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Systematic delineation of complex biological systems is an ever-challenging and resource-intensive process. Single-cell tran-

scriptomics allows us to study cell-to-cell variability in complex tissues at an unprecedented resolution. Accurate modeling

of gene expression plays a critical role in the statistical determination of tissue-specific gene expression patterns. In the past

few years, considerable efforts have been made to identify appropriate parametric models for single-cell expression data.

The zero-inflated version of Poisson/negative binomial and log-normal distributions have emerged as the most popular al-

ternatives owing to their ability to accommodate high dropout rates, as commonly observed in single-cell data. Although

themajority of the parametric approaches directlymodel expression estimates, we explore the potential of modeling expres-

sion ranks, as robust surrogates for transcript abundance. Here we examined the performance of the discrete generalized

beta distribution (DGBD) on real data and devised a Wald-type test for comparing gene expression across two phenotypi-

cally divergent groups of single cells. We performed a comprehensive assessment of the proposed method to understand its

advantages compared with some of the existing best-practice approaches. We concluded that besides striking a reasonable

balance between Type I and Type II errors, ROSeq, the proposed differential expression test, is exceptionally robust to ex-

pression noise and scales rapidly with increasing sample size. For wider dissemination and adoption of the method, we cre-

ated an R package called ROSeq and made it available on the Bioconductor platform.

[Supplemental material is available for this article.]

In the past few years, single-cell RNA-sequencing (scRNA-seq) has
significantly accelerated the characterization of molecular hetero-
geneity in healthy and diseased tissue samples (Tanay and Regev
2017). The declining costs of library preparation and sequencing
have fostered the adoption of single-cell transcriptomics as a rou-
tine assay in studies arising from diverse domains, including
stem cell research, oncology, and developmental biology (Kumar
et al. 2017; Zhu et al. 2017). Advanced droplet-based scRNA-seq
technologies can profile several thousands of cells in a single ex-
periment (Macosko et al. 2015; Zheng et al. 2017). Despite consid-
erable progress in technology development, expression readouts
obtained from these high-throughput platforms suffer from vari-
ous technical and trivial biological distortions (Sengupta et al.
2016; Vallejos et al. 2017). These include single-cell library size dif-
ferences, cell cycle effects, amplification bias, low RNA capture
rate, and high levels of dropout events (Kharchenko et al. 2014).
Different from bulk RNA sequencing, gene expression modeling

in single cells requires special statistical considerations (Grün
et al. 2014). A number of parametric and nonparametric methods
have already been proposed for modeling single-cell expression
data and finding differentially expressed genes (DEGs). SCDE
(Kharchenko et al. 2014), MAST (Finak et al. 2015), and BPSC
(Vu et al. 2016) are notable among these. SCDE and MAST model
gene expression using well-known probability density functions
and mixture models involving some of those. BPSC, on the other
hand, handles single-cell expression bimodality by using a beta-
Poisson mixture. Different from these, we hypothesize that con-
sidering expression ranks instead of absolute expression estimates
wouldmake amodel less susceptible to the noise and the technical
bias, as commonly observed in single-cell data. To realize the same,
here we investigate the suitability of discrete generalized beta dis-
tribution (DGBD) (Martínez-Mekler et al. 2009) in modeling the
distribution of expression ranks instead of the raw count. The con-
sideration of rank-ordering distribution is inspired by the seminal
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work by Martínez-Mekler and colleagues, in which they showed
the universal applicability of the same in linking frequency esti-
mates and their ranks (Martínez-Mekler et al. 2009). In this article,
we report ROSeq, aWald-type test to determine differential expres-
sion from scRNA-seq data, by usingDGBD-basedmodeling of gene
expression.

