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Abstract

Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely
achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the
increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging.
Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage
the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of b-
ionone and benzaldehyde. The stabilities of b-ionone, benzaldehyde and analogue 3 g were tested. The electroantenno-
gram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed
experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to
be more stable than b-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and
the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive
to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than b-ionone
and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our
results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published
study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a
new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety.
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Introduction

The green leaf bug, Apolygus lucorum (Meyer-Dür) (Hemiptera:

Miridae), is a major pest of many cultivated plants including

cotton, cereals, vegetables and fruit trees. With the reduced

application of insecticides on Bt cotton for the control of

lepdopitera pests, the abundance of A. lucorum has substantially

increased in China [1]. This species can easily attain outbreak

densities, switch hosts, and wilder spread because of its environ-

mental adaptability [1–4], high population growth rate [2–3], and

strong dispersal capacity [5–6]. These characteristics make A.

lucorum difficult to control.

Currently, various agronomic (soil tillage, removing weeds

before sowing seeds) and chemical (spraying with organophos-

phates, pyrethroids and nicotinoid) measures are applied to control

A. lucorum. To reduce large yield losses caused by the pest and

insecticide use which are usually harmful to human beings and the

environment, it is necessary to develop new approach in integrated

pest management (IPM) schemes for this pest.

Insect ecology involves the relationship between insect and its

surroundings that seek both to proceed with IPM and to protect

the ecological environment [7]. Research on insect ecology is

helpful to ecoenvironment and agricultural product safety. Plant

volatiles, a factor of insect ecology, emitted by plant, in response to

mechanical or herbivore damage, may achieve this aim and can be

applied at the farm or landscape level. They involve mediating the

behavior of insects [8–9], natural enemies [10–12] or neighboring

plant [13–15]. Their potential value in pest population control has

been recognized [16–18].

The current study concerns the use of plant volatiles, b-ionone

and benzaldehyde, as attractants for A. lucorum. According to

previous reports, b-ionone, a volatile released from cotton, tomato,

and other plants [19–23], attracts brown planthoppers [24] and

repels phytophagous mites [25]. Benzaldehyde, a common

component of plant volatiles [26], attracts many pest species

[27–28]. A recent study has indicated that b-ionone and

benzaldehyde can be recognized by adult A. lucorum and can

affect A. lucorum behavior under laboratory conditions [29].

However, the two chemicals cannot be efficiently used as A.

lucorum attractants because of their low stability and mediocre

ability to attract A. lucorum in field conditions.
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Indeed, so far there has been no publish about plant volatile

analogues synthesis and their use. In the current study, we try to

explore novel ecological approach to control pest based on

synthetic plant volatile analogues. Here we first hypothesized that

the analogues synthesized with substructure combination strategy

by combining the bioactive components of b-ionone and

benzaldehyde would contribute to achieving our objectives: i) to

increase stability by changing chemical functional groups, for

example, aldehyde group, which is associated with low oxidative

stability and (ii) to enhance attractiveness to A. lucorum by

combining the active groups of the two compounds. Based on

such working hypothesis, we designed and synthesized 13

analogues of b-ionone and benzaldehyde. We tested the stabilities

of b-ionone, benzaldehyde and analogue 3 g. And we then

conducted EAG test, behavior assay and filed experiment to

evaluate the attractivities of the analogues to A. lucorum.

Materials and Methods

Ethics statement
We captured the insects in Xinxiang Experiment Station

(Henan) of Institute of Plant Protetion, Chinese Academy of

Agricultural Sciences. The wild-captured A. lucorum used in this

study was serious pest in China. Therefore, no specific permits

were required for the described insect collection and experimen-

tation.

Insects
A culture of A. lucorum was maintained on fresh ears of corn (Zea

mays L.) in a climate chamber at 2961uC, 6065% RH, and 14:10

L:D at the Institute of Plant Protection, Chinese Academy of

Agricultural Sciences, Beijing. Adults were used in the laboratory

experiment.

