
SOFTWARE TOOL ARTICLE

 PyOmeroUpload: A Python toolkit for uploading images

and metadata to OMERO [version 2; peer review: 2 approved]

Johnny Hay 1,2, Eilidh Troup 1,2, Ivan Clark2, Julian Pietsch2, Tomasz Zieliński 2,
Andrew Millar 2

1EPCC, University of Edinburgh, Edinburgh, EH9 3FD, UK
2SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK

First published: 18 May 2020, 5:96
https://doi.org/10.12688/wellcomeopenres.15853.1
Latest published: 26 Aug 2020, 5:96
https://doi.org/10.12688/wellcomeopenres.15853.2

v2

Abstract
Tools and software that automate repetitive tasks, such as metadata
extraction and deposition to data repositories, are essential for
researchers to share Open Data, routinely. For research that
generates microscopy image data, OMERO is an ideal platform for
storage, annotation and publication according to open research
principles. We present PyOmeroUpload, a Python toolkit for
automatically extracting metadata from experiment logs and text
files, processing images and uploading these payloads to OMERO
servers to create fully annotated, multidimensional datasets. The
toolkit comes packaged in portable, platform-independent Docker
images that enable users to deploy and run the utilities easily,
regardless of Operating System constraints. A selection of use cases is
provided, illustrating the primary capabilities and flexibility offered
with the toolkit, along with a discussion of limitations and potential
future extensions. PyOmeroUpload is available from:
https://github.com/SynthSys/pyOmeroUpload.

Keywords
Data sharing, research data management, microscopy, OMERO,
metadata, Docker

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
26 Aug 2020

report

version 1
18 May 2020 report report

Josh Moore , University of Dundee,

Dundee, UK

Jean-Marie Burel, University of Dundee,

Dundee, UK

Sébastien Besson , University of Dundee,

Dundee, UK

Jason R Swedlow , University of Dundee,

Dundee, UK

1.

Anatole Chessel , LOB, École

polytechnique, Institut Polytechnique de

Paris, Paris, France

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://wellcomeopenresearch.org/articles/5-96/v2
https://wellcomeopenresearch.org/articles/5-96/v2
https://orcid.org/0000-0001-9685-3718
https://orcid.org/0000-0002-5666-8427
https://orcid.org/0000-0002-0194-5706
https://orcid.org/0000-0003-1756-3654
https://doi.org/10.12688/wellcomeopenres.15853.1
https://doi.org/10.12688/wellcomeopenres.15853.2
https://github.com/SynthSys/pyOmeroUpload
https://wellcomeopenresearch.org/articles/5-96/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://wellcomeopenresearch.org/articles/5-96/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0003-4028-811X
https://orcid.org/0000-0001-8783-1429
https://orcid.org/0000-0002-2198-1958
https://orcid.org/0000-0002-1326-6305
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.15853.2&domain=pdf&date_stamp=2020-08-26

Corresponding author: Andrew Millar (Andrew.Millar@ed.ac.uk)
Author roles: Hay J: Conceptualization, Software, Writing – Original Draft Preparation; Troup E: Software; Clark I: Conceptualization,
Resources; Pietsch J: Conceptualization, Resources; Zieliński T: Conceptualization, Supervision, Writing – Original Draft Preparation;
Millar A: Conceptualization, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was funded by the Wellcome Trust [204804; Institutional Strategic Support Fund]. This work was also
supported by the Biotechnology and Biological Sciences Research Council (BBSRC) through the UK Centre for Mammalian Synthetic
Biology [BB/M018040].
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Hay J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Hay J, Troup E, Clark I et al. PyOmeroUpload: A Python toolkit for uploading images and metadata to
OMERO [version 2; peer review: 2 approved] Wellcome Open Research 2020, 5:96 https://doi.org/10.12688/wellcomeopenres.15853.2
First published: 18 May 2020, 5:96 https://doi.org/10.12688/wellcomeopenres.15853.1

Page 2 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

mailto:Andrew.Millar@ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.15853.2
https://doi.org/10.12688/wellcomeopenres.15853.1

Introduction
Background
Creating Open Data through sharing, discovery and re-use of research data are integral activities for promoting
Open Science1. Effective data management, storage and cataloguing strategies are essential for enabling open
research of this sort, and are therefore vital activities for fulfilling the requirements of publicly- and charity-funded
research, as re-stated for example in the BEIS Open Research Data Task Force report (2018) and elsewhere2–4.
Workflows that include regular data sharing can support these activities. To that end, it is imperative that researchers
are empowered with open tools, software and user communities that embed Open Science within ongoing research,
not as an afterthought. We present an open source software toolkit designed to aid researchers by facilitating the
management of imaging data and accompanying metadata.

Contemporary research in cell biology generates substantial volumes of microscopy data. The volume and
velocity of data produced presents challenges for smaller laboratories that typically do not have the infrastructure,
software or expertise to sustain bespoke resources and workflows for this data management task. Data discovery
and re-use depend on high-quality metadata, including detailed descriptions of experimental conditions, materials
used, operational procedures and analysis methods5. Software intended to support this process must therefore
encourage rich metadata definition. The more streamlined the process of depositing data, and enriching data with
metadata that has been captured at the point of generation, the greater the quantity and quality of data that can be
shared.

The foremost open source software platform for managing microscopy image data is Open Microscopy
Environment’s (OME) Remote Objects (OMERO)6,7. OMERO is intended as a complete platform for managing
images in a secure central repository where data can be viewed, organized, analyzed and shared online8. The
platform is frequently updated and supports importing over 150 image formats, full multi-dimensional image
viewing, analysis with scripts and plugins, data conversion and publishing through URLs. OMERO also provides
excellent cataloguing capabilities, where data can be annotated with tags, comments, key-value pairs, tables and
supplementary files; images can be browsed or searched through accordingly, and shared with collaborators.
Another excellent feature of OMERO is that it provides comprehensive support for a variety of users and
software developers in the form of programming APIs for Java, Python, MATLAB and C++. Additionally,
OMERO is supported by a very active community of microscopy researchers, while the OME staff runs regular
workshops and engages very effectively with the online community via support forums.

