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Abstract

Control measures are necessary to contain the spread of serious infectious diseases such

as COVID-19, especially in its early stage. We propose to use temporal reproduction num-

ber an extension of effective reproduction number, to evaluate the efficacy of control mea-

sures, and establish a Monte-Carlo method to estimate the temporal reproduction number

without complete information about symptom onsets. The province-level analysis indicates

that the effective reproduction numbers of the majority of provinces in mainland China got

down to < 1 just by one week from the setting of control measures, and the temporal repro-

duction number of the week [15 Feb, 21 Feb] is only about 0.18. It is therefore likely that Chi-

nese control measures on COVID-19 are effective and efficient, though more research

needs to be performed.

Introduction

Emerged from Wuhan City, the novel coronavirus diseases rapidly expanded since December

2019. Early analyses indicated that COVID-19 has middle-to-high transmissibility, with pre-

liminary estimation of basic reproduction number R0 lying in the range [2.0, 4.0], e.g., 1.4-3.9

[1], 2.47-2.86 [2] and 2.8-3.9 [3]. After a period of stealthy spread, on 20 January 2020,

COVID-19 was identified as a B-type infectious disease in China, and the control measures

were set according to the standard of A-type infectious disease. Roughly speaking, 21 January

2020 can be considered as the starting date of control, on which every province in China took

COVID-19 spread as an emergency event and launched strong control measures according to

directives of the central government. These control measures have achieved remarkable suc-

cess, with daily number of confirmed cases quickly decreasing after a short expansion lasting

about two weeks from 21 January 2020.

In general, basic reproduction number R0 can be used to characterize the transmissibility of

infectious diseases. It refers to the average number of individuals who will be infected by one

infected case in a fully susceptible population without external interventions. Without control,

infectious diseases will gradually die out if R0 < 1, will spread exponentially and become
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epidemics if R0 > 1, and will become endemic in the population if R0� 1. The basic reproduc-

tion number is far different for different infectious diseases, for example, Zika: 1.4-6.6 [4],

H1N1: 1.4-3.1 [5], dengue: 1.52-3.90 [6], Ebola: 1.3-2.7 [7], SARS: 2.2-3.7 [8], MERS: 2.0-6.7

[9], smallpox: 3.5-6.0 [10], measles: 12-18 [11], pertussis: 12-17 [12], etc. Usually, it is difficult

to directly measure the value of R0 since R0 is affected by numerous biological, sociobehavioral,

and environmental factors [13], and thus statistical models are widely applied to estimate R0

[14–17].

We always assume the population is fully susceptible without control measures in estimat-

ing the value of R0. However, during the epidemic spreading, various control measures will be

introduced to contain the spread, so we should adopt time-related reproduction number to

quantify the temporal situation of the spread and the control efficacy. The most intuitive met-

ric is the effective reproduction number Rt, which is defined as the average number of second-

ary cases infected by an infected case with symptom onset at day t. Various methods to

estimate Rt under different scenarios were proposed in the literature [18–23].

If complete information about who infects whom is known, Rt can be determined by simply

counting secondary cases. However, tracing information is usually incomplete or not timely

available, and thus statistical approaches are required. Willinga and Teunis [24] proposed a

likelihood-based method to estimate Rt from the epidemic curve and the distribution of gener-

ation intervals, which works only for the period in which all secondary cases would have been

detected, thus resulting in a time lag about 19 days for COVID-19 (95th percentile of the distri-

bution of generation intervals [1]). By accounting for yet unobserved secondary cases via

Bayesian inference, Cauchemez et al. [25] extended the Wallinga-Teunis method to provide

real-time estimates of Rt.

In real world, the situation may be even worse, where not only the complete tracing records,

but also the full epidemic curves are unknown. In order to deal with such situation, we pro-

posed a Monte-Carlo method to estimate the full epidemic curve by using a small number of

cases with known symptom onsets, and then to estimate the reproduction number.

