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PPARs are ligand activated transcription factors. PPAR𝛾 agonists have been reported as a new and potentially efficacious treatment
of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are
potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the
metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPAR𝛾. The use of
synthetic PPAR𝛾 ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular
basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor
signalling mechanisms.This paper will discuss the function and role of PPAR𝛾 in energy metabolism and cancer biology in general
and its emergence as a promising therapeutic target in breast cancer.

1. Introduction

The peroxisome proliferator-activated receptors (PPARs)
are ligand activated transcription factors, belonging to the
nuclear receptor superfamily, that control the expression of
genes involved in organogenesis, inflammation, cell differen-
tiation, proliferation, lipid, and carbohydrate metabolism [1,
2]. PPARs activated by their selected ligands, heterodimerizes
and its receptor with the 9-cis-retinoic acid receptor, they
then bind to peroxisome proliferator response elements
(PPREs), specific sequences in their target genes. The con-
sensus PPRE site consists of a direct repeat of the sequence
AGGTCA separated by a single/double nucleotide, which
is designated as DR-1 site/DR-2 site [3] (Figure 1). Each
major isoforms of PPAR (PPAR𝛼, PPAR𝛽/𝛿, and PPAR𝛾),
encoded by a different gene, performs different functions
and exhibit different tissue localizations in many parts of
the human body [4]. The peroxisome proliferator-activated

receptor 𝛾 (PPAR𝛾) is themost extensively studied subtype of
the PPARs [5]. PPAR𝛾 is expressed in adipose tissue, colon,
immune system, hematopoietic cells, and retina involved in
lipid anabolism, adipocyte differentiation, control of inflam-
mation, macrophage maturation, embryo implantation, and
molecular targets of antidiabetic thiazolidinediones [6]. Its
role in cancer development and potential as a target for cancer
prevention and treatment strategies has been noted in recent
years. Activation of PPAR𝛾 could possibly be an approach to
induce differentiation in cells thereby inhibiting proliferation
of a variety of cancers. This antiproliferative effect has been
reported in many different cancer cell lines including breast
[7], colon [8], prostate [9], and non-small-cell lung cancer
[10]. In particular, breast tissue was found to express PPAR𝛾
in amounts greater than those found in normal breast
epithelium. Ligand activated PPAR𝛾 is reported to inhibit
invasion and metastasis of breast cancer cells and induce
G1/S arrest by upregulation of p21WAF1/Cip1 or p27Kip1,
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Figure 1: PPAR gamma activation mechanism. PPRE and PACMmotifs are shown.

and downregulation of cyclin D1 [11–13]. Moreover, PPAR𝛾
on activation by specific ligands exerts antitumor activity
through growth inhibition and cellular differentiation [14–
17]. Imbalances in expression of target genes forms the core of
metabolic syndrome and cancer regulation through athero-
genic metabolic triad/lipid triad metabolism modulation by
PPARs [18]. Despite these promising results, the target genes
involved in the anticancer activity of PPAR𝛾 ligands and their
pathways still remain elusive.

Breast cancer is the fifth most common cancer globally
and accounts for the highest morbidity and mortality. It is
the second highest occurring cancer in women and one of
the leading causes of death [19]. Although antiestrogens have
provided an effective endocrine therapy, a significant propor-
tion of patients have acquired resistance to these drugs, others
are intrinsically resistant [20]. Hence, there is a requirement
for alternative therapeutics to treat breast cancer. Develop-
ment of selective anticancer agents based on the biological
differences between normal and cancer cells is essential to
improve therapeutic selectivity, sensitivity, and specificity. A
list of genes reported in the literature to be regulated by
PPAR𝛾 and involved in breast cancer is shown in Figure 2.

Differences in energy metabolism between normal and
cancer cells are reported and alterations in cellular bioener-
getics are one of the hallmarks of cancer [21]. The general
principles of metabolic control analysis can be effective for
cancer management as abnormal energy metabolism and
biological disorder are characteristics of tumors [22]. In line
with this, increased aerobic glycolysis and elevated oxidative
stress are two prominent biochemical features frequently
observed in cancer cells, as shownby theWarburg hypothesis.
This paper will discuss the function and role of PPAR𝛾 in

energy metabolism and cancer biology in general and its
emergence as a promising therapeutic target in breast cancer.