Rationale
One of the greatest barriers to wide adoption of open research principles and data sharing is the effort required
to deposit data and accompanying metadata into an online repository. Hence solutions that can streamline and
automate this process for researchers are needed. One of the research groups within our centre routinely perform
time-lapse microscopy experiments in which organisms are monitored over a period of hours, with bright-field and
fluorescence images captured every 2.5 minutes (for example Granados et al., 2018)9. The images are acquired
using three optical channels across twenty or more latitudinal/longitudinal positions, through multiple z-planes.
These kinds of data benefit hugely from the multi-dimensional ‘hypercube’ format feature in OMERO, that
allows one single “OMERO image” to represent the whole recorded timeseries in a five-dimensional structure,
including space, time and channel8. At the time of initiating the experiment, the biological context is known
(including strains, medium, and conditions) and it is the optimum moment to capture this information, for example
in a text file. These types of experiments are perfect candidates for automation of data deposition, wherein large

          Amendments from Version 1
The updates in the second version of the article are primarily related to the comments and suggestions from our peer
reviewers. To help users understand how metadata are extracted by default in the toolkit, we have added two new
figures: an excerpt from the example log text file and a screenshot of the resulting Key-Value pairs as they appear in
the OMERO UI. A review of the beneficial effects of adopting the OME-TIFF format in the toolkit has been added to the
discussion section, which we hope will address our reviewers’ comments on the potential advantages of this format for
both interoperability and pyramidal features. There were also two minor enhancements added to the PyOmeroUpload
toolkit implementation as a result of feedback from our reviewers: these include additional CLI parameters for
including provenance metadata, and one to skip metadata extraction entirely. The corresponding GitHub repository
URLs and Zenodo artifact DOIs have been updated in the Software Availability and References sections.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

quantities of images are generated (typically 90,000 raster images or more, constituting 30 GB per experiment) and
detailed descriptions can be constructed by combining technical metadata obtained from the experimental setup
(such as time resolution, exposure time, z-positions) and user input.

Python has become a language of choice for biological applications, so easy integration of image data processing
in this environment is welcome. At the same time, using Python software on Windows platforms – which dominate
laboratories’ IT infrastructure and microscopy management software – can still be cumbersome.

A Python-based tool that facilitates microscopy data deposition was conceived: PyOmeroUpload toolkit, by
which the data generated by laboratories’ microscopes could be programmatically uploaded to an OMERO server
along with experimental metadata, thus removing the burden on researchers of manually performing this process.
PyOmeroUpload performs two principal functions: it parses metadata from user-friendly, human-readable
semi-structured text files and creates multi-dimensional images from a directory structure populated with multiple
images across multiple dimensions, before uploading the reconstituted data and extracted metadata to an OMERO
server. For heavy data producers, this drastically reduces the resource cost of uploading and cataloguing their data and
offers the additional benefit of enforcing lab-specific metadata conventions.

PyOmeroUpload complements the presently available tools for deposition of data and metadata in OMERO:
OMERO.insight10 and OMERO.cli11. The Insight client is a desktop application featuring a rich GUI (Graphical
User Interface) for viewing and importing data, using the Bio-Formats12 library for translation of proprietary file
formats. The CLI is “a set of Python-based system administration, deployment and advanced user tools”13 that
allows users to import images to an OMERO server from the command line, typically via a Shell script. Neither of
these is capable of transforming raw two-dimensional image data into multi-dimensional ‘hypercube’ images, and
neither offers a method of automatic metadata extraction.

The PyOmeroUpload library permits easier interaction with the OMERO server than with the standard API by
presenting a collection of higher-level functions that simplify session management, ad-hoc uploading and
querying. Newer releases (>= 5.6) of the Python OMERO library (omero-py)14 are distributed through PyPi15 and
Conda16, which support Windows, Linux and Mac OS Operating Systems (OS). Previous versions (< 5.5) of the
Python OMERO library were distributed through the Conda Bioconda17 channel, which only supports 64-bit
Linux and Mac OS systems. Since many biology research labs use Windows OS, this constraint presented a
significant obstacle.

To address these issues we prepared pre-packaged, virtualized Docker18 containers that allow easy use of
PyOmeroUpload by both Windows and Linux users directly through the command line, Python Shell, in code or
via Jupyter Notebooks19. Our software was developed during the period that OMERO continued to be built with
Python 2 and distributed through Bioconda, so using the client Python libraries was challenging on Windows
systems, and the Docker solution provided a viable option for Windows users. Although recent releases of
omero-py can be installed through Conda or Pip on all OSs, our fully portable, packaged toolkit offers further
convenience for users since these containers also have the advantage of hiding any systems administration
activities required for accessing OMERO from within Python from less experienced users.

Implementation
PyOmeroUpload
The PyOmeroUpload toolkit software architecture comprises three main components: the metadata parser, data
transfer manager and data broker. The data transfer manager provides a high-level interface for transferring data
in a specified directory structure to a remote OMERO server. The data broker service makes extensive use of the
OMERO Python API modules, exposing core functions for administering HTTP sessions, creating OMERO
datasets and multi-dimensional images, and linking metadata objects. The uploader software is extensible, since
the metadata parser can be replaced if required for a particular use case. Likewise, the image processing can be
performed by a custom code module to compose the data into the multi-dimensional images.

The OMERO Python API is the core dependency for connecting to and managing sessions with the OMERO
server, as well as for retrieving data objects and executing queries. The OMERO API can be used with the Blitz
Gateway, “a Python client-side library that facilitates working with the OMERO API”20, or it can be utilized
via a number of lower ‘service’ levels that provide stateless access. Although accessing the OMERO Python API
with the Blitz Gateway as a context manager is encouraged, we found the stateless service level APIs to be more
powerful and flexible.

Page 4 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

Table 1. OMEROConnect Docker images.

Image Name Description Parent Image Docker Pull Command

omero_base The base image that contains
environment necessary for the OMERO
Python API libraries

openjdk/1122 docker pull biordm/omero-
connect:omero_base

omero_
uploader

Image with the installed PyOmeroUpload
library

omero_base docker pull biordm/omero-
connect:omero_uploader

omero_jupyter Image that contains Jupyter Notebook
server with OMERO API, PyOmeroUpload
and common scientific libraries

omero_uploader docker pull biordm/omero-
connect:omero_jupyter

omero_ide Container with fully-fledged graphical IDE
for python development

omero_jupyter docker pull biordm/omero-
connect:omero_ide

OMEROConnect
To enable the software for Windows OS users, and to minimize complexity, the OMERO Python library and
PyOmeroUpload package are wrapped into portable Docker image definitions provided in the OMEROConnect
repository. These images are specified by a hierarchy of Dockerfiles that build upon one another, inheriting from a
base image which incorporates all the necessary libraries for OMERO access. There are four Docker images in
total, as described in Table 1.

Operation
Installation – Conda
Basic installation on Windows, Linux and Mac OS systems is by Conda, following the typical usage pattern.
The OMERO Python library requires Python 3.6 or greater, so a corresponding Conda environment can be created.
The commands14 are as follows:

$ conda create -n omero_upload -c ome python=3.6 zeroc-ice36-python omero-py

$ conda activate omero_upload

$ pip install git+https://github.com/SynthSys/pyOmeroUpload.git@v5.6.2_2.0.0

Alternatively, the provided Docker containers can be used instead, as described in the section below.

Installation – Docker
For an alternative installation using pre-built Docker images, which work regardless of host OS or available
system libraries, Docker containers can be deployed (and the instructions at https://docs.docker.com/docker-for-
windows/install/ can be followed to install Docker for Windows). The relevant Docker images can be pulled from
DockerHub21 with the commands listed in the table above.