Results

Overview of ROSeq

Since the introduction of the single-cell technologies, numerous
parametric models have been proposed, primarily accounting for
dropout events. The majority of these are mixture models of dis-
tinct probability density functions. We conjecture that a limita-
tion of such approaches could be that they disregard the other
noise sources as enumerated in the Introduction section. Ranks
are commonly known to be more robust compared with the corre-
sponding expression estimates. In fact, with the increase in sample
size, single-cell studies are now seen embracing the traditional
Wilcoxon’s rank-sum test to identify DEGs. Although nonpara-
metricmethods are assumption free (Sengupta et al. 2016), they of-
ten lack statistical power. In this work, we explored the utility of
discretizing an expression vector into bins and ordering them
(meaning ordering ranks corresponding to bins) based on bin-
wise cellular frequencies, thereby making it modelable by DGBD
(also known as rank-ordered distribution) (Fig. 1A; Martínez-
Mekler et al. 2009). Fitting DGBD on expression readouts involves
maximum likelihood estimates (MLEs) of two shape parameters,
denoted by a and b. Figure 1B depicts an example of DGBD-based

modeling of VAMP3 expression across 288 single cells from the bi-
ological replicateNA19098of the Tung data (Tung et al. 2017). (For
data set description and naming convention refer toMethods.) For
a comprehensive assessment of the quality of fit, we estimated R2

for all the 11,513 genes that qualified the filtering criteria. DGBD
fits yielded R2 > 0.9 for a vast majority of the genes (Fig. 1C), there-
by underscoring its appropriateness inmodeling expression ranks.
Leveraging DGBD-based modeling of expression, we devised
ROSeq, a Wald-type test to determine differential expression in
single-cell data (Fig. 1A). We inspected the gene expression mar-
ginals (empirical distribution approximated using the density func-
tion by R) and the corresponding DGBD fits for some example DE/
non-DE genes (called using ROSeq). We noticed that DGBD signif-
icantly stabilizes the shape diversity, as otherwise observed in the
case of the gene expression marginals (Supplemental Figs. S1, S2).
This highlights the strength of rank-ordered distribution, which
homogenizes diversely shaped marginals and enables reliable esti-
mation of the distribution parameters.

Comparative benchmarking based on matched bulk RNA

sequencing data

Tissue-level measurement of gene expression is considered more
robust compared with single-cell-based estimates. As such, it is a
common practice to benchmark single-cell-based DEG calls
against DEGs obtained from matched bulk expression profiles.
We accessed scRNA-seq data from three previous studies that also
performed bulk RNA-seq on the same samples. Description of
the data sets can be found in the Methods section. A total of eight
contrasting cell-group pairs were constructed as follows:myoblasts
before and 24 h after differentiation (source: Trapnell data)

A

B C

Figure 1. Modeling single-cell gene expression using ROSeq. (A) As part of the ROSeq differential expression analysis workflow, cells are first binned de-
pending on expression values associated with a particular gene. For each cell-group, bins are ranked depending on cell frequency. The discrete generalized
beta distribution (DGBD) is used as a probability mass function to express a normalized bin-wise cell frequency as a function of its corresponding rank using
two real parameters a and b. AWald-type test is used on theMLE of these parameters across the cell-groups to find differentially expressed genes. (B) DGBD-
based modeling of VAMP3 expression (source: Tung data) (Tung et al. 2017). Discretized expression bins are ranked based on normalized bin-wise cellular
frequencies. (C) Distribution of R2 values obtained from DGBD-based modeling of 11,513 expressed genes (source: Tung data) (Tung et al. 2017).
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(Trapnell et al. 2014), all three pairs of biological replicates of in-
duced pluripotent stem cells (iPSCs) (source: Tung data) (Tung
et al. 2017), and all three pairs of undifferentiated H1, H9 human
embryonic stem cells (ESCs) and neuronal progenitor cells
(NPCs; source: Chu data) (Chu et al. 2016). We also profiled single
expression of foreskin BJ fibroblasts and K562 cells, withmatching
bulk replicates (referred to as Gupta data) (Supplemental Table S1).
We used the standard Seurat pipeline (without batch correction)
(Butler et al. 2018) to visualize the single cells in the presence of
batch information and obtained perfect segregation between the
two cell types (Supplemental Fig. S3), strengthening the case for
straightforward differential expression analysis. Bulk replicates
were used for confident DEG calls. In addition to ROSeq, single-
cell DEG calls weremade using five best-practicemethods, namely,
BPSC, SCDE, Wilcoxon’s rank-sum test, MAST, and DESeq2 (Love
et al. 2014). A single-cell DEG call was considered true positive if
the gene was also present in the list of DEGs detected by analyzing
the matching bulk transcriptomes. If not, it was counted as a false
positive (Supplemental Tables S2–S9). In six out of the eight cases,
ROSeq topped in terms of the estimated area under the ROC curve
(AUC-ROC) values (Fig. 2A–C; Supplemental Fig. S4A,B,E). SCDE
performed best in the remaining two cases, with a negligible mar-
gin over ROSeq (Supplemental Fig. S4C,D). Although DESeq2 is
not specialized for single cells, we used it as a control to ensure sin-
gle-cell-focused methods yield overall better performance.