2. Glycolysis and Cancer

Coordinated upregulation of glycolysis pathway proteins
has been detected in several different tumor types includ-
ing breast cancer tumors [23–26]. Amon et al. identified
increased levels of glycolysis proteins in plasmas of women
with breast cancer [27]. Glycolysis for ATP synthesis rather
than oxidative phosphorylation occurs primarily when cells
are deprived of oxygen, but the Warburg hypothesis suggests
the central role of glycolysis in cancer and tumor cells even in
the presence of oxygen [28]. Warburg determined that there
is a tenfold increase of glucose consumption in cancer cells
as compared to normal cells, and a twofold production of
lactic acid as compared to that produced by normal tissue.
Cancer cells are provided with several growth advantages like
growth of cells in adverse microenvironment, generation of
substrates for glycosylation reactions, and supply of precur-
sors for biosynthetic reactions by aerobic glycolysis/enhanced
glucose uptake [29, 30]. Recent reports indicate that mTOR
activation is a key regulator of the Warburg effect leading to
upregulation of glycolytic enzymes [31, 32]. Aerobic glycolysis
is disadvantageous and detrimental as compared to oxidative
phosphorylation due to the low ATP yield (only 2mol
ATP/mole of glucose while oxidative metabolism of glucose
results in about 36mol ATP/mole of glucose) as compared
to investment as well as lactic acidosis that may result from
Cori’s cycle that follows aerobic glycolysis resulting in release
of proteolytic enzymes and therefore local toxicity including
cell death and extracellular matrix degradation [33, 34].
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Figure 2: PPAR gamma gene targets and their pathways.

A recent report suggests that a relatively minor fraction
(<30%) of a cancer cell’s aerobic ATP production is derived
from glycolysis according to mass balance analyses [35].
Conflicting evidence suggests that hydrogen ions production
by glycolysis create the acidic environment responsible for
degradation of the extracellular matrix, critical for facilitat-
ing tumor invasion into normal host tissue [36]. Adaptive
advantages are also conferred by increased glycolysis (or
pentose phosphate metabolism) if it allows excess pyruvate
to be available for lipid synthesis or providing essential
anabolic substrates, such as ribose for nucleic acid synthesis
[37]. Glucose consumption through the pentose pathway
may also provide essential reducing equivalents (NADPH)
to reduce the toxicity of reactive oxygen species conferring
resistance to senescence and anabolic substrates such as
ribose for nucleic acid synthesis [38]. These evolutionary
advantages can explain the remarkable prevalence of the
glycolytic phenotype in human cancers and the otherwise
puzzling observation that malignant cells remain glycolytic
even in the presence of normoxia. This conceptual model
of constitutive upregulation of glycolysis has been demon-
strated by empirical studies and is consistently observed
during the transition from premalignant lesions and invasive
cancer [39, 40]. It is interesting to note that several of the
glycolytic enzymes have isoformswhich are expressed only in
malignant cells and thus can be potential targets for therapy
(Figure 3). This is important since aerobic glycolysis is an
existing metabolic function in all eukaryotic cells and using
normal isoforms as target for cancer therapeutics may lead to

cytotoxicity issues. Interestingly, hypoxia-mediatedHIF-1 has
been suggested to lead to the expression of specific isoforms
of glycolytic enzymes and transporters through alternative
splicing. Pre-mRNA splicing has been reported to play a
core role in “orchestrating” cellular stress phrase to gene-
expression profiles [41]. A multiphasic response including
increased expression of components of the glycolytic path-
ways including membrane glucose transporters in a HIF-
1-dependent manner is elicited by upregulation of the HIF
system [42]. Concurrently, PPAR𝛾 activates a number of
genes in tissues increasing glucose and lipid uptake and
glucose oxidation, simultaneously decreasing free fatty acid
concentration and insulin resistance. Hence, targeted thera-
pies may be eventually led by understanding the molecular
and physiological causes and consequences of upregulated
glycolysis and modulation of these. In line with the above,
cancer treatment strategies through the target of energy
metabolism of cancer could include glucose deprivation,
inhibition of the glycolytic pathway (3-bromopyruvate (3-
BrPA)), glucose analogues (2-deoxyglucose (2DG)), inhibi-
tion of glucose transport (Imatinib), and exploitation of HIF
(PX-478).