For example, to utilize the library from the command line, the following commands can be executed (for downloading
the Docker image, starting the Docker container, connecting to it and accessing the uploader library):

$ docker pull biordm/omero-connect:omero_uploader

$ docker run -t -d --name omero-uploader --entrypoint /bin/bash biordm/omero-
connect:omero_uploader

In order to access local files, the docker volume should be mapped to a local folder using the -v command option.
For instance, to access data in C:\Temp\omero_data, the command is as follows (where the local mounted files
will be available in the ~/work directory from within the container):

$ docker run -t -d --name omero-uploader -v
'/c/Temp/omero_data:/home/jovyan/work:rw' --entrypoint /bin/bash biordm/omero-
connect:omero_uploader

Page 5 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Hint: Windows users should enable access to the local drive in the Docker Desktop app settings (under
Settings » Resources » File Sharing).

Hint: Before running a Docker container with new parameters, the old one must be removed first, or the new one
can be labelled with a different name to avoid conflicts.

Hint: Some useful commands for listing all containers, stopping and removing a container are as follows:

$ docker ps -a
$ docker stop {CONTAINER_ID}
$ docker rm {CONTAINER_ID}

Using the toolkit
The main entry point is the function launch_upload in the PyOmeroUploader class of the pyomero_upload
module. The function accepts parameters for creating a connection to the desired remote OMERO server and
for defining the location of metadata and image files. For example, the following commands can be executed
from within the Python Shell (Windows users must run this from within the Docker container, after the `docker
exec…` command):

$ python
>>> from pyomero_upload.pyomero_upload import PyOmeroUploader
>>> uploader = PyOmeroUploader('USERNAME', 'PASSWORD', 'demo.openmicroscopy.org')
>>> uploader.launch_upload('dataset_name', '/path/to/data', True)

Use cases
The toolkit has been designed with a range of researchers, data generators, curators and developers in mind so a
variety of use cases can be explored.

To demonstrate the use cases below, we use the Docker images, as they work on both Linux-like and Windows
systems, and provide test data to be used in the examples below. Follow the steps below (in Windows PowerShell)
before exploring the use cases:

retrieving test data

$ cd C:\Temp
$ git clone https://github.com/SynthSys/omero_connect_demo

getting and starting Omero connect docker

$ docker pull biordm/omero-connect:omero_jupyter

$ docker run --name omero-jupyter -p 8888:8888 -v
'/c/Temp/omero_connect_demo:/home/jovyan/work:rw' biordm/omero-connect:omero_
jupyter

These commands download the demo Jupyter notebooks and data from the omero_connect_demo repository,
then run a container named omero-jupyter which has a work directory linked to the downloaded demo data
(at C:\Temp\omero_connect_demo).

The user should see output similar to that in Figure 1, where the localhost with exposed port URL and unique token
are provided for accessing the Jupyter Notebook instance running in the Docker container. The user should make a
note of the access token (the string starting with “token=”) as it is needed to access the notebooks, and leave this
terminal open in the background with the running Docker container.

In the use cases below, the OMERO public demo server is the target instance; users must provide their own
login credentials for access to this server, and this requires registration23. You can register for a free demo account
for OMERO at https://help.openmicroscopy.org/demo-server.html.

Page 6 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://help.openmicroscopy.org/demo-server.html

Figure 1. Windows PowerShell terminal showing output of the Docker run command for an omero_jupyter 
container.

Use case 1: uploading a data folder
The primary use case is for data generators and curators who wish to deposit their data in an OMERO server,
typically as part of a data sharing workflow. PyOmeroUpload can be of particular benefit to these users because
it supports the automation of such processes by including a CLI tool that is easily integrated with other programs
or scripts.

We provided a simple script – upload_cli – that invokes the necessary Python functions to perform an upload,
and it can be modified for individual needs. To upload the provided test data (mapped from the local file syste
 in the steps above) into the OMERO demo server, run the following commands from a new shell window:

$ docker exec -it omero-jupyter bash
$ cd work
$ python -m pyomero_upload.upload_cli -d test_data -n my_first_dataset -u USER -s
demo.openmicroscopy.org -y

After completion, the script creates a new dataset in demo OMERO. The dataset consists of 3 cubes with additional
dimensions for 3 channels and 3 timepoints as shown in Figure 2.

For more advanced use cases, the provided data transfer script can be invoked with additional parameters as
described in the README under https://github.com/SynthSys/pyOmeroUpload/blob/master/README.md.

The provided, default implementation transforms images into five-dimensional hypercubes following the rules:

1. Target directory contains sub-directories named ‘pos{xxx}’, each of which corresponds to a microscope
position, where ‘{xxx}’ is a unique numeric identifier for that position

2. Within each sub-directory, there are multiple image files per z-section, time point and channel

3. Each image file adheres to a naming convention of ‘{abc}_{timepoint}_{channel}_{z-section}’ where ‘{abc}’
can be any arbitrary string

For insight into how the metadata is extracted by the default metadata parser, the ‘*Acq.txt’ and ‘*log.txt’
files can be inspected (in the test_data). For ease of reference, an excerpt of the beginning of the example
‘*log.txt’ file is shown in Figure 3. The metadata tags and key-value pairs in OMERO are generated from
colon-delimited key-value pairs in the text files, while the tables are generated from tab-separated tabular text and
attached to the dataset as ‘h5’ files. Examples of the KVPs are displayed below in Figure 4. Pre-defined regular
expressions are used to extract particular elements of metadata, and these could be modified for individual needs.

Use case 2: interactive OMERO operations with Jupyter
In the second use case, users can interact with OMERO through Jupyter Notebooks using the provided docker
image.

Page 7 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://github.com/SynthSys/pyOmeroUpload/blob/master/README.md

Figure 2. Screenshot of an uploaded hypercube image as displayed in the OMERO web client ‘iviewer’ GUI.

Figure  3. Text in the log.txt file that is parsed, and where KVPs are extracted from, by the default
PyOmeroUpload metadata extractor.

Page 8 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

Figure 4. Screenshot of the KVPs as they appear in the OMERO server UI.

Using the same Docker container as before in Use Case 1, users should pay attention to the startup screen as in
Figure 1. When the Docker container is started for the first time, a unique token is displayed for accessing the
Jupyter Notebook instance running within. The token must be provided either in the URL or on the login page to
access the Jupyter Notebook, and if the Docker container is restarted then this token is not displayed again.

By visiting the address http://127.0.0.1:8888 in a browser, the Jupyter Notebook server can be accessed, and the
notebooks shown in the table below are available in the ‘work’ directory (after logging in with the token). To
begin with, the omero_upload notebook demonstrates invocation of the launch_upload entry point function with
appropriate parameters. After running the upload cell is completed, the output will report the number of images
deposited along with the destination dataset identifier. Once data are uploaded, the target server is queried in a
successive cell to retrieve and verify the corresponding dataset. The query notebook provides more extensive
(meta)data retrieval and exploration operations, while the API notebook utilizes the OMERO JSON API to
retrieve metadata through an alternative mechanism (see Table 2).