Besides AUC, we also tracked other popular measurements of
classification accuracy, including F1, Matthews correlation coeffi-
cient (MCC) (Sing et al. 2005), and Cohen’s kappa (k) (Kvålseth
1989). Among these, MCC factors in the performance of a binary
classification system in all four confusion matrix categories,
whereas k corrects the accuracy measurement by the expected per-
formance. Of note, F1, MCC, and k were calculated on confusion
matrices determined using a cutoff on the differential expression
probabilities computed on the scRNA-seq data sets. Such a cutoff
maximizes the sum of sensitivity and specificity (Robin et al.
2011). In themajority of the cases, ROSeqmaximized these scores,
with striking margins in the case of MCC and k. Based on the
overall performance, the methods can be rank-ordered as follows:
ROSeq, SCDE, MAST, Wilcoxon, BPSC, DESeq2 (Supplemental
Table S10).

ROSeq uses a constant k, which is multiplied with σ, that is,
the standard deviation of the pooled expression estimates across
the cell-groups (Methods). We observed that the choice of k im-
pacts ROSeq’s performance. On the Gupta data set comprising BJ
fibroblasts and K562 cells, we assessed five different values of k:
0.01, 0.05, 0.1, 0.2, and 0.5. k= 0.05 stood out clearly, thereby
strengthening its choice as a default (Supplemental Table S11). It
should be noted that benchmarking with regard to bulk DE calls
only helps show the robustness of single-cell DE analysis methods.
However, in practice, single-cell expression studies are indispens-
able to decipher tissue heterogeneity, which is otherwise masked
in bulk-based expression readouts. As a standard practice, one
should first cluster the single-cell expression profiles based on
gene expression similarity and perform DE analysis across the
identified clusters.

Type I errors

To evaluate the Type I error control associatedwith ROSeq, we con-
structed several null data sets by segregating cells of the same type
into two groups for varied group sizes (Soneson and Robinson
2018). For each of the methods, we tracked the fraction of the test-
ed genes that were assigned a nominal P-value. Three different cut-
offs—namely, 0.01, 0.05, 0.1—were considered for the P-values.
We iterated this simulation experiment for varied cell-group sizes:
50, 100, 200, 300, 400, 500, 1000, and 1500. For each cell-group
size, 20 null data sets were constructed and subjected to the DEG
callers. For this experiment, we used Jurkat transcriptomes from
the Zheng data (Zheng et al. 2017). In addition to ROSeq, five other
methods, namely, BPSC, SCDE, Wilcoxon’s rank-sum test, MAST,
and DESeq2, were considered for performance comparison.
Among all the six methods, ROSeq offered the overall best perfor-
mance in all cases except for the cell-groups having 100 or a small-
er number of cells (Fig. 3A–C). With 50/100 cells in each group,
SCDE outperformed ROSeq. With more cells, the structure of the
rank-frequency distributions is comprehended more precisely,
because it helps in modeling the distribution spectrum in a finer
grid. Additionally, the testing procedure in ROSeq uses the asymp-
totic critical values (obtained through the large-sample theory),
which yields better inference for larger sample sizes. ROSeq