Synthesis of b-ionone and benzaldehyde analogues
3a2m

Both b-ionone (0.88 g, 4.6 mmol) and benzene formaldehyde

(2a2m, 6.0 mmol) were dissolved in ethanol (10 mL) in a round-

bottom flask (50 mL) before 15 mL of a sodium hydrate solution

(1 mmol/mL) was added dropwise. The reaction mixture was

stirred at room temperature for 5 h, brought to pH 7.0 with 10%

hydrochloric acid, and subsequently extracted with ether (50 mL

62). The organic layer was dried with anhydrous Na2SO4, and

the solvent was removed under reduced pressure. The residue was

purified by column chromatography on silica gel using ethyl

acetate-petroleum (60–90uC) at a ratio of 1:13–1:25 as the eluent

to afford 13 analogues, which were designated 3a2m (Figure 1)

and R of the structures are illustrated in Table 1. They were

characterized by melting point, IR, 13C NMR, 1H NMR and

high-resolution mass spectrometry (HRMS). Melting points of

chemicals were determined with an X-4 binocular microscope

(Yuhua Instrument Co., Goyi, China) with thermometer. IR

spectra were recorded on neat samples with a Nicolet 6700 FT-IR

spectrometer (Thermo Fisher Scientific Inc., USA). 13C NMR and
1H NMR spectra were recorded with a Bruker Avance DPX300

spectrometer (Bruker-Spectrospin AG, Swiss). Chemical shifts

were described in d (ppm) relative to the signal of an internal

standard (tetramethylsilane) and using CHCl3- d1 or DMSO-d6 as

the solvent. Coupling constants were given in Hz. HRMS spectra

were displayed under electron impact (150 eV) condition using a

Bruker APEX IV spectrometer (Bruker Instruments Co. Ltd.,

USA).

Stability of b-ionone, benzaldehyde and analogue (3 g)
GC-MS analyses were used for testing the stability of b-ionone,

benzaldehyde and one representative analogue, 3 g (Figure 2),

whose structure is quite similar to other synthesized analogues.

GC-MS analyses were performed with a Thermo Trace GC Ultra

gas chromatograph coupled to a Thermo ISQ mass spectrometer.

The pure compounds (20 mg) were added into colorless,

transparent vials (2-cm) individually. Then the vials were covered

with 100 mesh gauzes and exposed to air and sunlight. 1 mg of

each compound was sampled and stored in sealed brown,

transparent vial every day. The sampling was last for seven days.

Each compound was represented by three replicates. The GC was

operated in splitless injection mode and fitted with a TG-5SILMS

column (30 m60.25 mm60.25 mm). For b-ionone and benzalde-

hyde, firstly the oven was programmed from 40–130uC at 3uC/

min after an initial delay of 1 min and held at 130uC for 1 min,

and then the oven was programmed from 130–250uC at 10uC/

min and held at 250uC for 5 min. For 3 g, firstly the oven was

programmed from 60–200uC at 10uC/min after an initial delay of

1 min and held at 200uC for 1 min, then the oven was

programmed from 200–250uC at 10uC/min and held at 250uC
for 10 min. Injector temperature was 250uC; MS quadrupole

temperature was 150uC; MS source temperature was 250uC; and

transfer line temperature was 250uC. The sampling and analyses

were performed twice (in May 2013 and in September 2013) to

confirm that whether the stability were consistent under different

time horizons.

Laboratory EAG experiment
The responses of A. lucorum females and males to the 13

analogues of b-ionone and benzaldehyde (3a2m) were measured

by EAG experiment. The EAG responses of A. lucorum were

recorded with Syntech GC/EAD interface temp controller TC-02

and stimulus controller CS-55 (Hilversum, The Netherlands).

Laboratory EAG experiment was conducted to evaluate whether

the test compounds stimulate A. lucorum. Five concentrations (0.01,

0.1, 1, 10, 100 mg/mL) in dichloromethane were checked in

preliminary experiment. The concentration, 10 mg/mL, was

suitable to each test compound. The compounds elicited relatively

high EAG responses by A. lucorum at this concentration. Therefore

we measured the EAG responses of the herbivore to chemicals

only using the concentration, 10 mg/mL. And it was enough to

evaluate whether the test compounds stimulate A. lucorum.

The test compounds were dissolved in distilled dichlorometh-

ane, and the solutions (20 mL, 10 mg/mL) were then added to a

piece of folded filter paper (0.5 cm64 cm). After evaporation for

30 s, the filter paper was inserted into a glass Pasteur pipette. The

antennae of A. lucorum adults were excised and mounted between

electrodes [30]. The stimuli were delivered to the antennae in a

constant airstream of 150 mL/min at 30–40 s intervals, and the

EAG signals were recorded. b-ionone and benzaldehyde were

tested as positive controls. Dichloromethane and ethyl benzoate

were also included as a background and standard stimulus,

Figure 1. General route for the synthesis of 13 b-ionone and
benzaldehyde analogues (3a2m). 1 = b-ionone, 2a2m = 13 forms
of benzaldehyde, 3a2m = 13 analogues of b-ionone and benzaldehyde.
R is listed in Table 1.
doi:10.1371/journal.pone.0099142.g001
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respectively, and these were applied before and after stimulation

with each test compound. EAG responses were obtained from

three replicate females and three replicate males per test

compound.