It is possible to use the notebooks on Linux-like platforms outside of the Docker container, after following the
relevant installation steps for the pyOmeroUpload library.

These notebooks demonstrate interactions with OMERO, and can be adapted for deeper analysis and visuali-
zation using the preinstalled Python libraries such as for example Pandas24, NumPy25, Matplotlib26 and seaborn27.
If other Python libraries are required, they can be installed with the following commands:

$ docker exec -it omero-jupyter bash
$ conda install {PACKAGE_NAME}

Use case 3: implementing a custom metadata parser or image processing module
There are myriad file formats, structures and ontologies associated with metadata collected during experimental
data generation. The captured metadata are stored either in semi-structured text or according to customized schema.
It would be an impossible task to develop a software that could extract meaningful information from such a variety

Page 9 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

http://127.0.0.1:8888

Table 2. Demonstration Jupyter Notebooks.

Sample Notebook Description Features

omero_upload.ipynb Demonstrates how to connect upload data
by invoking the PyOmeroUpload

• Importing modules
• Configuring OMERO server connection

parameters
• Uploading a data directory

omero_query.ipynb Demonstrates how to query the (meta)data
services using the standard OMERO Python
library

• Using OMERO Python library client
• Constructing and executing

parameterized HQL queries
• Exploring the OMERO object model

and hierarchy

omero_api.ipynb Demonstrates how to query the (meta)data
services using the OMERO JSON API28,
without depending on the PyOmeroUpload
client

• Using the Python ‘requests’29 library to
connect with and query the OMERO
JSON API over HTTP

• Processing JSON responses

of inputs. Therefore, the PyOmeroUpload toolkit is designed with modularity in mind, allowing specification of a
custom metadata parser and image processing module at runtime.

The custom metadata parser extends the abstract base class ‘MetadataParser’. The interface is simple and
mandates only one function, ‘extract_metadata’, which must return a Python dictionary containing a description
and any metadata tags, key-value pairs and table elements in the form of ‘{ “description”: “”, “tags”: [], “kvps”: [],
“tables”: [] }’. The tags list is simply a collection of string values while the KVPs list is a nested array contain-
ing keys paired alongside their corresponding values within sub-arrays, and the tables list is a collection of Pandas
DataFrame30 objects, complete with name attributes that have been assigned a value. The dictionary object is
then passed to the broker instance which processes and uploads the metadata as children objects linked with the
parent dataset in the OMERO server. Our own implementation, ‘MetadataAggregator’ which combines extracted
metadata from two further implementations – ‘AcqMetadataParser’ and ‘LogMetadataParser’ – can be used as an
example of the parser.

The structure of the metadata parsing component in PyOmeroUpload permits a great deal of flexibility for
customisation. For example, users can easily create an alternative implementation that extracts imaging parame-
ters from various custom acquisition programs, or makes use of the utilities provided by BioFormats for doing so.
By capturing the technical microscopy metadata (for example channels and exposure times etc.) in addition to
experimental metadata (for example strains, project aims and related research etc.) which preserves the biological
context of the data, such custom parsers could help to enrich the data deposited in OMERO.

Customized classes for image processing should inherit from the image processor interface, and must implement
the ‘process_image’ function which expects a reference to the current OMERO server session connection, a file
path, and a reference to the target OMERO dataset object. The function should contain the logic required to pre-
process for example to form the hypercubes and upload them to OMERO server. The example implementation is the
‘DefaultImageProcessor’ in the ‘omero_data_transfer.default_image_processor’ module.

For the convenience of developers, we created the omero_ide Docker which provides JetBrains’ PyCharm31 IDE
(Integrated Development Environment) and Codium32, the Open Source software binaries of VSCode33. The
container runs an OpenSSH34 server that enables users to establish an X1135 SSH connection so that the IDE GUI
can be displayed, as if the IDE is running on the host system. For Linux and Mac OS users, the connection can
be established simply by entering the standard `ssh -X jovyan@127.0.0.1 -p 2222` in the command terminal. For
Windows users, an X Server application must be installed such as MobaXTerm36 or XMing37.

Use case 4: updating the OMERO Python library dependency
Like all software packages, maintainability of the toolkit is vital to achieve sustained, long term use. Since the
OMERO software itself is regularly updated and the OMERO libraries are sensitive to parity between versions, it is
essential to equip the toolkit with a convenient mechanism for updating the constituent versions.

Page 10 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

In order to update the core OMERO Python library, the omero_base image Dockerfile contains two static
variables: ‘OMERO_VERSION’ and ‘ZEROC_ICE_PACKAGE’. If necessary, these variables can be modified to
meet the requirements of the target OMERO server version. The only requirement is that the relevant ‘omero-py’
library14 is available in the Python Package Index (PyPI) repository15. After updating these version variables, then the
Docker images need to be rebuilt as described in their README. Fortunately, the PyOmeroUpload toolkit is
resilient to differences between versions of the core OMERO client library and target server; for example,
v5.6.2_2.0.0 – which depends on version 5.6.2 of the OMERO client library – has been tested and found to be
compatible with target servers running OMERO 5.4.10. This feature mitigates the need for regular updates in the
Docker images to keep pace with OMERO releases, and allows one uploader Docker container to interoperate
with multiple different servers running various versions of OMERO.

Results from a real example
The PyOmeroUpload toolkit was used to upload two datasets to the public OMERO demonstration server. The
original microscopy data in each dataset comprised around 90,000 individual 512 × 512 pixel, covering 25
microscope positions, 3 channels, 5 z-sections and 240 timepoints. This amounted to approximately 30GB per
dataset. The data in each dataset was structured into one directory per microscope position, containing individual
files that adhered to a file naming convention specifying the channel, z-section and timepoint of each image, with
metadata residing at the top directory level in two semi-structured text files. The toolkit was executed using the
default included metadata parser and image processor classes as described in the Operation section above. The
project containing these datasets is published on the University of Edinburgh School of Biology public OMERO
server at https://publicomero.bio.ed.ac.uk/webclient/?show=project-55. After uploading, each dataset contained
25 hypercube images corresponding to each microscope position, with the individual components of each
hypercube accessible in the OMERO server full viewer.

Discussion
Modern research relies on various data types and management techniques, so it is implausible to conceive
of one software platform that can cater for the needs of all research groups even within a moderate-sized
Department. Specialized resources and tools such as OMERO, which is dedicated only to microscopy data, and
Jupyter notebooks for data analysis, are key to providing satisfactory user experience and unlocking maximum
value from using a data repository. However, the diverse systems must interoperate such that relationships
between different datasets are captured and existing metadata are reused. Minimizing the “human” factor in data
deposition and automation of the process assures high quality data and improves the productivity of experimen-
tal researchers. Our work seeks to facilitate programmatic access to data resources, as a key contribution to the
integrated and sustainable research data management envisaged by the FAIR principles38.