A B C

Figure 2. Benchmarking of single-cell DE call accuracy against DE genes detected at tissue levels. (A) ROC and the associated AUC values obtained by
bulk-based benchmarking of single-cell DEG calls between BJ and K562 cells (Gupta data). (B) ROC plot for H1 and H9 cells (source: Chu data) (Chu et al.
2016). (C) ROC plot for NA19098 and NA19239 cells (source: Tung data) (Tung et al. 2017).
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discretizes the observed expression by binning before fitting
DGBD. As a result, as opposed to other methods, ROSeq needs to
approximate gene expression marginals with smaller effective
sample sizes. This negatively influences the parameter estimation
process and can explain ROSeq’s suboptimal performance on
smaller groups of cells. The rest of the methods, including the suc-
cessors of SCDE, made a significant number of DEG calls. ROSeq
was found to be the only method that neared zero DEG calls
with increased sample size. We tracked standard error (SE) scores
across the various cases, which showed least variability to shuffling
of the data.

Tolerance to noise owing to excessive dropout events

As stated earlier, single-cell gene expression readouts are distorted
by technical biases such as RNA degradation during cell isolation
and processing, variable reagent amounts, the presence of cellular
debris, and PCR amplification bias. Further, because of the small
number of detected molecules, single-cell expression estimates
are inherently noisy, even in the absence of technical variability
(Sengupta et al. 2016). Themajority of the state-of-the-art dropout
inductionmethods simulate scRNA-seq datawith variable concen-
tration of dropouts. This approach often involves making strong
assumptions about gene expression marginals. We developed a
strategy to inject dropouts in a real scRNA-seq data set by exploit-
ing the linear relationship between average read count and
log-odds of dropout rate, as described elsewhere (Zappia et al.
2017). This allowed us to introduce varied levels of dropouts by
themeans of controlling average read counts (Methods).We intro-
duced various levels of dropouts (67%–80%) in BJ fibroblasts and
K562 cells. DEGs detected by analyzing matching bulk RNA-seq
data sets were used to compute AUCandMCCvalues. ROSeq clear-
ly dominated the rest of the methods in calling the correct DEGs
(Fig. 4A,B). We also evaluated the Type I errors by constructing
null data by sampling Jurkat transcriptomes (source: Zheng data
set) (Zheng et al. 2017). As expected, ROSeqmade the least number
of DEG calls as we increased the dropout levels from 90% to 94%

(Fig. 4C). As an independent approach, we used the Splatter R
package (Zappia et al. 2017) to generate null data sets with variable
dropout concentrations, which helped us to track the Type I error
rates. ROSeq’s performance remained consistent (Supplemental
Fig. S5). Collectively, these experiments reinforce the tolerance
of ROSeq to noise caused by dropouts.

Runtime efficiency

The advent of droplet-based commercial platforms that has en-
abled profiling of tens of thousands of cells in a single experiment
has become a common affair. Unsupervised clustering of large-
scale scRNA-seq data produces numerous clusters, each of which
typically harbors a large number of cells. As such, besides accuracy,
the scalability has become a desirable feature for the DEG callers.
We benchmarked time consumption by the methods for variable
sizes of input scRNA-seq data sets. For the construction of the
data sets, we performed the same steps as we did for estimating
the Type I error rates. SCDE and BPSC are considerably slow com-
pared with the rest of the methods (Fig. 5A). As such, we used a
small data set constituting 288 iPSCs (replicate id: NA19098) for
tracking the execution time for all six methods (sampled scRNA-
seq profiles with replacement owing to lack of cells). These data
consist of 19,027 transcripts. ROSeq secured fourth place, follow-
ing Wilcoxon, DESeq2, and MAST. SCDE was the slowest among
them all, followed by BPSC (Fig. 5A). To test on larger sample sizes,
we made use of the Jurkat transcriptomes (source: Zheng data)
(Zheng et al. 2017), which allowed us to split the cells randomly
into two equal-sized groups (without replacement) with a maxi-
mum 1500 cells in each group. These data consist of 32,738 tran-
scripts. We dropped SCDE and BPSC from the comparison owing
to their slower turnaround time. Cell-group sizes varied between
100 and 1500. Although all the methods took similar amounts
of time, ROSeq showed a downward turn as the cell numbers in-
creased (Fig. 5B). This inspired us to speed-test themethods further
on even larger sample sizes. To this end, we used the Splatter R
package to simulate cells in up to 10,000-sized groups (6000

