was stronger than the stabilization of tangential forces (ΔVF
X and ΔVF

Y) (Fig. 3). These 
findings were supported by a two-way repeated measure ANOVA on ΔVF setting factors as Finger DOF (three 
levels: IM, IMR, and IMRL) and Axis (three levels: x-, y-, and z-axis). The results showed significant main effects 
of Finger DOF (F[1.21,8.49] = 40.23, p < 0.001, ηp² = 0.85) and Axis (F[2,14] = 74.89, p < 0.001, ηp² = 0.92) without 
factor interactions. Post-hoc pairwise comparison confirmed ΔVF of IM < IMR < IMRL (p < 0.05), and ΔVF of 
the x-axis < y-axis < z-axis (p < 0.05).

Moment stabilization hypothesis. We computed the synergy indices of the moment of force about the x- (ΔVM
X) 

& z-axis (ΔVM
Z) with the assumption of fixed moment arms for individual fingers. Note that the moment of 

force about the y-axis was zero due to the zero moment arm about the x- & y-axis. During the steady-state force 
production, ΔVM increased with the number of fingers as the results of ΔVF showed. In particular, the average 
ΔVM

X across the participants was negative in the IM condition, while it became positive in the IMRL condi-
tion (Fig. 4). ΔVM

Z was positive for all DOF conditions. A two-way repeated measure ANOVA on ΔVM with 
factor Finger DOF (3 levels: IM, IMR, and IMRL) and Axis (three levels: x-, and z-axis) confirmed a significant 
main effect of Finger DOF (F[2,14] = 14.25, p < 0.001, ηp² = 0.67) and Axis (F[1,7] = 91.28, p < 0.001, ηp² = 0.93) 
with factor interactions (F[2,14] = 24.98, p < 0.001, ηp² = 0.78). Post-hoc pairwise comparison confirmed ΔVM

X of 
IM < IMR < IMRL (p < 0.05) and ΔVM

Z of IM, IMRL < IMR (p < 0.05).

The comparison between synergy indices and performances indices. Figure 5 illustrates the 
findings for the sets of synergy indices (e.g., ΔVF

X, ΔVF
Y, and ΔVF

Z) and the variables associated with the 

Figure 1. RMSENORM at the steady-state force production for the x-, y-, and z-axis are presented for the IM 
(white bars), IMR (gray bars), and IMRL conditions (black bars). Values are means ± standard errors across 
subjects. The asterisks show significant differences in pairwise comparisons between the conditions (p < 0.05).
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performance indices (e.g., ACI and PRI) across all individual subjects and conditions. For most cases, there were 
significant negative correlations between the synergy indices and performance variables (e.g., ACI and PRI) 
across subjects and conditions (i.e., the larger synergy indices, the better accuracy and precision). In particular, 
the coefficient of correlation (r) was larger in ΔVF

Z vs. both ACI and PRI than in the synergy indices of the other 
axes vs. the performance indices (ΔVF

Z: r = −0.63 for ACI, r = −0.72 for PRI; ΔVF
X: r = −0.47 for ACI, r = −0.39 

for PRI; ΔVF
Y: r = −0.35 for ACI, r = 0.06 for PRI, p < 0.05 for all comparisons except ΔVF

Y vs. PRI). Further, 
the three large points in Fig. 6 present the overall mean values of the synergy and performance indices across 

Figure 2. Two components of variances related to FTOT stabilization, VUCM (white bars) and VORT (gray bars) 
per degree-of-freedom, in the finger force space are presented for the (a) x-axis, (b) y-axis, and (c) z-axis. Values 
are means ± standard errors across subjects.

Figure 3. Z-transformed synergy indices with respect to FTOT stabilization, ΔVF, for the IM (white bars), IMR 
(gray bars), and IMRL conditions (black bars) at the x-, y-, and z-axis. Values are means ± standard errors across 
the subjects.
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the subjects within each experimental condition (e.g., IM, IMR, or IMRL). The mean values were aligned along 
negative straight lines in most cases. These results reflect that the increase in synergy indices with larger DOFs 
of fingers was closely related to the increase in accuracy and precision of the performance (i.e., decrease in ACI 
and PRI).