Our expected users are biological or biomedical researchers who apply, and perhaps develop, automated
microscopy and analysis to perform increasingly data-rich studies. They necessarily prioritize research innovation
and data generation, rather than underpinning software development. We therefore address the interaction of this
user group with the specialized resources that add value to data for them.

The many benefits of the OMERO ecosystem are noted above. Development of the toolkit was driven by a few,
specific barriers for researchers wishing to deposit their data conveniently into OMERO: namely, dependen-
cies on OpenSSL system libraries and Java security certificates; compatibility between different versions of client
libraries and server installations; and the resulting deleterious impact on the portability of solutions built to harness
the power and adaptability of the Python OMERO API. Many of these issues have been addressed with the recent
release of omero-py 5.614, especially the difficulties around installation of Python OMERO libraries on Microsoft
Windows OS, which are now largely resolved since the upgrade to Python 3 and migration to PyPi. Prior to this
release, the OMEROConnect Docker images provided a viable and convenient method for Windows users to
utilize the OMERO Python library. While the OMERO ecosystem provides good user experience for manual
interaction with microscopy data, we tried to address some of the issues with automated or programmatic access
to the repository from a Python environment.

One potential feature that would benefit OMERO is the implementation of a full featured RESTful39 API. Using
standard HTTP methods to upload and retrieve (meta)data in an OMERO server through JSON payloads and
multipart file attachments would completely remove the dependency on a bespoke client library (other than one
for handling HTTP requests), thus maximizing interoperability. However, it must be acknowledged that many
of the file formats supported by OMERO via the Bio-Formats library are complex, with multiple constituents and
particular conversion sequences that are performed on the client side rather than on the server. OMERO does expose

Page 11 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://publicomero.bio.ed.ac.uk/webclient/?show=project-55

a JSON API which provides some CRUD (Create, Read, Update, Delete) operations but it does not mimic all the
functions available in the client library.

As an effective compromise between flexibility and interoperability, the RESTful API could make use of an
open, exchangeable image format that would streamline the image data ingest process; a perfect candidate for
this standardisation would be the OME-TIFF format. The advantages with this format are that image planes consti-
tuting a 5D image can be stored within one multi-page TIFF file, and OME-XML metadata blocks are embedded
in each TIFF file’s header40, so it is extremely portable. The format also supports the generation of pyramidal
levels from large resolution planes41, allowing whole slide images or very large acquisitions to be handled
efficiently in OMERO.

Utilisation of the OME-TIFF format could present an alternative approach to the current implementation of
PyOmeroUpload, which leverages raw pixel format, and in principle PyOmeroUpload could convert image direc-
tory structures into OME-TIFF using the existing libraries42,43. However, uploading image data in its original
format, rather than in raw pixel format, requires use of the OMERO CLI tool. We found this method is less
portable because it depends on additional binaries being installed and we had difficulty making it work in a
Jupyter Notebook environment. Ideally, the benefits of the OME-TIFF format for direct upload to an OMERO
server could be maximised through a native Python image import implementation or the RESTful API.

In the future, PyOmeroUpload could be combined with additional image processing implementations that could
make use of machine or deep learning libraries which would pre-process the image data, performing tasks such as
denoising, segmentation and feature detection. The results could be applied as ROIs to the images in OMERO,
further enriching attached metadata.

Summary
The PyOmeroUpload toolkit assists users of OMERO with the tasks of uploading, annotating and sharing their
(meta)data using programmatic access from a python environment. It provides an extensible framework for
automating a data deposition workflow by allowing specification of metadata extraction and image processing
modules, while insulating the user from the lower-level interactions and exposing a simpler API for typical data
sharing tasks.

Data availability
The sample data utilized in the upload demonstration operations are maintained in the SynthSys GitHub repository
at https://github.com/SynthSys/omero_connect_demo/releases/tag/v1.0.0.

Data relating to the referenced Granados (2018) paper are published at https://publicomero.bio.ed.ac.uk/webclient/
?show=project-55

Software availability
PyOmeroUpload Toolkit

1. Docker images are available from: https://hub.docker.com/r/biordm/omero-connect

2. Source code is available from: https://github.com/SynthSys/pyOmeroUpload

3. Release of source code at time of publication is available from: https://github.com/SynthSys/pyOmeroUpload/
releases/tag/v5.6.2_2.2.0

4. Archived source code at time of publication: https://doi.org/10.5281/zenodo.398233444

5. Licence: MIT

OMEROConnect Docker Images
1. Docker images are available from: https://hub.docker.com/r/biordm/omero-connect

2. Source code is available from: https://github.com/SynthSys/OMEROConnect

3. Release of source code at time of publication is available from: https://github.com/SynthSys/OMEROCon-
nect/releases/tag/v5.6.2_2.2.0

4. Archived source code at time of publication: https://doi.org/10.5281/zenodo.398231145

5. Licence: MIT

Page 12 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://github.com/SynthSys/omero_connect_demo/releases/tag/v1.0.0
https://publicomero.bio.ed.ac.uk/webclient/?show=project-55
https://publicomero.bio.ed.ac.uk/webclient/?show=project-55
https://hub.docker.com/r/biordm/omero-connect
https://github.com/SynthSys/pyOmeroUpload
https://github.com/SynthSys/pyOmeroUpload/releases/tag/v5.6.2_2.2.0
https://github.com/SynthSys/pyOmeroUpload/releases/tag/v5.6.2_2.2.0
https://doi.org/10.5281/zenodo.3982334
https://opensource.org/licenses/MIT
https://hub.docker.com/r/biordm/omero-connect
https://github.com/SynthSys/OMEROConnect
https://github.com/SynthSys/OMEROConnect/releases/tag/v5.6.2_2.2.0
https://github.com/SynthSys/OMEROConnect/releases/tag/v5.6.2_2.2.0
https://doi.org/10.5281/zenodo.3982311
https://opensource.org/licenses/MIT

References

1. Molloy JC: The Open Knowledge Foundation: Open Data Means
Better Science. PLoS Biol. 2011; 9(12): e1001195.
PubMed Abstract | Publisher Full Text | Free Full Text 

2. HEFCE, RCUK, UUK & Wellcome: Concordat on Open Research 
Data. 2016.
Reference Source

3. The Open Research Data Task Force: Realising the Potential:
Final Report of the Open Research Data Task Force. 2018.
Reference Source

4. Scottish Science Advisory Council: Open Research: How data
sharing can advance scientific impact in Scotland. 2019.
Reference Source