The EAG responses of A. lucorum females and males to the

samples of b-ionone, benzaldehyde, b-ionone + benzaldehyde and

3 g exposed to air and sunlight and prepared in ‘‘Stability of b-
ionone, benzaldehyde and the analogue (3 g)’’ were also

measured.

The above laboratory EAG experiments were also performed

twice (in May 2012 and in September 2013 for the first EAG

experiment, and in July 2013 and in September 2013 for the

second EAG experiment) to confirm that whether the responses of

adult A. lucorum to the samples were consistent under different time

horizons.

Laboratory behavior experiment
Behavioural responses of adult A. lucorum to the pure and treated

samples (exposed to air and sunlight for periods up to one and/or

seven days) of b-ionone, benzaldehyde, b-ionone + benzaldehyde

and 3 g were investigated with a glass Y-tube olfactometer (2.8 cm

uniform diameter, 21.8 cm main body length, and 18.8 cm

branch length). An airflow (0.2 mL/min) was introduced into each

arm of the olfactometer through glass stimulus chamber (an odour

source adapter), attached to each of the two ending arms. In this

way, two well-separated laminar air flows were generated in the

olfactometer. As mentioned above, the concentration, 10 mg/mL

in dichloromethane, was suitable to each test compound in the

EAG experiment. The compounds elicited relatively high EAG

responses by A. lucorum at this concentration. So here we used the

same concentration, 10 mg/mL, for behavior assay. In each test

20 mL of dichloromethane solution of each chemical (10 mg/mL)

was placed in the glass stimulus chamber of the ‘‘treatment’’ arm.

As a control, 20 mL of dichloromethane was placed in the glass

stimulus chamber of the ‘‘CK’ arm of the olfactometer.

Experiments were performed at room temperature. The olfac-

tometer was washed with water and ethanol before each

experiment. Adult A. lucorum was introduced at the bottom of

the olfactometer individually and let free to walk. After 5 minutes,

the A. lucorum in the treatment and control arms of the

olfactometer was recorded. The insect that did not move and

remained at the base of the Y tube was recorded as not reaction.

Behavioral responses were obtained from 60 replicate females and

60 replicate males per test compound.

Field experiment
An experiment was conducted in a 3-month-old alfalfa (Medicago

sativa L.) field at the Xinxiang Experiment Station (35u189 N,

113u549 E) in Henan Province during 16–27 July 2012. The field

had been tilled so that it was devoid of vegetation before alfalfa

was planted; the alfalfa had not been sprayed with pesticide. For

preparation of lures, the analogues of b-ionone and benzaldehyde

(200 mL, 10 mg/mL in dichloromethane) were added into red

rubber septa (Enoy Technology, Zhangzhou, China), and the

dichloromethane was allowed to evaporate. The lures were

positioned in the centers of white sticky cards (28 cm622 cm),

which were horizontally hung below ship-type traps (Enoy

Technology, Zhangzhou, China) attached by wires to a bamboo

stake; the traps were flush with the top of alfalfa plants (Figure S1).

The trapping devices were placed ,10 m apart, and were

randomly assigned to contain one of the 13 analogues or the

controls. Lures containing b-ionone, lures containing benzalde-

hyde and lures containing b-ionone + benzaldehyde prepared as

above were used as positive controls. Red rubber septa without

any compound were used as blank controls. Each compound or

control was represented by three replicate traps. Sticky cards were

replaced every 3 days, and the trapped A. lucorum were counted

and sex was determined.

As with above method, another experiment was also conducted

in this field during 15–22 July 2013. Lures containing one of b-

ionone, benzaldehyde, b-ionone + benzaldehyde, 3 g or blank

controls were used. Sticky cards were replaced every day, and the

trapped A. lucorum were counted and sex was determined.