Discussion
We tested two hypotheses formulated in the Introduction, and all leading hypotheses have been confirmed. The 
strength of synergy indices for both net force and moment increased with the number of fingers during the 
steady-state force production. Also, the accuracy and precision as the indices of shooting performance improved 
with the number of fingers. Further, the results showed that the indices of shooting performance were signifi-
cantly correlated with the strength of stability properties (i.e., synergy indices) of both force and moment stabili-
zation and their changes with the kinetic DOFs.

According to the principle of motor abundance2,20, flexible combinations of finger forces within a redundant 
set of elements to the task mechanics could be interpreted as the strategies employed by the controller since the 
organization of force variability is not uniform for every task. Preferably, the patterns of variability (i.e., covari-
ation) of elements comply with a set of rules considering at least mechanical necessities of the task. Indeed, the 
relatively large across-trial variance is generally observed in the subspace where equal performance (i.e., mechan-
ical necessity) is achieved compared to the variance observed in the orthogonal space to it. Thus, the underlying 
mechanism of the organization of variability may include purposeful flexibility to satisfy the task performance 
and to minimize the performance error, which is well fit with the idea of stochastic optimal control model26. The 
results of current study showed that the redundant set of fingers affects positive changes in the net force error to 
the target value by showing that the net force error (e.g., RMSENORM) and error variance (VORT) were the small-
est when all four fingers were involved. The small error observed in the four fingers should positively affect the 
accuracy and precision of the performance as the experiment was designed. Particularly, the precision of the 
performance across multiple trials assumes to be related to the standard deviation of the release time. In other 
words, the increase of the finger DOFs seems to be beneficial in reproducible release time across trials, which 
yields higher precision of the performance.

The rules mentioned above describe the flexible sharing and covariation between redundant elements for 
error compensation resulting in the stabilization of salient performance variable (e.g., net finger force). Here, we 
would like to emphasize that the flexibility is not a prerequisite for the smaller performance error. This means 
that the consistent combinations of finger forces could also be the solution for small performance error, which 
is assumed to be a unique optimal solution. Thus, we can say that the net force error in the current results could 
be combined with flexible combinations of finger forces for the purpose of error compensation among active 
elements. Now, we come back to the questions of “How many kinetic DOFs of fingers would be the best to stabilize 
net force and torque during multi-finger force production task?” We know the fact that the middle and little fingers 
are relatively weak and less independent in their force production27 as well as the motion of joints28. Also, the 
damping ratio of the two fingers, which assumes to be indicative of stability, is smaller than that of the other two 
fingers29. So, one may think that the use of those two fingers is not helpful to improve performance and stability. 
However, the experimental evidence is opposite to the expectation. The previous and current results showed that 
the involvement of those two fingers was not detrimental, but somewhat beneficial to the overall performance and 
stabilization of the performance. These outcomes could also be associated with the results of a recent study about 
the effect of fatigue, which showed that the interaction of individual effectors reduces the error caused by the 
fatigued element13,14. This can be evidence that the controller is actively using redundant DOFs of multi-elements 
by minimizing performance error.

The explicit external constraint in the current experiment was to produce equal net finger forces to target 
forces, and the net moments was not mechanically constrained. The results showed that both net pressing force 
and corresponding moment of pressing force were stabilized especially when all four fingers were explicitly 
involved. If a set of the mechanical constraints in motor task was to satisfy both net force and moment constraints 
simultaneously, and only normal components of finger forces were considered with fixed fingertip contacts, two 
subspaces spanned by the eigenvectors of the Jacobians of the two motor tasks are orthogonal to each other. 
The intersection between the two subspaces confines the solutions of finger forces for satisfying the mechanics 

Figure 4. Z-transformed synergy indices related to MTOT stabilization, ΔVM, for the IM (white bars), IMR 
(gray bars), and IMRL conditions (black bars) at the x- and z-axis. Values are means ± standard errors across the 
subjects.
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of net force and moment. With the case of two normal finger forces with two task constraints, a unique combi-
nation for finger forces satisfying the two tasks (i.e., optimal combination) could be set since the intersection 
between the two subspaces is not space, but a point, so that the redundancy is disappeared. If the system is 
redundant, however, the intersection forms space, and the dimensionality of the intersection space (i.e., solution 
space) depends on the number of redundant DOFs. This implies that the variability of finger force combinations 
is feasible observation, which satisfies the two constraints. By combining this knowledge with the current results, 
it is possible that the additional constraints (or satisfaction) about the moment stabilization may be embedded 
in the hand action and its control when the system has relatively large redundancy. Indeed, it is well discovered 
that the apparent task mechanics (e.g., net force production task) does not exclusively define actual variables to be 
stabilized selectively8,30. Maybe, the variables actually being controlled are not cognitively recognized, but are the 
part of the controller’s consideration to stabilize something else. It has been reported that both resultant force and 
moment of force could be stabilized with sufficient active elements in multi-digit pressing and grasping tasks31–33. 
Further, the resultant force and the moment of force by fingers were stabilized together even when moments are 
not provided as feedback8,30.