Materials and methods

Estimation of Rt

Distribution of generation intervals and epidemic curve are two main inputs to estimate Rt,

where generation intervals refer to time intervals between symptom onsets of index cases and

their infected cases, and the epidemic curve records the number of cases with symptom onsets

at each day. According to the empirical observations [1], the distribution of generation inter-

vals, q(tg), can be approximated by a Gamma distribution [26]:

qðtgÞ ¼
b
a

GðaÞ
ta� 1

g e� btg ðtg > 0Þ; ð1Þ

where α� 4.866 is the shape parameter and β� 0.649 is the inverse scale parameter. Given

two cases i and j with symptom onset times being ti and tj, the likelihood that case i is infected

by case j (ti> tj) is thus

rij ¼
qðti � tjÞ

P
k;ti>tk

qðti � tkÞ
: ð2Þ
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Wallinga and Teunis [24] suggested that the expected number of secondary cases infected

by case j can be estimated by the sum of likelihoods, as

Rj ¼
X

i;ti>tj

rij: ð3Þ

The effective reproduction number can thus be estimated as

Rt ¼
1

jCtj

X

j2Ct

Rj; ð4Þ

where Ct is the set of cases with symptom onsets at day t. Obviously, Rt = Rj if j 2 Ct since in

the Wallinga-Teunis method, cases with the same symptom onset time have the same expected

number of secondary cases.

We further consider the task to calculate the effective reproduction number Rt given the

last known onset time T. Obviously, only if T> t, this task is possible. If T � t þ tmax
g with tmax

g

denoting the maximum generation interval, we can directly apply the Wallinga-Teunis

method. However, if t < T < t þ tmax
g , we need to introduce an additional step with Bayesian

inference [25]. Assuming the mean number of secondary cases infected by a case with symp-

tom onset at day t can be decomposed by two parts as

Rt ¼ R�t ðTÞ þ Rþt ðTÞ; ð5Þ

where R�t ðTÞ and Rþt ðTÞ are the mean numbers of secondary cases with symptom onsets

before or at T and after T, respectively. The value of R�t ðTÞ can be directly estimated by using

the Wallinga-Teunis method, and thus we can infer the effective reproduction number as

Rt ¼
R�t ðTÞ
XT� t

tg¼1

qðtgÞ
:

ð6Þ

Temporal reproduction number

In this paper, we also consider a slightly different reproduction number, called the temporal

reproduction number, to include the period-dependent metric R½t1 ;t2�ðt1 � t2Þ that is defined as

the average number of secondary cases infected by an infected case with symptoms onset dur-

ing the time period [t1, t2] [27]. Accordingly, Rt is a special case of R½t1 ;t2 � when t1 = t2 = t. Simi-

lar to the effective reproduction number, the temporal reproduction number can be estimated

as

R½t1 ;t2� ¼
1

jC½t1 ;t2 �j

X

j2C½t1 ;t2 �

Rj; ð7Þ

where C½t1 ;t2� is the set of cases with symptom onsets in the range [t1, t2].

Inferring the epidemic curve

For both methods proposed by Willinga and Teunis [24] and Cauchemez et al. [25], the epi-

demic curve must be given so as to estimate the effective reproduction number or temporal

reproduction number. However, we usually face an even-worse condition about data
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accessibility, where not only the complete tracing records, but also the full epidemic curve is

unknown. For example, the number of confirmed cases of COVID-19 for each province in

mainland China is made public every day, while the symptom onset of each case is not

reported by Chinese CDC. Using the collected records with both known symptom onsets and

confirmed dates from scattered reports, we can obtain the empirical distribution of time inter-

vals between symptom onsets and laboratory confirmations, say p(tΔ). Then, we develop a

Monte-Carlo method to infer the epidemic curve. Given a case i confirmed at day t(i), sample a

time interval tðiÞD according to the distribution p(tΔ) and set i0s symptom onset as ti ¼ tðiÞ � tðiÞD .

Specifically, the uniform stochastic model U(0, 1) is used to sample time intervals between

symptom onsets and laboratory confirmations. that is, we use uniform stochastic model U(0,

1) to return a random number z between 0 and 1, and then the time interval tðiÞD is defined by

the constrain PðtðiÞD � 1Þ < z � PðtðiÞD Þ, where P(tΔ) is the cumulative distribution correspond-

ing to p(tΔ). Combining it with the methods mentioned above, we can estimate effective repro-

duction number and temporal reproduction number, and thus evaluate the efficacy of control

measures.

In this paper, we implement S = 10000 independent runs to obtain the mean values and

confidence intervals. Furthermore, we take the interval time between the symptom onsets and

laboratory confirmations as the statistic variable X, and use K-S test [28] to estimate the mar-

ginal error ε, as

ε ¼ Das; ð8Þ

Da ¼ 0:888=
ffiffiffi
S
p

; ð9Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

i¼1

X2

i �

�
1

S

XS

i¼1
Xi

�2
s

; ð10Þ

where S is the sample size (i.e., the number of independent runs), σ is the standard deviation, α
is the significance level, and Dα is the critical value. In our work, the marginal error is ε =

0.0379 subject to α = 0.05 and S = 10000.