Here, it must be mentioned that glycolytic inhibitors
in combination with other therapies have proven to be
more promising than being alone as tumor cells and tumor
microenvironment are very heterogeneous and cells within
an invasive cancer may use a range of metabolic pathways
including some in which oxidative metabolism of glucose or
fatty acids contributes significantly to ATP production [43].
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Figure 3: Tumor cells have altered glucose metabolism. Many glycolytic enzymes are ubiquitously expressed in cancers. One such glycolytic
enzyme is pyruvate kinase type M2 whose levels are found to be elevated in human cancer biopsies, compared to adjacent normal tissues.
PKM2 is a key regulator of the metabolic budget system in tumor cells which promotes the Warburg effect and tumor growth. This tumor
specific PKM2 can be switched between dimeric and tetrameric forms in cancer cells. Dimeric PKM2 has a higher𝐾

𝑚
value for the substrate

PEP than the tetrameric form of PKM2 and is inactive at physiological concentrations of PEP. PKM2 is allosterically activated by the glycolytic
metabolite fructose-1,6-biphosphate (FBP) and serine. This leads to accumulation of energy rich phospho metabolites upstream of glycolytic
pathwaywhich are then channelled tomacromolecule biosynthesis via pentose phosphate pathway (PPP).These pathways include pyrimidine,
glycerol, and serine/glycine biosynthesis (red arrows) instead of leading to oxidative metabolism for energy production thereby promoting
cancer cell proliferation and tumor growth.

Moreover, enhanced glycolysis may be possible via different
mechanisms such as gene amplification, increased gene
expression, increased translation, posttranslationalmodifica-
tion, and regulation by protein-protein interactions in the
cytoplasm. Different cancers exploit different mechanisms to
achieve increased glucose consumption.

3. Isoforms of Glycolytic Genes and PPAR𝛾

Cancer cells are found to upregulate glucose transport and
switch their main energy supply pathway from oxidative
phosphorylation to glycolysis depending heavily on glucose
as both energy and biosynthesis sources. Thus, cancer cells
are more sensitive than normal cells to changes in glucose
concentration [44, 45] and it is easier than normal cells to
induce death in limited glucose supply and disruption of
glycolysis [46]. These molecular and metabolic changes also
provide targets for cancer treatment. Inhibiting either various
steps of glycolysis or glucose transport, the first rate-limiting
step leading to glycolysis, is likely to severely disrupt both

energy supply and biosynthesis processes inside cancer cells,
resulting in reduction of proliferation rate and induction
of apoptosis of cancer cells. Several glycolytic enzymes are
predicted by us to have the PPRE site, suggesting their
regulation by PPAR𝛾 (Figure 3).

The enzymes in glycolytic pathway and their isoforms are
discussed below.

3.1. Hexokinases. They catalyze the first irreversible step of
the glycolytic pathway for the phosphorylation of glucose to
glucose-6-phosphate with consumption of ATP. Four impor-
tantmammalian hexokinase isozymes that vary in subcellular
locations and kinetics with respect to different substrates
and conditions and physiological functions are known and
designated as HK1-4 [47]. HK2, the predominant isoform
overexpressed in malignant tumors, strategically binds to the
outer mitochondrial membrane coupling ATP formation in
mitochondria to the phosphorylation of glucose, thus confer-
ring cancer cells with a highly glycolytic phenotype and ample
biosynthetic precursor [48, 49]. In addition to its critical
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metabolic role, HK2 can also promote cancer by repressing
mitochondrial function on cell death, immortalizing cancer
cells.