Statistical analysis
The relative EAG response value of A. lucorum antennae to each

test compound was calculated using the following equation:

Relative EAG response value = (EAG response value to the test

compound – mean EAG response value to the background

stimulus)/(mean EAG response value to the standard stimulus –

mean EAG response value to the background stimulus). The mean

relative EAG response values of female or male A. lucorum

antennae to each test compound and to each positive control were

Figure 2. EI mass spectrum of analogue 3 g, also showing its structure, deduced molecular formula and molecular weight.
doi:10.1371/journal.pone.0099142.g002
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compared using Student’s t-tests. Student’s t-tests were also used to

compare the mean relative EAG response of female and male A.

lucorum antennae to each test compound.

For the behavior research, the percent responses of A. lucorum

were used for analysis and differences between ‘‘treated’’ and

‘‘CK’’ were compared with nonparametric tests followed by chi-

square statistical.

For the field study, the cumulative numbers of A. lucorum

collected in each sticky trap were used for analysis. One-way

ANOVA was carried out for comparisons between the treatments.

All the statistic tests were conducted using SPSS (version 12.0).

Results

Thirteen analogues (3a2m) were produced by the aldol

reaction between b-ionone and benzene formaldehyde (2a2m)

with minimal amounts of by-products (Fig. 1). This reaction was

simple to perform, did not require dangerous conditions, and did

not produce toxic substances. The 13 analogues were easily

purified. Their identities were confirmed by IR, high-resolution

mass spectrometry (HRMS), 13C NMR and 1H NMR. The

physical properties, IR, HRMS and 13C NMR data for

compounds 3a–m are listed in Table 1. 1H NMR data for

compounds 3a2m are listed in Table 2.

The stability of b-ionone, benzaldehyde and one representative

analogue, 3 g (Fig. 2), were checked after exposing them to air and

sunlight for a period up to seven days. In such conditions, the

stability tests performed in May 2013 indicated that samples of

pure b-ionone degraded completely and samples of pure

benzaldehyde declined to 5.5% a.i. on the first day, whereas

samples of pure 3 g declined to 94.3% a.i. on the seventh day

(Fig. 3A and Fig. S2). And the stability tests performed in

September 2013 showed a similar result (Fig. 3B). The experi-

ments confirmed that the stabilities of the samples were consistent

under different time horizons and 3 g was much more stable in the

environment than b-ionone and benzaldehyde.

A previous study showed that b-ionone and benzaldehyde

elicited EAG responses from adult A. lucorum antennae, suggesting

that the compounds were recognized as signals by A. lucorum adults

[29]. To test the attractiveness of the analogues to A. lucorum, we

first measured the EAG responses elicited by the analogues from

adult A. lucorum. In the case of the experiment performed in May

2012, the mean EAG response value to the background stimulus,

dichloromethane, was 235.74621.10 mV for A. lucorum females

and 239.08619.80 mV for males. The mean response values

to the standard stimulus, ethyl benzoate (20 mL, 10 mg/mL), was

280.03662.55 mV for females and 294. 8650.15 mV for males,

which were significantly higher than to the background (both P,

0.001). The difference between females and males in their

responses to the standard stimulus was not significant (P = 0.083).

b-ionone, benzaldehyde and b-ionone + benzaldehyde were

included as positive controls in our EAG response experiment.

Table 2. 1H NMR data for compounds 3a2m.

Compd 1H NMR (300 MHz, d, ppm)

3a 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.61–1.67 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.7 Hz, 1-Me), 2.10 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 6.48 (d, 1H, J =
16.1 Hz, 8-H), 7.00 (d, 1H, J = 15.9 Hz, 10-H), 7.39–7.42 (m, 3H, 14-H, 15-H, 16-H), 7.51 (d, 1H, J = 16.1 Hz, 7-H), 7.58–7.61 (m, 2H, 13-H, 17-H), 7.67 (d, 1H,
J = 16.0 Hz, 11-H)

3b 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.60–1.65 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.7 Hz, 1-Me), 2.09 (d, 2H, J = 6.2 Hz, 2-H, 2-H), 6.46 (d, 1H,
J = 16.1 Hz, 8-H), 6.93 (d, 1H, J = 15.9 Hz, 10-H), 7.09 (t, 2H, J = 8.7 Hz, 14-H, 16-H), 7.48–7.66 (m, 4H, 13-H, 17-H, 7-H, 11-H)