The elemental variables in the current analysis were the finger forces, and it is well known that the production 
of four finger forces is interdependent due to the phenomenon of enslaving (i.e., unintended force production or 
motion by non-task digit). The finger force enslaving is caused by two groups of factors that include the mechan-
ical coupling of finger actions by passive connection and the overlapped representation of the digits in the hand 
area within the primary motor cortex27. Due to these factors of the enslaving, the structure of observed variances 
of mechanical variables (e.g., finger forces) may not definitely reflect the particular control strategy for a specific 
task. Instead of using interdependent mechanical variables, the variables that reflect the scheme of the controller 
have been introduced, and the variables are termed as force modes (Latash et al.15 for more details about force 
mode). A set of the elemental variables employed in the current analysis was finger forces in both normal and 
shear directions. It has been shown that the enslaving patterns of tangent directional forces are not as simple as 
those of normal forces, and particular relations between the interdependency of normal and tangential forces has 
not been discovered yet. So, we focused on the variability and its effect on the performance using a set of mechan-
ical variables, finger forces in the current study. Nevertheless, we have to admit that the current results of the 
positive index of the moment stabilization cannot fully be viewed as a purposeful organization by the controller.

Then, what are the benefits of additional constraints such as the moment stabilization into motor tasks? One 
obvious observation in the current result was that the accuracy and reproducibility of the performance were 

Figure 5. Correlation between the synergy indices of FTOT stabilization for three axes (i.e., ΔVF
X, ΔVF

Y, and 
ΔVF

Z) and (a) accuracy index (ACI) and (b) precision index (PRI). Small dots represent individual subject data 
for the IM (white), IMR (gray), and IMRL (black) conditions. The regression lines are shown with the coefficient 
of determination (r-value). The average values across subjects for the IM (white), IMR (gray), and IMRL (black) 
condition are presented with standard error bars in large circles.
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enhanced when all four fingers were involved, and it seems that the additional moment constraint was activated 
only with the use of all four fingers. Again, the moment was not dramatically stabilized when two or three fin-
gers (e.g., IM and IMR conditions) were involved. Theoretically, net moment had no effect on the accuracy and 
precision as the algorithms for the hitting point was programmed in the current study. Theoretical solution space 
of force-moment task is smaller than space spanned by the Jacobian of one of them. Indeed, the results show 
that the two variances per dimension, VUCM and VORT, decrease together with the number of fingers, while the 
synergy indices increase. In the computational point of view, the synergy indices refer to the relative magnitudes 
of VUCM to VORT with respect to the total variance (VTOT) across multi-attempts. This means that the strength of 
stability properties (i.e., synergy index) does not depend on the magnitudes of the two variances separately, but 
on their relative magnitudes34. In other words, less flexible combinations of elements (i.e., smaller variances) 
could be associated with better stability. We know that a unique optimal solution describes a preferred pattern 
of sharing between the redundant elements. Therefore, less flexible patterns of finger force combinations in the 
current result may be inclined to the optimal combination of finger forces in case that it minimizes a specific 
cost function. Thus, it is probable that the finger force combinations are closed to optimal combination without 
an expense of stability given the condition that more fingers are actively involved in the motor task. Rather, 
redundant degrees-of-freedom may be a prerequisite to stabilize the given (i.e., net force) and selected (i.e., net 
moment) performance variables with more converged solutions. Then, what is the nature of cost-function in 
the current experiment and data set? We do not have the relevant result to answer this question at the moment, 
and the answer will not be trivial and straightforward. Based on the current results of increased stability index 
with smaller variance at four finger case, however, we infer that the cost to be minimized may not be energy 