3.2. Fructose-2, 6-Bisphosphatase. 6-phosphofructo-2-kinas-
e/fructose-2, 6-bisphosphatase 3 (PFKFB3), is a bifunctional
enzyme and is central to glycolytic flux. It is downstream
to the metabolic stress sensor AMP-activated protein kinase
(AMPK) that modulates glycolysis and possibly activates
isoforms of PFKFB, specifically PFKFB3 expressed in tumor
cells. It has been demonstrated that long-term low pH
exposure induces AMPK activation, which results in the
upregulation of PFKFB3 and an increase in its serine residue
phosphorylation. Pharmacologic activation of AMPK is
responsible for increase in PFKFB3 as well as an increase in
glucose consumption, whereas inhibition of AMPK results
in the downregulation of PFKFB3 and decreased glycolysis
[50].

3.3. Pyruvate Kinase (PKM). It converts phosphoenolpyru-
vate to pyruvate and regulates the rate-limiting final step
of glycolysis. It has two specific isoforms: the adult iso-
form, PKM1, promotes oxidative phosphorylation and the
PKM2 isoform, which promotes aerobic glycolysis and is
expressed in embryonic and cancerous cells. The above
isoforms are produced as a result of mutually exclusive
alternative splicing of the PKM pre-mRNA that corresponds
to inclusion of either exon 9 (PKM1) or exon 10 (PKM2)
[51, 52].We have recently shown that PKM2 is downregulated
by PPAR𝛾 activation by 15d-PGJ

2
, a PPAR-gamma ligand

[53]. Concurrently, PGK1, another important enzyme at ATP
generation step in glycolysis, has been reported by us to be
downregulated by PPAR gamma upon activation by 15d-PGJ

2

[54].

4. pH Regulator NHE1

Cancer cells thrive in an acidic environment and do not
survive in normal or more alkaline environment. Lactic acid
production due to increased glycolysis by cancer cells makes
the environment even more acidic. NHE1 is a ubiquitously
expressed membrane phosphoglycoprotein comprising of
10–12 transmembrane segments (N-terminal) and a large
cytoplasmic tail. NHE1 is reported to be involved in intracel-
lular pH (pHi) homeostasis and cell volume regulation [55,
56]. Under physiological conditions, the Na+/H+ exchanger
NHE1 extrudes one H+ ion in exchange for one extracellular
Na+ ion. An alkaline pHi together with an acidic extracellular
environment is associated with a transformed or tumorigenic
phenotype, suggesting that active proton extrusion capabili-
ties provide a twofold advantage to tumor cells: the alkaline
pHi favours metabolic processes associated with cellular
proliferation, whereas the acidic extracellular environment, a
consequence of H+ extrusion, enhances the invasive capacity
of transformed cells [57]. The role of pHi and NHE1 in the
regulation of tumorigenic andmetastatic properties of tumor
cells, however, remains unclear. Since NHE1 is activated
upon growth factor stimulation, it has been suggested that
NHE1 also plays a role in cellular proliferation [58]. In

addition, tumor cells deficient in NHE1 activity either do not
grow or show severely arrested growth when implanted in
immunodeficient mice [59, 60].

Interestingly, a recent report implicated the pH regulator,
NHE1, in tumor cell growth is arrested by activated PPAR𝛾,
an interesting connotation considering that the activation of
NHE1 is an oncogenic signal necessary for the development
and maintenance of the transformed phenotype [57, 60,
61]. Also, it was recently reported that decrease in NHE1
expression led to tumor cell growth arrest, intracellular
acidification, and sensitization to death stimuli [62]. These
data support downregulation of NHE1 as a possibility for
inducing growth arrest in cancer cells [9]. In light of the
increased expression of PPAR𝛾 in breast cancer cell lines and
its association with acidic intracellular pH, we hypothesized
that, in addition to inhibiting NHE1 activity, ligand-induced
activation of PPAR𝛾 could regulate NHE1 gene expression.
Interestingly, our results corroborate with the data which
reported that exposure of breast cancer cell lines expressing
high levels of PPAR𝛾 to natural ligands of PPAR𝛾 significantly
inhibited NHE1 gene expression compared with noncancer-
ous cells or cancer cell lines expressing low levels of PPAR𝛾
[9, 63].