3c 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.51 (m, 2H, 4-H, 4-H), 1.61–1.67 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.7 Hz, 1-Me), 2.11 (t, 2H, J = 6.1 Hz, 2-H, 2-H), 6.46 (d, 1H,
J = 16.1 Hz, 8-H), 6.97 (d, 1H, J = 15.9 Hz, 10-H), 7.36–7.54 (m, 5H, 7-H, 13-H, 14-H, 16-H, 17-H), 7.61 (d, 1H, J = 16.0 Hz, 11-H)

3d 1.11 (s, 6H, 5-Me, 5-Me), 1.48-1.52 (m, 2H, 4-H, 4-H), 1.61–1.68 (m, 2H, 3-H, 3-H), 1.83 (s, 3H, 1-Me), 2.10 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 6.46 (d, 1H, J = 16.1 Hz, 8-H),
6.98 (d, 1H, J = 15.9 Hz, 10-H), 7.44-7.62 (m, 6H, 7-H, 11-H, 13-H, 14-H, 16-H, 17-H)

3e 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.60–1.68 (m, 2H, 3-H, 3-H), 1.82 (d, 3H, J = 0.3 Hz, 1-Me), 2.09 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 2.38 (s, 3H, 15-
Me), 6.47 (d, 1H, J = 16.1 Hz, 8-H), 6.96 (d, 1H, J = 15.9 Hz, 10-H), 7.12 (d, 1H, J = 8.0 Hz, 14-H), 7.50 (t, 2H, J = 6.8 Hz, 16-H, 7-H), 7.64 (d, 1H, J = 15.9 Hz, 11-H)

3f 1.11 (s, 6H, 5-Me, 5-Me), 1.25 (t, 3H, J = 7.6 Hz, 15-C-Me)1.48–1.52 (m, 2H, 4-H, 4-H), 1.63–1.66 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.6 Hz, 1-Me), 2.10 (t, 2H,
J = 6.1 Hz, 2-H, 2-H), 2.68 (q, 2H, J = 7.6 Hz, 15-C-H, 15-C-H), 6.47 (d, 1H, J = 16.1 Hz, 8-H), 6.96 (d, 1H, J = 15.9 Hz, 10-H), 7.25 (d, 2H, J = 4.5 Hz, 14-H, 16-H), 7.50–
7.53 (m, 3H, 7-H, 13-H, 17-H), 7.65 (d, 1H, J = 15.9 Hz, 11-H)

3g 1.11 (s, 6H, 5-Me, 5-Me), 1.48-1.52 (m, 2H, 4-H, 4-H), 1.60–1.66 (m, 2H, 3-H, 3-H), 1.82 (d, 3H, J = 0.7 Hz, 1-Me), 2.09 (t, 2H, J = 6.1 Hz, 2-H, 2-H), 3.85 (s, 3H, 15-O-
Me), 6.47 (d, 1H, J = 16.0 Hz, 8-H), 6.86–6.93 (m, 3H, 14-H, 16-H, 10-H), 7.45–7.56 (m, 3H, 7-H, 13-H, 17-H), 7.64 (d, 1H, J = 15.9 Hz, 11-H)

3h 1.11 (s, 6H, 5-Me, 5-Me), 1.43 (t, 3H, J = 7.0 Hz, 15-O-C-Me)1.48-1.52 (m, 2H, 4-H, 4-H), 1.62–1.66 (m, 2H, 3-H, 3-H), 1.82 (s, 3H, 1-Me), 2.09 (t, 2H, J = 6.1 Hz, 2-H, 2-
H), 4.07 (q, 2H, J = 7.0 Hz,15-O-C-H, 15-O-C-H), 6.46 (d, 1H, J = 16.0 Hz, 8-H), 6.85–6.92 (m, 3H, 10-H, 14-H, 16-H), 7.45–7.55 (m, 3H, 7-H, 13-H, 17-H), 7.64 (d, 1H,
J = 15.9 Hz, 11-H)

3i 1.13 (s, 6H, 5-Me, 5-Me), 1.49-1.53 (m, 2H, 4-H, 4-H), 1.62–1.67 (m, 2H, 3-H, 3-H), 1.85 (d, 3H, J = 0.6 Hz, 1-Me), 2.12 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 6.48 (d, 1H,
J = 16.3 Hz, 8-H), 7.10 (d, 1H, J = 15.9 Hz, 10-H), 7.55–7.75 (m, 4H, 7-H, 11-H, 13-H, 17-H), 8.24–8.28 (m, 2H, 14-H, 16-H)