Figure 6. An illustration of the experimental equipment and conditions. (a) The experimental frame 
was mechanically fixed to the table and the sensors were attached to the experimental frame (size: 
90 × 140 × 250 mm). The uncertainty values of the transducers as the validity of measurement were measured. 
The estimated results show the measurement errors ranged from 0.02–0.05 N for the force and 0.02–0.06 
Ncm for the moment of force, which are compatible with the values reported in the previous studies43,44. 
Finely round-shaped caps were inserted into the surface of the transducers, which allowed fingertips to have 
intentional roll or slide naturally. The distance between adjacent transducers was set at 2 cm along the y-axis, 
and a wooden piece was placed under the palm to ensure a consistent configuration of the hand and fingers 
during the tasks45. The sampling rate of the force signals was set at 100 Hz. A 27-inch computer screen was 
positioned in front of the subject, which provided real-time force feedback. The refresh rate of the feedback 
screen was 60 Hz. (b) The computer screen displayed a hitting point of the virtual ball after the completion 
of a particular trial. The computer screen showed FTOT produced by the participants and FREF. After the 
completion of a particular trial, the computer screen showed a hitting point of the virtual ball by assuming 
that the trajectory of the ball was determined by the velocity at the moment of release and gravitational force 
(g = 9.81 m/s2) acting on the ball. (c) Hand and finger configurations for three experimental conditions. The 
thumb was parallel to the fingers and naturally flexed the proximal interphalangeal joint to 10–20°. Similarly, 
non-involved fingers in the IM and IMR conditions were also flexed naturally while not contacting transducers; 
therefore, the thumb and non-involved finger(s) had no mechanical effect on the frame during the task.
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consumption since it has been mathematically and experimentally proved that the system could not reproduce 
robust stability during conservation of energy35. This speculation is also an important part of a more general 
movement such as gait since robust stability takes higher priority over energy consumption35. In case of sports 
such as archery, improvement in accuracy and precision of performance is only possible with stabilization of 
force. From our results, it is also evident that accuracy and precision index is increased with the number of 
active fingers (i.e., increase in DOFs). Hence, stability takes a higher priority than energy consumption in case of 
sporting events more than that of a conventional movement used in everyday life. Thus, there may be a trade-off 
between minimization of energy consumption and stable performance (i.e., extra energy is necessary to resist and 
maintain stability). The advantage of having an abundant set of elements supports the models of back-coupling 
feedback loops that describes two separate control processes for defining preferred and flexible sharing patterns36. 
Based on the model and a few current results13,19, the optimality and variability may be complimentary ideas in a 
redundant (abundant) human motor system.

Lastly, in the current study, we reproduced the characteristics of archery performance to examine the mecha-
nism of human multi-elemental control regarding the DOFs of the system. However, the mechanical constraints 
of the current motor task do not exactly match the real archery task. Previous studies reported that independence 
of finger actions and sharing patterns depend primarily on the mechanical constraints within the task37–39; thus, 
the effect of different combinations of mechanical constraints on the performance and coordination patterns of 
finger actions remain to be explored. It has been known that the redundancy emerges at various levels within the 
human movement system40–42. However, the redundancy in the current study was limited to the task redundancy. 
The extrinsic muscles including flexor digitorum profundus (FDP), superficialis (FDS), and intrinsic palmar 
muscles, which extend to the phalanges of fingers, are incorporated into the generation of finger flexion force. 
Thus, a redundant set of muscles to the finger flexion force constructs another layer of motor redundancy. If the 
non-zero co-contraction of the groups of finger flexors and extensors was observed, this provides another prob-
lem of motor redundancy. This is one of limitations of the current study that should be examined in future studies. 
Nevertheless, it is possible that the electromyography recording from the finger flexors and extensors could reveal 
the relation of the task redundancy to the muscle redundancy.

Methods
Subjects. Eight right-handed young males (age: 29.1 ± 3.9 years, height: 175.3 ± 5.2 cm, mass: 72.8 ± 8.7 kg, 
hand length: 18.36 ± 0.57 cm, and hand width: 8.37 ± 0.54 cm) were recruited in the study. None of the partic-
ipants had a previous history of upper extremity injury including forearm, hand, and fingers. Seoul National 
University Institutional Review Board (IRB) approved the use of customized experimental protocol related to 
multi-finger pressing tasks and relevant devices (e.g., experimental frame and force transducers). All experimen-
tal details were performed in accordance with the relevant guidelines and regulations. The consent was informed, 
and all participants were requested to sign a consent form approved by the IRB at Seoul National University (IRB 
No. 1703/002-006).