In summary, the proposed method can be decomposited into three parts, namely, inputs,

output and processes. The inputs include the distribution of generation intervals, the symptom

onsets of some cases, and the laboratory confirmations of all cases. The output of the model is

the estimated effective reproduction number Rt. In the processes, we estimate the distribution

of intervals between symptom onsets and laboratory confirmations based on the cases with

known symptom onsets and laboratory confirmations and apply the Monte Carlo sampling

method to estimate the symptom onsets of other cases based on their laboratory confirma-

tions. So that, the epidemic curve of all cases can be approximately obtained. Finally, the effec-

tive reproduction number is estimated according to the epidemic curve and the distribution of

generational intervals. The inputs, output and processes of the proposed method are illustrated

in Fig 1.

Results

We have collected all 76936 confirmed cases reported in official websites, which are the known

ensemble for the mainland China from 11 January 2020 to 22 February 2020. The detailed

quantitative information of daily number of confirmed cases is from National Health Com-

mission of China whose URL address is http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml. A

very small fraction (4.74%) of these confirmed cases (i.e. 3650 cases) with known symptom
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onsets are collected from the six provinces that have reported such information. Since all prov-

inces except Hubei applied almost the same control measures, the samples are representative.

The confirmed cases for Tibet and Qinghai are only 1 and 15, so we do not analyze these two

provinces.

Based on the six provinces with records of symptom onsets, we have checked that individ-

ual distributions are close to each other and can be well resembled by the synthesized distribu-

tion (see Fig 2).

Moreover, as shown in Fig 3, the synthesized distribution p(tΔ) can be well fitted by a trans-

lational Weibull distribution [29]:

pðtDÞ ¼
a

b

�
tD þ g
b

�a� 1

e�
tDþg
bð Þ

a

; ð11Þ

where the shape parameter α� 1.48, the scale parameter β� 7.03, and the translational

parameter γ = 0.10. We introduce the translational parameter because some cases are con-

firmed immediately so p(0)> 0, while the original Weibull distribution gives p(0) = 0 for any

shape parameter and scale parameter.

The province-level results are shown in Table 1. These results demonstrate the impressive

achievement by control measures, namely Rt for the majority of provinces decreased to< 1

within one week from the starting date of control. Even for Hubei, the epidemic was under

control (Rt< 1) in just two weeks. In addition, within a month, the average temporal repro-

duction number over all provinces already decayed to 0.18, a very small value corresponding

to a dying phase of the epidemic. Fig 4 reports the estimated Rt for each province from 10 Jan-

uary 2020 to 21 February 2020 by using the present method.

Furthermore, we propose a so-called 5Γ-model with N = 1, 000, 000 individuals to illustrate

the reliability of the present method. The spreading starts with 10 initially infected individuals,

and all infected and susceptible individuals are fully mixed. In the simulation, in each time

step (i.e., a day), the number of contacted individuals of each infected case is independently

Fig 1. The inputs, output and processes of the proposed method.

https://doi.org/10.1371/journal.pone.0246715.g001
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Fig 2. Comparison between the synthesized distribution of time intervals between symptom onsets and

confirmations (red solid line) and individual distributions of Sichuan, Guangdong, Anhui, Henan, Jiangxi and

Zhejiang (gray data points).

https://doi.org/10.1371/journal.pone.0246715.g002

Fig 3. Comparison between the synthesized distribution of time intervals between symptom onsets and

confirmations (red circles) and the fitting curve (blue curve) that obeys the translational Weibull distribution

(11).

https://doi.org/10.1371/journal.pone.0246715.g003
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drawn from the Gamma distribution Γ1. For each contact between an infected individual and

a susceptible individual, the infected probability is independently drawn from the Gamma dis-

tribution Γ2. The time intervals between symptom onsets and laboratory confirmations obey

the Gamma distribution Γ3. The generation intervals obey the Gamma distribution Γ4. The

time intervals between laboratory confirmations and removals from the dynamics (i.e., died,

recovered, effectively isolated, etc.) obey the Gamma distribution Γ5. The means and variances

of all the five Gamma distributions are listed in Table 2.