3j 1.12 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.63–1.67 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.7 Hz, 1-Me), 2.09 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 2.39 (s, 3H, 14-
Me), 6.48 (d, 1H, J = 16.1 Hz, 8-H), 6.98 (d, 1H, J = 16.0 Hz, 10-H), 7.19–7.32 (m, 2H, 13-H, 15-H), 7.40 (d, 2H, J = 5.8 Hz, 16-H, 17-H), 7.48 (d, 2H, J = 0.8 Hz, 16-H,
17-H), 7.53 (dd, 1H, J = 0.8 and 0.8 Hz, 7-H), 7.64 (d, 1H, J = 15.4 Hz, 11-H)

3k 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.60–1.68 (m, 2H, 3-H, 3-H), 1.82 (d, 3H, J = 0.7 Hz, 1-Me), 2.09 (t, 2H, J = 5.9 Hz, 2-H, 2-H), 3.89 (s, 3H, 13-O-
Me), 6.50 (d, 1H, J = 16.1 Hz, 8-H), 6.91–7.09 (m, 3H, 10-H, 14-H, 16-H), 7.33–7.36 (m, 1H, 15-H), 7.45 (dd, 1H, J = 0.7 and 0.8 Hz, 7-H), 7.59 (q, 1H, J = 3.1 Hz, 17-H),
7.99 (d, 1H, J = 16.2 Hz, 11-H)

3l 1.11 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.60–1.66 (m, 2H, 3-H, 3-H), 1.83 (s, 3H, 1-Me), 2.10 (t, 2H, J = 6.1 Hz, 2-H, 2-H), 2.29 (s, 6H, 14-Me, 15-Me),
6.49 (d, 1H, J = 16.0 Hz, 8-H), 6.95 (d, 1H, J = 15.9 Hz, 10-H), 7.16 (d, 1H, J = 7.6 Hz, 13-H), 7.34 (q, 2H, J = 4.3 Hz, 16-H, 17-H), 7.49 (d, 1H, J = 15.7 Hz, 7-H), 7.63 (d,
1H, J = 15.9 Hz, 11-H)

3m 1.12 (s, 6H, 5-Me, 5-Me), 1.48–1.52 (m, 2H, 4-H, 4-H), 1.63–1.67 (m, 2H, 3-H, 3-H), 1.83 (d, 3H, J = 0.7 Hz, 1-Me), 2.11 (t, 2H, J = 6.2 Hz, 2-H, 2-H), 6.50 (d, 1H,
J = 16.1 Hz, 8-H), 6.93 (d, 1H, J = 16.0 Hz, 10-H), 7.27–7.30 (m, 1H, 16-H), 7.45–7.55 (m, 2H, 7-H, 14-H), 7.62 (d, 1H, J = 8.5 Hz, 17-H), 7.97 (d, 1H, J = 16.0 Hz, 11-H)

doi:10.1371/journal.pone.0099142.t002

Plant Volatile Analogues as Attractants for Insect

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e99142



The mean relative EAG response values to b-ionone (b) was

1.0560.02 for female A. lucorum and 1.1660.34 for males, and the

difference between females and males was not significant

(P = 0.632). In contrast, the response to benzaldehyde (B) was

stronger for females (4.7460.59) than for males (1.3060.17) (P,

0.01), and the response to b-ionone + benzaldehyde (b+B) was also

stronger for females (3.6960.79) than for males (1.2360.39) (P,

0.01) (Fig. 4A).

Among the 13 synthesized compounds, only three (3b, 3g, and

3j) elicited stronger EAG responses from female A. lucorum

antennae than from male antennae; for all other compounds,

male antennae exhibited stronger responses than female antennae

(student’s t-tests P,0.05) (Fig. 4A). Compounds 3 h and 3 m
elicited stronger responses from both female and male antennae

than other analogues (Fig. 4A).

The EAG responses of female antennae were stronger to

compounds 3h, 3j, and 3m than to the positive control b-ionone

(P,0.05), while responses of female antennae were weaker to all

13 analogues than to the positive control benzaldehyde and b-

ionone + benzaldehyde (P,0.05). The responses of male antennae

were stronger to 3d, 3h, 3i, 3k, 3l, and 3m than to b-ionone,

benzaldehyde and b-ionone + benzaldehyde (P,0.05).