5. MnSOD as a Target for PPAR𝛾

Cancer cells have higher levels of reactive oxygen species
(ROS) than normal cells. They exhibit increased intrin-
sic ROS stress, due to oncogenic stimulation, increased
metabolic activity, and mitochondrial malfunction [64]. The
increased amounts of ROS in cancer cellsmay have significant
consequences, such as stimulation of cellular proliferation,
promotion of mutations and genetic instability, and alter-
ations in cellular sensitivity to anticancer agents. It is logical to
speculate that the biochemical andmolecular changes caused
by ROS may contribute to the development of a heteroge-
neous cancer cell population and the emergence of drug-
resistant cells during disease progression. Cells have evolved
several antioxidant defenses, including repair and detoxifying
enzymes, and small scavengermolecules, such as glutathione.
The intracellular ROS-scavenging system includes superox-
ide dismutases (SOD), glutathione peroxidase (GPx), perox-
iredoxins (PRDXs), glutaredoxins, thioredoxins (TRXs), and
catalases. In mitochondria, superoxide anion (O

2

−) can be
dismutated to hydrogen peroxide (H

2
O
2
) by two enzymes,

namely, copper-zinc superoxide dismutase (CuZnSOD) and
manganese superoxide dismutase (MnSOD), that are present
in themitochondrial matrix and in the intermembrane space,
respectively [65]. Once generated, H

2
O
2
can be quenched

by GPx in mitochondria, or by catalase in the cytosol. The
expression of antioxidant enzymes is regulated by complex
mechanisms, oxidative stress being a major factor that
induces the adaptive expression of these enzymes [66].
Thus, increased ROS stress in cancer cells is likely to cause
increased expression of SOD and other antioxidant enzymes.
In fact, analysis of SOD protein expression in primary
tissues from adenocarcinomas of the stomach and squamous
cell carcinomas of the oesophagus showed a significantly
higher MnSOD expression in the cancer cells compared to
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normal mucosa cells [67]. The activities of SOD, glutathione
peroxidase (GPx), and glutathione-S-transferase (GST) were
increased significantly in the mitochondria of colorectal
cancer tissues compared to adjacent normal tissues of the
same subjects [68]. Increased SOD levels were also observed
in breast cancer tissue from 23 patients [69]. Detection of
MnSOD using specific antibody showed positive reactions
with ovarian carcinomas andmalignant brain tumors, but not
with the respective normal control tissues [70]. Some studies
further demonstrated a significantly increased expression of
CuZnSOD (SOD1), MnSOD (SOD2), and catalase in chronic
lymphocytic leukemia cells and ovarian cancer cells [71].
Increases in SOD1 and SOD2 have been observed in blood
samples from patients with various types of leukemia [72].
Interestingly, leukemia regression was accompanied by a
decrease in the serum MnSOD, suggesting that MnSOD in
serum may serve as an indicator of disease activity. Analysis
of SOD in blood samples from patients with ovarian cancer
yielded conflicting results [73]. We reported human MnSOD
as a PPAR𝛾 target gene and the downregulation of MnSOD
gene expression in vitro by PPAR𝛾 agonists [9].