A B C

Figure 3. Type I error rates. (A) Line chart showing Type I error rates with SE (depicted by error bars), obtained by applying different DEG callers on 20
randomly sampled null data sets, for varied cell-group sizes. We applied a P-value cutoff of 0.01. These experiments were performed using Jurkat transcrip-
tomes (approximately 3200 cells and approximately 32,000 transcripts) (Zheng et al. 2017). (B,C) Similar plots with P-value cutoff of 0.05 and 0.1,
respectively.
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genes). In this case, ROSeq turned out to be the fastest (Fig. 5C).
MAST showed a similar performance, whereas Wilcoxon diverged
significantly, thus suggesting some computing bottleneck. All ex-
periments reported in this article were performed on aworkstation
configured with AMD Ryzen 7 3700X eight-core processor with a
clock speed of 4249.648 MHz, 64GB DDR4 RAM, and an Ubuntu
18.04.4 LTS operating system with 5.3.0-40-generic kernel. For
the iPSC data, we used a single core; for the remaining larger
data sets, we used four cores. We observed that ROSeq speeds up
significantly as the number of cores are increased.

Discussion

Martínez-Mekler and colleagues showed that two-parameter
DGBD (rank-ordered distribution) gives excellent fits to diverse
phenomena, arising from the arts and the social and natural sci-
ences (Martínez-Mekler et al. 2009).We evaluated the applicability
of DGBD to gene expression data. We found DGBD to fit well to
the entire spectrum of expressed genes of varying expression lev-
els. We further developed ROSeq, a DGBD-based Wald-type test,
for differential expression analysis of scRNA-seq data. Most of
the statistical models for single-cell expression data use mixed
models to accommodate high dropout rates. ROSeq discretizes
the data, thereby stabilizing local distortions in the shape of the
distribution, owing to noise and technical bias. This conclusion
is strengthened by our experimentation with dropouts. ROSeq
showed the best performance with the increase in artificially in-
jected dropout levels.Most of themethods that rely onnegative bi-
nomial or Poisson distributions enforce raw count data as input.
ROSeq works on real values and does not impose such constraints.
This is particularly beneficial because integrative single-cell omics
studies are very common these days, which typically involve batch
correction that inevitably transform the read counts into real val-
ues. In this regard, it should be noted that ROSeq is not inbuilt

with any batch correction method. As such, it expects the user to
input an scRNA-seq data set that is not only library size normalized
but also free of other covariates as applicable.

We systematically compared the performance of ROSeq with
some of the existing best-practice methods such as SCDE, MAST,
and BPSC, which are largely tailored for single-cell expression
data. Among various critical observations, our systematic tracking
of Type I errors revealed that a relatively higher number of cells (at
least 100 in each contrasting group) is required for ROSeq to at-
tain optimal performance comparable with SCDE. Current studies
report hundreds to thousands of cells per unsupervised cell clus-
ter with the advent of droplet-based single-cell profiling plat-
forms. As such, we do not foresee any hindrance to ROSeq’s
applicability owing to cell paucity. However, ROSeq might pro-
duce suboptimal DEG calls if a cluster contains a small number
of cells. Diverse types of progenitor cells, circulating tumor cells,
etc., are examples of such rare cell types (Jindal et al. 2018). This
shortcoming can be attributed to ROSeq’s use of asymptotic
distribution.

Statistical test of differential expression involves comparing
the marginal distribution of a gene’s expression across two cell-
groups. Gene expression marginals in single cells vary widely
across platforms and chemistry and cellular conditions. As such,
it is difficult to rely on any specific parametric distribution func-
tion for modeling gene expression in single cells. Conversely,
ROSeq analyzes the distribution of rank-ordered discretized
expression bins across two cell-populations. We showed that
rank-ordered distribution stabilizes diversely shaped gene expres-
sion marginals (Supplemental Figs. S1, S2) while capturing neces-
sary information about lineage/condition-specific expression
patterns. Although ranks are considered to be lossy, they provide
a means to bypass expression modeling. The results presented in
this work suggest that it could be beneficial to model gene expres-
sion ranks compared with gene expression.