The EAG experiment performed in September 2013 showed a

similar pattern as above (Fig. 4B). Our results demonstrate that

most analogues synthesized in this study elicit responses from A.

lucorum and the responses of adult A. lucorum to the samples were

consistent under different time horizons.

Samples of b-ionone, benzaldehyde, b-ionone + benzaldehyde

and 3g that were exposed to air and sunlight for different periods

were tested for their EAG responses with antennae of adult female

and male A. lucorum. In the case of the experiment performed in

July 2013, all samples of b-ionone, benzaldehyde and 3g elicited

EAG responses from female and male A. lucorum antennae

(Fig. 5A). The relative EAG response values to b-ionone,

benzaldehyde and b-ionone + benzaldehyde decreased day by

day. On the contrary, the relative EAG response values to 3g
changed very little over seven days. The EAG experiments were

performed again in September 2013 and showed a similar result

(Fig. 5B).

Figure 3. Active ingredient content of b-ionone, benzaldehyde
and 3 g on different day after exposing them to air and
sunlight for a period up to seven days. (A) Stability tests
performed in May 2013, (B) Stability tests performed in September
2013.
doi:10.1371/journal.pone.0099142.g003

Figure 4. Relative EAG responses (mean ± SD) of female and male A. lucorum to synthetic analogues of b-ionone and benzaldehyde.
(A) EAG experiment performed in May 2012, (B) EAG experiment performed in September 2013. b = b-ionone and B = benzaldehyde. Asterisks
indicate significant differences in EAG responses between female and male antennae: * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0099142.g004
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In behavior experiment, A. lucorum showed preferences for the

pure b-ionone, benzaldehyde, b-ionone + benzaldehyde and 3 g
when tested against solvent dichloromethane (CK). For female A.

lucorum, the differences were only statistically significant for pure

benzaldehyde, b-ionone + benzaldehyde and 3 g (Fig. 6A), but for

male A. lucorum, the differences were statistically significant for all

compounds (Fig. 6B). The differential attractiveness between

odours of b-ionone1d (pure b-ionone left exposing to air and

sunlight for one day, the same below) and CK was not pronounced

in the experiments where they were offered together as choices.

The results obtained in benzaldehyde1d–CK and (b-ionone1d +
benzaldehyde1d)–CK were similar to b-ionone1d–CK foregoing.

Whereas, female and male A. lucorum showed a significant

preference for 3g1d and 3g7d when they were offered next to

CK respectively (Fig. 6C and 6D). Our results demonstrated that

3 g was attractive to adult A. lucorum and its attractiveness persisted

longer than b-ionone, benzaldehyde and b-ionone + benzalde-

hyde.

We then determined whether the analogues of b-ionone and

benzaldehyde could attract A. lucorum in an alfalfa field. The results

showed that the volatiles b-ionone, benzaldehyde and b-ionone +
benzaldehyde (positive controls) attracted significantly more A.

lucorum (females and males) than dichloromethane (blank control,

CK). The number of A. lucorum in traps containing analogue lures

varied with the analogue. Compounds 3a, 3c, 3d, 3j, 3k, and 3m
trapped a moderate number of A. lucorum, while 3b, 3e, 3f, 3g, 3h,

3i, and 3l trapped a high number A. lucorum. In particular, 3g
trapped significantly more A. lucorum than positive control (Fig. 7).

The compounds that were most attractive in the field were not

the same compounds that elicited the strongest EAG responses in

the laboratory. For example, 3d, 3k, and 3m elicited strong EAG

responses in the laboratory but did not result in the trapping of a

high number of A. lucorum in the field. Laboratory EAG

experiment was conducted in an unnatural environment. The

odours in the experimental area, interference from instrument and

human activities may influence the result of EAG experiment. In

addition, field experiment was carried out in a natural environ-

ment. Insect physiological condition, environmental condition and

other factors can affect the efficiency of the tested compounds used

in the fields [11]. Therefore EAG response values may only

represent whether the test compounds stimulate insects, but not

reflect positive correlation with the insects behavior [31–33].