5. Zielinski T, Hay J, Millar AJ: The grant is dead, long live the data
- migration as a pragmatic exit strategy for research data 
preservation [version 2; peer review: 2 approved]. Wellcome
Open Res. 2019; 4: 104.
PubMed Abstract | Publisher Full Text | Free Full Text 

6. The Open Microscopy Environment: The Open Microscopy 
Environment - OMERO. openmicroscopy.org. 2020.
Reference Source

7. Swedlow JR, Goldberg IG, Eliceiri KW, et al.: Bioimage Informatics 
for Experimental Biology. Annu Rev Biophys. 2009; 38: 327–346.
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Allan C, Burel JM, Moore J, et al.: OMERO: flexible, model-driven
data management for experimental biology. Nat Methods.
2012; 9(3): 245–253.
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Granados AA, Pietsch JMJ, Cepeda-Humerez SA, et al.: Distributed 
and dynamic intracellular organization of extracellular 
information. Proc Natl Acad Sci U S A. 2018; 115(23): 6088–6093.
PubMed Abstract | Publisher Full Text | Free Full Text 

10. The Open Microscopy Environment: Importing Data with 
OMERO.insight Version 5. Open Microscopy Environment (OME) |
Help.
Reference Source

11. The Open Microscopy Environment: Import images — OMERO 
5.4.10 documentation. Open Microscopy Environment (OME) |
Docs. 2019.
Reference Source

12. The Open Microscopy Environment: The Open Microscopy 
Environment - Bio-Formats. openmicroscopy.org. 2020.
Reference Source

13. The Open Microscopy Environment: OMERO clients overview 
— OMERO 5.4.10 documentation. Open Microscopy Environment
(OME) | Docs. 2019.
Reference Source

14. The Open Microscopy Team: omero-py: Python bindings to the

OMERO.blitz server. Open Microscopy Environment, 2020.
15. Python Software Foundation: PyPI · The Python Package Index.

PyPI. 2020.
Reference Source

16. Anaconda, Inc: Conda | Conda documentation. Conda. 2017.
Reference Source

17. Grüning B, Dale R, Sjödin A, et al.: Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat
Methods. 2018; 15(7): 475–476.
PubMed Abstract | Publisher Full Text 

18. Docker Inc: Empowering App Development for Developers | 
Docker. Docker. 2020.
Reference Source

19. Project Jupyter: Project Jupyter. Project Jupyter. 2020.
Reference Source

20. The Open Microscopy Environment: Blitz Gateway 
documentation — OMERO 5.5.1 documentation. Open
Microscopy Environment (OME) | Docs. 2019.
Reference Source

21. Docker Inc: Docker Hub. Docker Hub. 2020.
Reference Source

22. Docker Inc: Docker Hub | OpenJDK. Docker Hub. 2020.
Reference Source

23. The Open Microscopy Environment: OMERO Demo Server. Open
Microscopy Environment (OME) | Help. 2018.
Reference Source

24. The PyData Development Team: pandas: Powerful data
structures for data analysis, time series, and statistics.
2020.

25. NumPy Developers: numpy: NumPy is the fundamental
package for array computing with Python. 2020.
Reference Source

26. Hunter JD, Droettboom M: matplotlib: Python plotting package.
2020.
Reference Source

27. Waskom M: seaborn: seaborn: statistical data visualization.
2020.
Reference Source

28. The Open Microscopy Environment: JSON API — OMERO 5.4.10 
documentation. Open Microscopy Environment (OME) | Docs. 2019.
Reference Source

29. Reitz K: requests: Python HTTP for Humans. 2020.
Reference Source

30. The Pandas Development Team: pandas.DataFrame — pandas 
1.0.3 documentation. Pandas | API Reference. 2014.
Reference Source

OMEROConnect Demo Notebooks
1. Source code is available from: https://github.com/SynthSys/omero_connect_demo

2. Release of source code at time of publication is available from: https://github.com/SynthSys/omero_
connect_demo/releases/tag/v1.0.0

3. Archived source code at time of publication: https://doi.org/10.5281/zenodo.374651446

4. Licence: MIT

Acknowledgments
The authors thank The Open Microscopy Environment team for providing such comprehensive software
platforms, packages, tools and support, and for assistance in making effective use of the OMERO client library API.

Finally, the authors thank the Bioconda Development Team for assistance with creating, merging and re-building
packages for the Conda channel.

Page 13 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

http://www.ncbi.nlm.nih.gov/pubmed/22162946
http://dx.doi.org/10.1371/journal.pbio.1001195
http://www.ncbi.nlm.nih.gov/pmc/articles/3232214
https://www.ukri.org/files/legacy/documents/concordatonopenresearchdata-pdf/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/775006/Realising-the-potential-ORDTF-July-2018.pdf
https://www.scottishscience.org.uk/sites/default/files/article-attachments/SSAC Briefing Note - Open Research.pdf
http://www.ncbi.nlm.nih.gov/pubmed/31363499
http://dx.doi.org/10.12688/wellcomeopenres.15341.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6652102
https://www.openmicroscopy.org/omero/
http://www.ncbi.nlm.nih.gov/pubmed/19416072
http://dx.doi.org/10.1146/annurev.biophys.050708.133641
http://www.ncbi.nlm.nih.gov/pmc/articles/3522875
http://www.ncbi.nlm.nih.gov/pubmed/22373911
http://dx.doi.org/10.1038/nmeth.1896
http://www.ncbi.nlm.nih.gov/pmc/articles/3437820
http://www.ncbi.nlm.nih.gov/pubmed/29784812
http://dx.doi.org/10.1073/pnas.1716659115
http://www.ncbi.nlm.nih.gov/pmc/articles/6003323
https://help.openmicroscopy.org/importing-data-5.html
https://docs.openmicroscopy.org/omero/5.4.10/users/cli/import.html
https://www.openmicroscopy.org/bio-formats/
https://docs.openmicroscopy.org/omero/5.4.10/users/clients-overview.html
https://pypi.org/
https://conda.io/en/latest/
http://www.ncbi.nlm.nih.gov/pubmed/29967506
http://dx.doi.org/10.1038/s41592-018-0046-7
https://www.docker.com/
https://jupyter.org/
https://docs.openmicroscopy.org/omero/5.5.1/developers/PythonBlitzGateway.html
https://hub.docker.com/
https://hub.docker.com/_/openjdk
https://help.openmicroscopy.org/demo-server.html
https://github.com/numpy/numpy
https://pypi.org/project/matplotlib/
https://seaborn.pydata.org/
https://docs.openmicroscopy.org/omero/5.4.10/developers/json-api.html
https://requests.readthedocs.io/en/master/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/SynthSys/omero_connect_demo
https://github.com/SynthSys/omero_connect_demo/releases/tag/v1.0.0
https://github.com/SynthSys/omero_connect_demo/releases/tag/v1.0.0
http://dx.doi.org/10.5281/zenodo.3746514
https://opensource.org/licenses/MIT