A B C

Figure 4. Tolerance against expression dropouts. (A) Line chart showing decline in AUCwith the increase in dropout levels. Performancewas recorded on
the Gupta data set comprising BJ fibroblasts and K562 cells. (B) Line chart showingMCC values that largely mirror AUC values in subfigure A. (C) Line chart
showing the trend of increased false DEG calls with the increase in dropout levels. Null data sets were created using Jurkat cell transcriptomes from the
Zheng data set. Each of the contrasting groups contains 1000 cells.
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Benchmarking bulk tissue-based DEG calls underscored com-
petitive performance by the methods, tailored for single-cell ex-
pression data. However, SCDE and ROSeq maximized the DEG
call accuracy. ROSeq is particularly powerful when the single-
cell-based expression estimates are inherently noisy. In such cases,
ROSeq by far outwits the other testedmethods. Further, with an in-
creased number of input cells, ROSeq offers better turnaround time
than most DEG callers.

The current implementation of ROSeq allows comparison be-
tween two groups of cells for differential expression. The Wald’s
statistic we used to formulate the differential expression test can
be extended with the help of statistical inference theory to test
the equality of the parameter values across more than two inde-
pendent groups. In this case, additional statistical tests would be
required to pinpoint the parent cell lineage associated with a DE
gene. An immediate future extension of ROSeq therefore would
be enabling multigroup (≥2) comparisons.

Methods

Description of data sets

We used four publicly available scRNA-seq data sets for the various
analyses. For better readability, we name the data sets after the first
investigators’ surnames. Among these, the Trapnell data contain
scRNA-seq profiles of 77/99 primary myoblasts sampled before/
24 h after differentiation (Trapnell et al. 2014). Tung data consist
of single-cell transcriptomes of iPSCs generated from three differ-
ent individuals, marked as NA19098, NA19101, and NA19239, re-
spectively (Tung et al. 2017). A total of 288 cells were profiled for
each of the three individuals. For both the Trapnell and the
Tung data sets, three bulk RNA-seq replicates were available from
the respective studies for each condition/individual. The Chu
data set consists of undifferentiated H1 (n=212) and H9 (n=162)
human ES cells and NPCs (n=173), with a total of nine matched
bulk replicates (H1 =4, H9 =3, and NPCs=2) (Chu et al. 2016). To
diversify our experiments, we used the Zheng data set containing

3258 single-cell transcriptomes of Jurkat cells, processed using
the GemCode technology (Zheng et al. 2017). Single-cell data
sets with a good number of matched bulk replicates are scarce,
which constrains the validation of DEG callers. We produced
scRNA-seq data and matching bulk replicates of human foreskin
BJ fibroblast (150 single cells and three bulk replicates) and K562
(352 single cells and four bulk replicates) to facilitate extensive
benchmarking. The following section describes the details pertain-
ing to the laboratorymethodologies. Bioinformatic processing, in-
cluding read alignment and expression quantification, mirrors our
previous report (Iyer et al. 2020). Collectively, the BJ/K562 scRNA-
seq data are referred to as the Gupta data set.

Cell culture, CD staining, and scRNA-seq

BJs (ATCC CRL-2522) are cultured in T75 flasks that are 90% con-
fluent in an incubator (37°C, 5% CO2). The culture medium con-
tains minimum essential medium (MEM) with GlutaMAX
(Gibco 41090101) and is supplemented with 10% FBS and
10 mM HEPES. The BJ cells are stained with CellTracker orange
(CTO) CMRADye (Thermo Fisher Scientific C34551) as a universal
marker and Alexa Fluor 647 conjugated CD44 antibody. The cell-
staining solution is prepared by adding 2.4 µL of 1 mM CTO to
8 mL of HBSS without calcium or magnesium (−/−) at a final con-
centration of 0.3 µM. The cell-staining solution is protected from
light until use within 30 min. The entire volume of medium
from the T75 flask that is 90% confluent is removed. Tenmilliliters
of HBSS (−/−) is dispensed onto the side wall of the flask without
perturbing the cells. The flask is then swirled to rinse the cell layer,
and all traces of cell medium and HBSS-rinse volume were re-
moved. The entire volume of freshly prepared CTO staining medi-
um (8 mL) is added to the cells, and the flask is placed in the dark
for 20 min at 37°C in a 5% CO2 incubator. Following incubation,
the staining solution is removed. Subsequently, 2.1 mL of TrypLE
Express reagent (Thermo Fisher Scientific PN 12604013) is added
to the cells, and the flask is swirled so that the entire surface of
cells is covered. The flask is then incubated in the dark for
20 min at 37°C in a 5% CO2 incubator. During incubation, cell