We also determined whether b-ionone, benzaldehyde, b-ionone

+ benzaldehyde or 3 g attracted A. lucorum constantly. The result

showed that b-ionone, benzaldehyde and b-ionone + benzalde-

hyde attracted significantly more A. lucorum than dichloromethane

Figure 5. Relative EAG responses (mean ± SE) of female and male A. lucorum to b-ionone, benzaldehyde, b-ionone + benzaldehyde
and 3 g. (A) EAG experiment performed in July 2013, (B) EAG experiment performed in September 2013. Secondary axis in the chart showed relative
EAG responses of female A. lucorum to benzaldehyde and to b-ionone + benzaldehyde.
doi:10.1371/journal.pone.0099142.g005
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(blank control, Ctrl) in the first two days and then attracted very

little A. lucorum in the last five days. However, the analogue 3 g
trapped sustained and balanced numbers of A. lucorum during

seven days (Fig. 8). This indicated that 3 g possessed persistent

attractiveness to A. lucorum.

Discussion

Plants synthesize and release volatile organic compounds. These

signals can be detected by phytophagous insects via olfactory

sensilla on the antennae and used to locate hosts and avoid non-

host plants [34–36]. Plant volatiles have been artificially synthe-

sized and successfully used as pest attractants in IPM. For

example, methyl anthranilate has been used as an attractant for

the thrips Thrips hawaiiensis Morgan and Thrips coloratus Schmutz

[17]. A blend of cis-3-hexene acetate, linalol, and methyl

jasmonate was shown to be attractive to the Colorado potato

beetle, Leptinotarsa decemlineata (Say) [18].

b-ionone and benzaldehyde are common plant volatiles released

by many kinds of crops [20–23]. Although a recent study indicated

that b-ionone and benzaldehyde can alter the behavior of A.

lucorum adults under laboratory conditions [29], they could not be

efficiently used for pest control in the field because of their low

stability and insufficient attractiveness.

So far there has been no publish about plant volatile analogues

synthesis and their use. In the current study, we try to explore

novel ecological approach to control pest based on synthetic plant

volatile analogues. We first hypothesized and synthesized ana-

logues of b-ionone and benzaldehyde that combined moieties of

the chemicals in order to produce a compound with increased

stability and enhanced attractiveness to A. lucorum adults.

Figure 7. Number of A. lucorum captured in sticky traps (mean ± SD per trap) baited with synthetic analogues of b-ionone and
benzaldehyde during 16–27 July 2012. CK = blank control, b = b-ionone, and B = benzaldehyde, b+B = b-ionone + benzaldehyde. Means with
the same letter are not significantly different.
doi:10.1371/journal.pone.0099142.g007

Figure 6. Choices of adult A. lucorum in the Y-tube olfactometer. (A) female towards pure b-ionone, benzaldehyde, b-ionone + benzaldehyde
and 3 g, (B) male towards pure b-ionone, benzaldehyde, b-ionone + benzaldehyde and 3 g, (C) female towards b-ionone1d, benzaldehyde1d, b-
ionone1d + benzaldehyde1d, 3g1d and 3g7d, (D) male towards b-ionone1d, benzaldehyde1d, b-ionone1d + benzaldehyde1d, 3g1d and 3g7d. The bars
represent the percentage of tested insects that made a particular choice. The asterisks with the choice bars indicate significant preferences. *P,0.05,
**P,0.01, n.s. = not significant, nr = not reacting, r = reacting. Superscript characters of compounds represent the periods that the chemicals left
exposing to air and sunlight.
doi:10.1371/journal.pone.0099142.g006
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In this study, the analogues synthesized were demonstrated to

have high stability compared to the original plant volatiles b-

ionone or benzaldehyde. The laboratory EAG experiment

showed that most of the analogues elicited responses from A.

lucorum adult antennae. The laboratory behavior experiment

displayed that analogue 3 g was attractive to A. lucorum and its

attractiveness persisted longer than the original plant volatiles.

The field experiment indicated that most of the analogues were

attractive to A. lucorum adults. The high stability and persistent

attractiveness of analogue 3 g in particular make it suitable for

field use and potential as an attractant. The results support our

hypothesis that designing and synthesizing analogues by combin-

ing the bioactive components of b-ionone and benzaldehyde

would contribute to increasing stability and enhancing attrac-

tiveness.

Now it’s necessary to increase the number of studies like this

to design, synthesize plant volatile analogues and evaluate their

bioactivities to insect. Once this is accomplished, there is

the possibility of supporting it as a widely-accepted ecolo-

gical approach that may extend its use in pest control in the

field.

Supporting Information

Figure S1 One of the traps deployed in the field
experiment.
(TIF)

Figure S2 Total ionic chromatogram and mass spec-
trum of b-ionone, benzaldehyde and 3 g, treated by
leaving them exposing to air and sunlight for periods.
(TIF)
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