6. Glycolysis, Diabetes, Obesity,
Cancer, and PPAR𝛾

Thenuclear transcription factor PPAR𝛾 is highly expressed in
adipose tissue and plays a central role in adipocyte function,
fat storage, and lipid metabolism. PPAR𝛾 activators are com-
monly used to treat patients with type 2 diabetes who share
metabolic abnormalities including excessive and inflamed
adipose tissue [74], particularly in visceral depots [75], ele-
vated circulating concentrations of nonesterified fatty acids
(NEFA), triglycerides, glucose, insulin, and inflammatory
mediators and reduced concentrations of adiponectin and
high-density lipoprotein cholesterol (HDL-C). On the other
hand, key cancer-related oncogenes type I receptor tyrosine
kinase HER2- (erbB-2-) dependent endogenous fatty acid
(FA) constitutive upregulation and biogenesis catalyzed by
lipogenic enzymes such as fatty acid synthase (FASN) [76,
77], constitutes an oncogenic stimulus that drives normal
epithelial cells progression toward malignancy and has been
reported to provide a “lipogenic benefit” in terms of enhanced
breast cancer cell proliferation, survival, chemoresistance,
and metastasis [78]. This would require a constant supply of
precursors, energy, and reducing equivalent required for
FASN-driven lipogenesis. Moreover, excess of the end prod-
uct of de novo FA synthesis, namely, palmitate (and other
palmitate-like saturated FAs), is toxic to cells because of its
ability to generate a variety of apoptotic signals involving
either the production of ROS or the synthesis of ceramide.
Indeed, disturbance in lipogenic balance caused by the
accumulation of FAs and neutral lipids in nonadipose tis-
sue stimulates lipolysis and apoptosis [79, 80]. Moreover,
palmitate excess could have feedback to inhibit endogenous
FA synthesis [81]. Also, PPAR𝛾, in HER2-positive cancer
cells, which produce high levels of endogenous fat, helps
to convert FAs to triglycerides, thus allowing these cells to
avert the cell death resulting from endogenous palmitate-
related lipotoxicity [82]. It must be noted here that PPAR𝛾

has been reported to directly interact with SIRT1 (human
silent information regulator type 1-deacetylase protein) and
inhibit SIRT1 activity, forming a negative feedback and self-
regulation loop. Also, the transcriptional activity of PPAR𝛾 is
regulated through deacetylation by SIRT1.This association of
SIRT1 and PPAR𝛾 together with the transcriptional modula-
tion of SIRT1 appears to be important in the senescence/aging
process controlled by PPAR𝛾 [83].

6.1. Diabetes, Obesity, Cancer, and PPAR𝛾. Epidemiologic
evidence suggests that peoplewith diabetes are at significantly
higher risk for many forms of cancer [84]. Earlier on, Liao
et al. has indicated that diabetes can be considered as a risk
factor for breast cancer [85]. Boyle et al. recently investigated
the association between occurrence of diabetes and breast
cancer risk and observed that the risk of breast cancer in
women with type 2 diabetes is increased by 27%, a figure that
decreased to 16% after adjustment [86].

Also, obesity has been reported as a risk factor for breast
cancer [87]. Interestingly, obesity is also a risk factor for type-
2 diabetes [87] may be due to link between diabetes and
cancer in metabolic syndrome. However, the physiological
mechanism by which these risk factors interact to promote
tumorigenesis is not understood. Computational analyses
by us and generation of gene-disease network suggests that
PPAR𝛾 is implicated in pathology of several diseases includ-
ing cancer, diabetes, and obesity (Figure 4). These results
are in accordance with several isolated reports on their
involvement in individual disorders.

PPARs are ligand activated transcription factors and the
PPAR𝛾 receptor can be activated by endogenous ligands, for
example, prostaglandin D2 (PGD2), 15-deoxy prostaglandin
J2 (15dPGJ2), or 15-hydroxyeicosatetraenoic acid (15-HETE)
[88, 89]. Synthetic ligands for PPAR𝛾 include insulin sen-
sitizing antidiabetic thiazolidinediones (TZD); troglitazone
(TGZ), rosiglitazone (RGZ), ciglitazone (CGZ), or piogli-
tazone (PGZ) [90–92], and nonsteroidal anti-inflammatory
compounds indomethacin, ibuprofen, flufenamic acid, or
fenoprofen [24] are commonly known as PPAR𝛾 ligands.
Although, there is a rationale for the use of TZDs in patients
with type 2 diabetes mellitus and they have been seen to
be very effective, clinical studies have produced conflicting
data, and several important aspects of PPAR𝛾 action remain
confusing and unresolved. Interestingly, there is no general
deficiency in PPAR𝛾 function in obesity or insulin-resistant
states. Hence, it is not clear why synthetic activation of a
receptor should give such dramatic antidiabetic effects.More-
over, variations in ligand binding efficiencies of PPAR gamma
ligands do not correlate with potency of the drug (ligand) to
be antidiabetic. For example, some ligands with full agonist
action, like rosiglitazone, have powerful insulin sensitizing
actions, while other compounds with poor agonist activities,
such as the benzylindole MRL24, retain very good antidia-
betic effects [93].