31. JetBrains s.r.o: PyCharm: the Python IDE for Professional
Developers by JetBrains. JetBrains. 2020.
Reference Source

32. O’Brien T: VSCodium - Open Source Binaries of VSCode.
VSCodium.com. 2020.
Reference Source

33. Microsoft: Visual Studio Code - Code Editing. Redefined. Visual
Studio Code. 2020.
Reference Source

34. OpenBSD Project: OpenSSH. OpenSSH. 2020.
Reference Source

35. The X.Org Foundation: X.Org. X.Org. 2019.
Reference Source

36. Mobatek: MobaXterm free Xserver and tabbed SSH client for
Windows. 2020.
Reference Source

37. Harrison C: Xming X Server for Windows - Official Website.
straightrunning.com. 2020.
Reference Source

38. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al.: The FAIR 
Guiding Principles for scientific data management and
stewardship. Sci Data. 2016; 3: 160018.
PubMed Abstract | Publisher Full Text | Free Full Text 

39. Wikipedia: Representational state transfer. Wikipedia. 2020.
Reference Source

40. The Open Microscopy Environment:The Open Microscopy Environment: The OME-TIFF format 
— OMERO 6.0.1 documentation. Open Microscopy Environment
(OME) | Docs. 2019.
Reference Source

41. The OME Blog: Update on the OME-TIFF pyramidal format.
Open Microscopy Environment (OME) | Blog. 2018.
Reference Source

42.	 CellProfiler: CellProfiler/python-bioformats. CellProfiler.
(Original work published 2014). [Python]. 2020.
Reference Source

43. APEER: Apeer-Micro/Apeer-Ometiff-Library. APEER. (Original
work published 2019). [Python]. 2020.
Reference Source

44. Hay J, Zielinski T: pyOmeroUpload (Version v5.6.2_2.2.0). Zenodo.
2020.
http://www.doi.org/10.5281/zenodo.3982334

45. Hay J, Zielinski T: OMEROConnect (Version v5.6.2_2.2.0). Zenodo.
2020.
http://www.doi.org/10.5281/zenodo.3982311

46. Hay J, Zielinski T: omero_connect_demo (Version v1.0.0). Zenodo.
2020.
http://www.doi.org/10.5281/zenodo.3746514

Page 14 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://www.jetbrains.com/pycharm/
https://vscodium.com/
https://code.visualstudio.com/
https://www.openssh.com/
https://www.x.org/wiki/
https://mobaxterm.mobatek.net/
http://www.straightrunning.com/XmingNotes/
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pmc/articles/4792175
https://en.wikipedia.org/wiki/Representational_state_transfer
https://docs.openmicroscopy.org/ome-model/6.0.1/ome-tiff
https://blog.openmicroscopy.org/file-formats/community/2018/11/29/ometiffpyramid/
https://github.com/CellProfiler/python-bioformats
https://github.com/apeer-micro/apeer-ometiff-library
http://www.doi.org/10.5281/zenodo.3982334
http://www.doi.org/10.5281/zenodo.3982311
http://www.doi.org/10.5281/zenodo.3746514

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 27 August 2020

https://doi.org/10.21956/wellcomeopenres.17849.r40177

© 2020 Chessel A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Anatole Chessel
LOB, École polytechnique, Institut Polytechnique de Paris, Paris, France

No further comments.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioimage informatics, biological data science, computational biology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 28 July 2020

https://doi.org/10.21956/wellcomeopenres.17390.r39530

© 2020 Chessel A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Anatole Chessel
LOB, École polytechnique, Institut Polytechnique de Paris, Paris, France

Hay et al. propose a toolkit in python meant to help with the loading of imaging data and
metadata into an OMERO instance. They provide easy to use docker containers all the way to
jupyter notebooks exemplifying the use of their tool on a demo server.
While the idea of FAIR open data is increasingly getting traction across the scientific community, in

Page 15 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://doi.org/10.21956/wellcomeopenres.17849.r40177
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1326-6305
https://doi.org/10.21956/wellcomeopenres.17390.r39530
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1326-6305

actual practice many issues, sometime seemingly low level, can make the actual sharing, or even
just local management, of complex data surprisingly hard. The PyOmeroUpload toolkit, which
interact with OMERO, arguably the most widely used client-server software for microscopy image
management, aims at easing one key step of data management workflow, actually getting data in
the data management system. Great care has obviously been put in making an easy to use and
easy to maintain system and the paper is well written and very didactic, and one can only hope
that it will be used in practice and ease the life of many researchers worldwide.

A few minor comments/questions:

More advanced examples, including a few line of standard ‘*Acq.txt’ and ‘*log.txt’, or the
predefined regular expression, would have helped in showing what is available out of the
box and what would need additional work to implement.

○

Increasingly acquisition are becoming so large as to need specialized pyramidal format. A
few of those are now available in OMERO, how compatible would PyOmeroUpload be with
them?

○

Some advanced options of OMERO import include linking the data instead of copying it, to
avoid data duplication. Would they be easy to include in PyOmeroUpload?

○

As noted by the authors, the addition of ROIs would be an interesting next step, either via
'on the fly' analysis or the reading of precomputed rois files. The format of those is even less
standard that images unfortunately...

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioimage informatics, biological data science, computational biology

I confirm that I have read this submission and believe that I have an appropriate level of

Page 16 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Aug 2020
Johnny Hay,

Thank you for your constructive and positive review, our detailed responses are listed below
:

More advanced examples, including a few line of standard ‘*Acq.txt’ and ‘*log.txt’, or
the predefined regular expression, would have helped in showing what is available
out of the box and what would need additional work to implement.

We have added an excerpt of the example log.txt file in the 'Use Case 1'
section, and we hope that users can refer to the 'omero_connect_demo'
example data repository for further details. The provided parser supports all
the forms of annotations currently available in OMERO.

○

○

Increasingly acquisition are becoming so large as to need specialized pyramidal
format. A few of those are now available in OMERO, how compatible would
PyOmeroUpload be with them?

This is an excellent point: supporting large resolution pyramidal formats would
be a very useful feature for PyOmeroUpload. We added discussion of using
OME-TIFF format as an alternative approach in the discussion section.

○

○

Some advanced options of OMERO import include linking the data instead of copying
it, to avoid data duplication. Would they be easy to include in PyOmeroUpload?

Due to the hierarchical many-to-many data structure in OMERO, it is possible
and indeed preferable to link multiple different parent containers with the
same child images rather than copy these child elements, which results in
inefficiencies of duplication.The challenges to implementing this feature are
primarily related to defining ‘uniqueness’ in uploaded data: that is, which
attributes of an entity in OMERO constitute its unique ID? In the case of
uploaded images, PyOmeroUpload could of course run a preliminary scan of all
the images owned by the active user to compare original filenames or titles,
and if the filename of the image to be uploaded already exists on the server.
However, that is very use case specific i.e. depends on naming conventions,
tags used etc. so such feature enhancement in PyOmeroUpload would require
careful consideration, although technically it is entirely feasible

○

○

As noted by the authors, the addition of ROIs would be an interesting next step,
either via 'on the fly' analysis or the reading of precomputed rois files.