We assume that the symptom onsets of 20% randomly selected confirmed cases are known,

and the laboratory confirmations of all cases are known. The effective reproduction number Rt

can be directly counted by the simulation model as all transmission chains are known. We

compare the accuracy of our method and that of the Wallinga-Teunis method, with simulation

results being the benchmark. As shown in Fig 5, the effective reproduction numbers estimated

by our method are very close to the benchmark values and remarkably more accurate than

those obtained by the Wallinga-Teunis method. We have also checked that our estimations

work well subject to other reasonable settings of distributions and parameters.

Table 1. Results for all provinces in mainland China except Tibet and Qinghai, where the confirmed cases are too few to do statistics. For each province, we show: (i)

the number of cumulated confirmed cases by 22 February 2020; (2) the date t� when Rt got below 1; and (iii) the temporal reproduction number during the last week [15

February 2020, 21 February 2020]. The results are averaged over 10000 independent runs.

Province Number of cumulated confirmed cases Date t� when Rt below 1 Temporal reproduction number of the last week

Fujian 298 2020/1/23 0.1365

Liaoning 121 2020/1/23 0.0053

Yunnan 174 2020/1/23 0.2039

Shanghai 335 2020/1/24 0.1967

Zhejiang 1205 2020/1/24 0.2895

Chongqing 573 2020/1/24 0.2463

Beijing 399 2020/1/25 0.2493

Gansu 91 2020/1/25 0

Guangdong 1342 2020/1/25 0.1088

Guangxi 249 2020/1/25 0.3232

Hunan 1016 2020/1/25 0.1321

Shaanxi 245 2020/1/25 0.3002

Sichuan 526 2020/1/25 0.1757

Henan 1271 2020/1/26 0.0848

Nei Monggol 75 2020/1/26 0.3176

Ningxia 71 2020/1/26 0.0146

Shanxi 132 2020/1/26 0.278

Shandong 754 2020/1/27 0.4977

Anhui 989 2020/1/27 0.082

Hainan 168 2020/1/27 0.3487

Jiangsu 631 2020/1/27 0.0901

Jiangxi 934 2020/1/27 0.0556

Tianjin 135 2020/1/27 0.4241

Hebei 311 2020/1/28 0.1736

Jilin 91 2020/1/28 0.1651

Guizhou 146 2020/1/29 0.0156

Heilongjiang 480 2020/1/29 0.1307

Xinjiang 76 2020/1/30 0.132

Hubei 64287 2020/2/2 0.0491

https://doi.org/10.1371/journal.pone.0246715.t001
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Fig 4. Effective reproduction numbers for all provinces in mainland China from 10 January 2020 to 21 February 2020.

The results are averaged over 10000 independent runs, and the cyan areas denote the 95% confidence intervals. In each run,

the Monte-Carlo sampling method is applied to infer the symptom onsets. The gray shadows emphasize the situations where

the epidemic is under control (Rt< 1).

https://doi.org/10.1371/journal.pone.0246715.g004
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Discussion

A Monte-Carlo method is proposed to infer the epidemic curve, and then estimate the tempo-

ral reproduction number. Our results suggest that Chinese control measures are likely to be

effective and efficient, with daily number of confirmed cases quickly decreasing after a short

expansion lasting about two weeks from 21 January 2020. By introducing a Monte-Carlo

method to estimate the symptom onsets of confirmed cases based on a small number of cases

with known symptom onsets, our method can utilize the information of all cases to calculate

the effective reproduction number. In comparison, the Wallinga-Teunis method can only

make use of the cases with both known symptom onsets and laboratory confirmations. As

shown in Fig 5, our method produces obviously more accurate results than the Wallinga-Teu-

nis method. One underlying assumption in our method is that the small number of samples

are representative of all cases. This is a reasonable assumption for mainland China since con-

trol measures in different provinces are very much the same, all executing directives from the

central government. However, in general, if the samples and the inferred cases are in different

spreading stages or different areas, the reliability of the present method has to be carefully

Table 2. The means and variances of the five Gamma distributions used in the simulation model.

Distribution Mean Variance

Γ1 15 10

Γ2 0.009 1.8 × 10 −6

Γ3 5 2

Γ4 7.5 3.4

Γ5 20 8

https://doi.org/10.1371/journal.pone.0246715.t002

Fig 5. The comparison of effective reproduction numbers directly counted based on the simulation results (blue

squares) and estimated by the Wallinga-Teunis method (black triangles) and our method (red circles). The results

obtained by the Wallinga-Teunis method and our method are both averaged over 10000 independent runs.

https://doi.org/10.1371/journal.pone.0246715.g005

PLOS ONE Evaluating the effect of Chinese control measures on COVID-19 via temporal reproduction number estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0246715 February 11, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0246715.t002
https://doi.org/10.1371/journal.pone.0246715.g005
https://doi.org/10.1371/journal.pone.0246715


checked before any applications. For example, in US, cases in a few states cannot represent the

whole country since different states may adopt different controlling strategies and launch dif-

ferent control measures.