In addition to acting as insulin sensitizers, PPAR agonists
mediate in vitro and in vivo pleiotropic anticancer effects.
The insulin-like growth factor (IGF) system has a role in
cancer development and progression and in resistance to
drug-induced apoptosis. It is now well established that the
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one disease are shown.

IGF system is dysregulated/overactivated (resulting from
receptor and ligand abnormal expression) in a variety of
human malignancies. It has also been shown that a high level
of circulating insulin (hyperinsulinemia) is associatedwith an
increased risk for a number of malignancies [94]. Moreover,
hyperinsulinemia is closely associated with obesity and type
2 diabetes [95]. Thiazolidinediones (TZDs) downregulate
both the PI3 K and the Ras pathway, which are the two
main signalling pathways downstream receptors of the IGF
system, and they also ameliorate insulin resistance and lower
circulating levels of insulin and free IGF-I [96]. Moreover,
TZDs, and other PPAR-agonists, such as the prostanoid 15d-
PGJ2 [97], induce a variety of favorable changes (growth
arrest, apoptosis, and/or partial redifferentiation) in several
malignancies, including liposarcoma, and cancers of the
breast, colon, pancreas, and prostate [98–101]. Oxidants and
inflammatory mediators such as tumour necrosis factor-
alpha (TNF-alpha) activate nuclear factor kappa B (NF-
kappaB) and activator protein-1 (AP-1) transcription factors,
and enhance the expression of both proinflammatory and
protective antioxidant genes in several diseases including
cancer and atherosclerosis [102, 103]. NF-kappaB is reported
to promote breast cancer cell migration and metastasis by
inducing the expression of the chemokine receptor CXCR4
[104]. Also, NF-kappaB regulates the expression of a large

number of genes, including growth factors, proinflammatory
cytokines (e.g., TNFa, IL-6, and IL-1b), adhesion molecules
(e.g., VCAM-1, P-selectin), and others such as iNOS and
COX-2 [105]. PPAR activation by agonists is reported to reg-
ulate inflammatory responses [106], cell proliferation and dif-
ferentiation, and apoptosis [107]. PPAR𝛾 regulates expression
(transcriptional level) of proinflammatory mediators such as
inhibitor nuclear factor-𝜅B (NF-kappaB), signal transducers
and activators of transcription (STAT)-1, and activating
protein-1 (AP-1) activating signals [108]. Since, both PPAR𝛾
activator and NF-KappaB are transcription factors, it was
proposed that PPAR𝛾 likely acts through physical interaction
withNF-kappaB, resulting in the inhibition of transcriptional
activation [109]. The suppressive action of PPAR𝛾 on NF-
kappaB was suggested to be related to its competition for
limited availability of transcriptional coactivators [110] and it
was suggested that due to this limitation of cofactors, neither
NF-kappaB nor AP-1 could activate their target genes (e.g.,
iNOS or TNFa) [111]. Thus, transrepression appears to be
one viable mechanism by which PPAR𝛾 activators exert their
anti-inflammatory effects on age-induced inflammation and
oxidative stress via the downregulation of NF-kappaB.

Thus, PPAR gamma agonists have been reported as
new and potentially efficacious treatment of inflammation,
diabetes, obesity, cancer, AD, and schizophrenia [112].Theuse
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of synthetic PPAR𝛾 ligands as drugs and their recent with-
drawal/restricted usage highlight the lack of understanding of
themolecular basis of these drugs, their off-target effects, and
their network.These data further underscores the complexity
of nuclear receptor signalling mechanisms. Thus, there is
a need to continue enhancing our understanding of the
complexities of nuclear receptor pharmacology and a need
to view the functions of this family of transcription factors
in detail supported by clinical trials and adverse side effects
data as tenable well beyond traditional discreet categories of
agonism and antagonismwhich will open new doors to using
PPAR gamma as a target.
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