Equipment. A set of four six-component force transducers (Nano-17, ATI Industrial Automation, Garner, 
NC) was used to measure individual finger forces and moments of force for all three axes. The transducers were 
attached to a vertically oriented aluminum frame. Finely round-shaped caps were inserted into the surface of the 
transducers (Fig. 6). The position of the panel with the transducers was adjusted along the x-axis according to the 
hand anatomy of individual subjects. Once the position of the panel was adjusted, the panel was mechanically 
fixed on the table throughout the whole experiment for each participant.

Experimental Procedure
Maximal voluntary contraction (MVC) task. The participants were instructed to press on the transduc-
ers with all four fingers simultaneously as hard as possible until the maximum total finger pressing force (MVCTOT 
about the z-axis) was achieved. Each trial was performed for 5 s, and the real-time visual feedback of total finger 
force (FTOT) was provided. The maximal individual finger forces (MVCi; i = {index, middle, ring, little}) were cap-
tured at the time of MVCTOT. The participants performed two consecutive trials, and the average MVCTOT and 
MVCi values across the two trials were used to set target force levels for the next task.

Multi-finger force production and release (FPR) task. The participants were asked to produce a steady-state  
FTOT with multiple fingers followed by a quick release of FTOT in a self-paced manner. The task was a simulation of 
an archery shooting regarding the sequence of finger force changes (i.e., steady state to release). The experimen-
tal conditions of the multi-finger combinations included (1) index-middle (IM), (2) index-middle-ring (IMR), 
and (3) index-middle-ring-little (IMRL). These combinations of fingers as a set of finger DOFs were assumed 
to be functionally relevant sets across daily life and sport activity. Ten seconds were given for each trial, which 
consisted of two phases: (1) steady-state force production and (2) force release phase. For the steady-state phase, 
it was instructed to maintain steady-state levels of force in both normal (z-axis) and tangential (x- and y-axis) 
directions within the first 5 s. The magnitude of the reference force (FREF) of the z-axis was set at 50% of ΣMVCi at 
corresponding condition (e.g., 50% of {MVCI + MVCM} for the IM condition), while the FREF of the x- and y-axis 
were set at zero (N). For the force release, the participants were instructed to release finger forces as quickly and 
smoothly as possible within the next 5 s by translating the forearm and hand toward the trunk while minimizing 
possible changes in the configurations of individual fingers. The instruction of “quick” and “smooth” release was 
for minimizing the release time (i.e., minimum changes in momentum). The initial velocity was computed by 
equation (1):
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where j = {x, y, z}, k and m represent the coefficient of elasticity of the virtual bow (0.7 N/m) and the mass of the 
virtual ball as a particle (1 kg), respectively. t0 and t1 stand for the onset time of release and the time of completion 
of force release after t0, respectively. The horizontal distance from the release point to the virtual target was set at 
0.7 (m/N) × ΣMVCi. Prior to the data collection, the participants performed practice trials for about 30–40 min. 
For the data collection, the participants performed consecutive 25 trials for each condition. Ten-second break 
between every two trials and more than 5 min break between the conditions were provided.

Data analysis. Before variable computation, a digital zero-lag 4th-order low-pass Butterworth filter with a 
cutoff frequency of 10 Hz was applied to the raw force data. Following indices of timing variable were detected 
within a single trial. t0 was defined as the time moment when the first derivative of FTOT (dF/dt) reached 5% of 
the first negative peak of dF/dt. The duration of the steady-state phase was defined as between −1500 ms and 
−500 ms prior to t0. The time of completion of force release (t1) was defined as the time moment when FTOT 
reached 0 N after t0.

Performance indices. Root mean squared error (RMSE). Root mean squared error (RMSE) was computed 
using equation (2) during the steady-state phase.

( )RMSE F F n F( ) / / , (2)NORM
j n j

REF
j

REF
j2∑= −

where, j = {x, y, z}, and n represents the number of data samples during steady-state force production. F and FREF 
represent the produced total forces by the participants and the total reference force, respectively.

Release time (RT). RT was defined as time duration between t0 and t1. Further, we quantified average (RTAVG) 
and standard deviation (RTSD) of RTs across repetitive trials in each participant and condition.