The distribution p(tΔ) is not stable, usually with smaller and smaller mean and standard

deviation in the progress of an epidemic [18]. Fig 6 compares the estimates of effective repro-

duction numbers by the true and inferred records of symptom onsets for the six provinces

with known symptom onsets. At the very beginning, the estimates from inferred data are

smaller than the ones from true records, but they are getting closer and closer and show almost

the same t� in the later stage. Indeed, we still overestimate the reproduction number in the

early stage, because a large fraction of cases (except Hubei) are importations [18, 30]. Fortu-

nately, the present method shows accordance with the one accounting for importations. For

example, Rt of the three example provinces (Guangdong, Hunan and Shandong) approach 1 at

23 January 2020, 26 January 2020 and 30 January 2020 by the method in [30] and at 25 January

2020, 25 January 2020 and 27 January 2020 by the present method. In a word, this method can

be further improved by considering importations [18, 30] and using Markov-Chain Monte-

Carlo algorithm based on independent transmission assumption [31–33].

Government-led actions likely played a role in the reduction of new COVID-19 cases. In

order to block transmission and reduce public health hazards, the “five early” measures,

namely “early detection, early report, early investigation, early isolation and early treatment”,

are implemented. Early detection.—Rapid detection and diagnosis to promote the timely and

effective management of confirmed and suspected cases. Early report.—Immediate report to

the disease control department about confirmed and suspected cases to start investigation and

treatment as soon as possible. Early investigation.—Quick epidemiological investigation on the

Fig 6. Comparison between the estimates of effective reproduction numbers by the true and inferred records of symptom onsets. The solid blue curves and cyan

areas respectively denote the average values and 95% confidence intervals obtained by 10000 independent runs according to the inferred data. The red circles represent

the results obtained by the true records. The gray shadows emphasize the situations where the epidemic is under control (Rt< 1). The six plots are results for Sichuan,

Guangdong, Anhui, Henan, Jiangxi and Zhejiang.

https://doi.org/10.1371/journal.pone.0246715.g006
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exposure and detailed contacts of confirmed and suspected cases. Through such investigation,

we can find out the transmission chain of each case, so as to comprehensively manage all possi-

ble infected individuals related to each case. Early isolation.—All confirmed and suspected

cases, as well as their close contacts will be isolated as soon as possible. Early treatment.—
Quick providing of proper treatment (symptomatic treatment, supportive treatment, antiviral

treatment via traditional Chinese medicine, etc.) to prevent the development of symptom. To

efficiently and effectively implement the “five early” measures, some advanced information

techniques are employed to trace the epidemic spreading. For example, in many cities, the QR

codes [34, 35] (similar to these used for online payments) are posted in public transport means

(buses, subway stations, taxies, etc.), places with possible crowds (supermarkets, bazaars, res-

taurants, office buildings, etc.) and places worth particular attention (drugstores). People are

asked to scan the codes before entering, so the administrators can get the corresponding

check-in records with identifications (mobile phone ID). Therefore, if a person is laboratory

confirmed or identified as a suspected case, the administrators will know immediately and

exactly the persons who have possible contacts with this case by simply searching the check-in

records. This operation is completely automatic with private information being protected if an

individual is not laboratory confirmed, suspected or having close contacts with the above two

kinds of people (even one is confirmed, her/his personal information is only used in fighting

the disease). Fig 7 illustrates an example of the QR codes, which was posted in a bus in

Chengdu City of Sichuan Province, and people are required to scan the code before getting on

the bus. Therefore, if a confirmed or suspected case has taken this bus, we can immediately

find out people who have also taken this bus in the same time period. This is in our opinion a

simple but perfect tool in the epidemiological perspective to efficiently and effectively block

the spread through communities.

Supporting information

S1 Dataset.

(RAR)

Fig 7. Illustration of an example of the QR codes to trace the epidemic in mainland China. This is the one posted

in a public bus in Chengdu City. In the bottom, a Chinese character followed by A11345 is the plate number of this

bus, and the character is the abbreviation of Sichuan Province.

https://doi.org/10.1371/journal.pone.0246715.g007
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