The most suitable candidate format for standardising and persisting OMERO
ROI annotations is OME-XML. At present the main mechanism for importing
and exporting ROIs that we found is the OME ROI tool
(https://github.com/glencoesoftware/ome-omero-roitool), which is a Java
implementation for parsing OME-XML. To integrate this tool, it would be
necessary to invoke the Java application as a process from the PyOmeroUpload
toolkit. Alternatively, it may be possible to either embed the OME-XML in an
OME-TIFF image file header, or to attach the ROIs as separate OME-XML file
annotations linked with the image. However, it is not immediately clear how
easily these file annotations could then be viewed in the OMERO UI. It would

○

○

Page 17 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

certainly be an interesting feature to explore, especially to enable easier
sharing of image analyses.

Competing Interests: No competing interests were disclosed.

Reviewer Report 25 June 2020

https://doi.org/10.21956/wellcomeopenres.17390.r38747

© 2020 Swedlow J et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Josh Moore
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK
Jean-Marie Burel
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK

Sébastien Besson
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK

Jason R Swedlow
Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee,
UK

Summary
This manuscript describes an extension of OMERO, the open source data management system
built and released by OME. PyOmeroUpload is a series of Python tools, packaged in a Docker
container, that aims to simplify the upload and import of imaging datasets from the command
line. Overall, the paper is clearly written and PyOmeroUpload is a great example of how the wider
community can extend open source infrastructure and tools to meet the needs of imaging data
handling, curation and publication. The default pipeline includes tools that convert imaging data
stored in a custom internal file format and publish it into a multi-dimensional representation
enriched with tags and key/value pairs. A few core metadata concepts are missing from the
generated output like physical pixel sizes as well as channel metadata like wavelengths however,
these can be added in later iterations of the tool. The authors have included a public data set
generated by the software as a proof-of-concept and this is very useful for assessing output.

Minor Points. These all reflect impressions of the PyOmeroUpload itself. The manuscript is quite
clear and easy to comprehend.

PyOmeroUpload uses the OMERO API to create OMERO multi-dimensional images. Has the 1.

Page 18 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://doi.org/10.21956/wellcomeopenres.17390.r38747
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4028-811X
http://orcid.org/0000-0001-8783-1429
http://orcid.org/0000-0002-2198-1958

alternate approach of converting the original files into an open exchangeable format like
OME-TIFF been discussed as part of the design (cf
http://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/,
https://forum.image.sc/t/converting-whole-slide-images-to-ome-tiff-a-new-workflow/32110
)?

In terms of curated metadata, while PyOmeroUpload offers some flexibility on types of
annotations the user can access, the public proof of concept hosted on the Univ of
Edinburgh server uses tags as the primary mechanism to capture and search annotations.
An example using key/value annotations might be also useful. We suggest this-- and it is
only a suggestion-- only because K-Vs have proven to be extremely powerful for annotation
and search in our work on IDR (https://www.nature.com/articles/nmeth.4326).

2.

Thinking about ease of use and adoption of the tool, it seems that the user needs to define
a valid file *log.txt and a file *acq.txt. Ideally this should be optional to make the application
more generic. The authors might consider making these yml files.

3.

For the purposes of promoting PyOmeroUpload and capturing provenance, the data it
imports could include an annotation that refers to the tool used for import. Has there been
some consideration of including the name and version of the tool and maybe the DOI of the
paper as systematic tags and or key/value pairs?

4.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: We are members of OME (https://openmicroscopy.org) and develop and
release OMERO, an open source image data management application used in this paper.

Reviewer Expertise: cell biology, cell cycle, imaging, image informatics

We confirm that we have read this submission and believe that we have an appropriate level

Page 19 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

http://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/
https://forum.image.sc/t/converting-whole-slide-images-to-ome-tiff-a-new-workflow/32110
https://www.nature.com/articles/nmeth.4326

of expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Aug 2020
Johnny Hay,

Thank you for your constructive and positive review, we are pleased to know that the main
OMERO authors find our toolkit to be a useful extension. Our detailed responses are listed
below:

PyOmeroUpload uses the OMERO API to create OMERO multi-dimensional images.
Has the alternate approach of converting the original files into an open exchangeable
format like OME-TIFF been discussed as part of the design.

This is an excellent idea, and we have added a review of the benefits of
converting the original files into OME-TIFF format in the discussion
section. However, we had difficulty uploading images directly in the original
format using the existing API due to the dependency on additional CLI
binaries.

○

○

In terms of curated metadata, while PyOmeroUpload offers some flexibility on types
of annotations the user can access, the public proof of concept hosted on the Univ of
Edinburgh server uses tags as the primary mechanism to capture and search
annotations. An example using key/value annotations might be also useful. 

The KVP annotation is indeed a very powerful feature. PyOmeroUpload toolkit
does in fact already provide support for automatically extracting KVPs. An
excerpt of the relevant experimental log file has been added to the 'Use Case 1'
section along with a screenshot of the KVPs as they appear on the OMERO UI.

○

○

Thinking about ease of use and adoption of the tool, it seems that the user needs to
define a valid file *log.txt and a file *acq.txt. Ideally this should be optional to make
the application more generic. The authors might consider making these yml files.   

This suggestion is an elegant solution to address the dependency on the
*log.txt and *acq.txt in the default metadata parser. In the latest release
of PyOmeroUpload, we have introduced another CLI parameter '-x' that allows
users to specify whether the metadata extraction task should be skipped.
Additionally, if the user forgets to specify this argument, the application applies
enhanced logic to detect whether the file(s) are missing and report back to the
user if so, but continues with the upload process regardless.
The semi-structured metadata format (the log and acq files) are “biologist”
friendly, and as such they can be easily understood/edited by users. Based on
our experience, yml files are perceived as more complex and daunting,
although they would be far preferable in terms of programmatic
interoperability and metadata structure.

○

○

For the purposes of promoting PyOmeroUpload and capturing provenance, the data
it imports could include an annotation that refers to the tool used for import.

Another great suggestion, and we have added these Key/Value pairs to
uploads by default: ['Uploaded With', 'pyOmeroUpload x.x.x'] and
['PyOmeroUpload', 'https://github.com/SynthSys/pyOmeroUpload']. These

○

○

Page 20 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

https://github.com/SynthSys/pyOmeroUpload

metadata elements can be disabled by the user through another CLI
parameter if desired.

Competing Interests: No competing interests were disclosed.

Page 21 of 21

Wellcome Open Research 2020, 5:96 Last updated: 27 AUG 2020