Accuracy (ACI) and precision index (PRI). The accuracy index (ACI) was quantified as an average Euclidean 
distance between the hitting position of the virtual ball and the center of the virtual target across repetitive trials 
using equation (3). The precision index (PRI) was quantified as an average Euclidian distance between the hitting 
position of the virtual ball and mean hitting position across repetitive trials using equation (4). The ACI and PRI 
were further normalized by the horizontal distance from the release point to the virtual target.
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where, i = each trial, {xi, yi}: x- and y-coordinate of the hitting position for each trial, {xCENT, yCENT} = x- and y- 
coordinate of the center of the virtual target (0 mm), {xMEAN, yMEAN} = x- and y-coordinate of the mean hitting 
position for all trials.

Multi-finger synergy indices. The framework of uncontrolled manifold (UCM) approach was conducted 
to quantify the synergy indices of stabilizing two sets of performance variables, resultant force (FTOT) and result-
ant moment of force (MTOT), separately. The repetitive trial data were aligned with respect to t0. The elemental var-
iables in the current analysis were finger forces, and the performance variables included FTOT and MTOT. For MTOT 
computation (i.e., the product of finger forces and their lever arms), we assumed that the center of rotation was 
located at the mid-point between two lateral fingers on the level of the surface of the sensors along the y-axis, and 
the lever of individual finger forces were fixed. Note that MTOT was not measured but computed from linear com-
binations of finger forces multiplied by the fixed lever arm vector. There is no actual pivot of rotation; thus, the 
participants were free to vary fingertip displacement, which had no mechanical effect on the performance indices. 
The manifold was found by computing the null space of the Jacobian of the transformation (i.e., linearly approxi-
mated null space spanned by the basis vector). The time series of variances within two subspaces, VUCM and VORT 
(equation 5) across repetitive trials were computed for each performance variables and each condition. The UCM 
was defined as an orthogonal set of the unit vectors in the space of finger forces that did not change the given 
performance variables. The other subspace (ORT) was the orthogonal vector to the UCM. The time function of 
synergy index, ΔV(t), was further computed using equation (5) (see Latash et al.31 for computational details). 
Note that the variances in equation (5) were further normalized by the DOFs of the corresponding subspace. This 
process was necessary to make comparable indices across subspaces of different dimensions (i.e., DOFs).

Δ =
−V t V t DOF V t DOF

V t DOF
( ) ( )/ ( )/

( )/ (5)
UCM UCM ORT ORT

TOT TOT

Lastly, the ΔVs were log-transformed using the Fischer transformation applied for the computational bound-
aries (i.e., −2 to +2 for the IM, from −3 to +1.5 for the IMR, from −4 to +1.33 for the IMRL condition).
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Statistical analysis. The data are presented as means and standard error. Repeated measured ANOVAs with 
factors Finger (four levels: index, middle, ring and little), Axis (three levels: x-, y-, and z-axis), Finger DOF (three 
levels: IM, IMR, IMRL), and Variance (two levels: UCM and ORT) were used. Notably, we explored how the main 
outcome variables (RMSENORM, RTAVG, RTSD, ACI, PRI, ΔVF, ΔVM) were affected by the factors. The factors were 
selected based on particular statistical tests. For the repetitive measures of the force values of three axes (FX, FY, 
FZ), the intra-class correlation coefficents (ICC) as an index of test-retest reliability were estimated for IM condi-
tion (ICC = 0.954 for FX, p < 0.001; ICC = 0.977 for FY, p < 0.001; ICC = 0.997 for FZ, p < 0.001), IMR condition 
(ICC = 0.927 for FX, p < 0.001; ICC = 0.986 for FY, p < 0.001; ICC = 0.999 for FZ, p < 0.001), and IMRL condition 
(ICC = 0.981 for FX, p < 0.001; ICC = 0.969 for FY, p < 0.001; ICC = 0.996 for FZ, p < 0.001). Mauchly’s sphericity 
test was used to confirm the assumptions of sphericity, and the Greenhouse-Geisser correction was used when the 
sphericity assumption was rejected. For the post-hoc test, multiple pairwise comparisons with Bonferroni cor-
rection was conducted. Linear regression analysis was used to examine the relations between the synergy indices 
(ΔVF) and performance indices (ACI and PRI). All statistical significance level was set at p < 0.05.

Data availability. The datasets measured during the current experiments are available from the correspond-
ing author (Jaebum Park) on reasonable request.
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