A B C

Figure 5. Tracking execution time on scRNA-seq data of varied sizes. (A) Line chart showing median time taken by each algorithm on 100 randomly
sampled null data sets containing iPSC transcriptomes (replicate id: NA19098). (B) Line chart showing median time taken by each algorithm on 20 ran-
domly sampled null data sets containing Jurkat transcriptomes. (C) Line chart showingmedian time taken by each algorithm on 20 randomly sampled null
data sets using the Splatter R package (Zappia et al. 2017). Note that for the iPSC data, we used a single CPU core; for the remaining larger data sets, we
used four cores of the workstation.
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detaching from the surface is monitored every 3 min. The incuba-
tion is complete when 90% of the cells are detached. Following
this, 2.1 mL of culture medium is added to the cells to quench
the TrypLE Express reagent. The entire volume of the cell suspen-
sion is transferred from the flask to a 15-mL nonpyrogenic conical
tube. The cells are then counted, and the volume of cell suspension
containing 1–1.5 million cells is transferred to a new 15-mL non-
pyrogenic conical tube. The cells are rinsedwithHBSS. The cell sus-
pension is then centrifuged at 300g for 5 min, supernatant is
removed without disturbing the pellet, and finally, the pellet is re-
suspended in 200 µL volume. An aliquot of 100 µL cell suspension
is used for surface-marker staining. The remaining 100 µL is used as
the negative surface-stained control. To the 100 µL cell suspen-
sion, 2 µL of CD44 antibody preconjugated to Alexa Fluor 647
(BioLegend PN 103018, anti-mouse/human, clone IM7, 0.5 mg/
mL) is added for the positive-stain tube. For “no stain” control, 2
µL of HBSS (−/−) is added. Both the tubes are incubated for 20
min at room temperature with occasional inverting and flicking.
Subsequently, 13mLofHBSS is added to each tube and centrifuged
at 300g for 5 min. The supernatant is removed, and the pellet is re-
suspended in 100–150 µL culture medium with FBS, but without
phenol red, to prevent high background fluorescence during cell
selection on the Polaris system. The resuspension volume of cul-
turemedium accounts for cell losses during the staining procedure
and is chosen to yield a cell concentration greater than the target
concentration of 550 cells per microliter. Typically, 10 µL of cell
mix is loaded into a C Chip disposable hemocytometer (INCYTO
DHC-N01) and imaged on the Polaris system to estimate the stain-
ing intensity and purity. To achieve optimal buoyancy, cells in the
range of 333–550 cells per microliter are mixed with a suspension
reagent (Fluidigm 101-0434) at 3:2 (ratio of cells to cell suspension
reagent). The K562 cell staining, cell selection and sample process-
ing on a Fluidigm Polaris system, and sequencing are described
elsewhere (Ramalingam et al. 2017; Sanada and Ooi 2019).

Data preprocessing

For each data set, we first filtered out cells having fewer than 2000
detected (nonzero read count) genes. Gene filtering followed the
cell filtering step. We retained the genes having a read count of
greater than three in at least three cells (Iyer et al. 2020). Next,
the pruned count matrix was subjected to different normalization
techniques depending on the target differential expression meth-
od. ForWilcoxon’s rank-sum test, BPSC, andMAST, count per mil-
lion (CPM)normalization (calculated using edgeR) (Robinson et al.
2010) was used, following the recommendation by Soneson and
Robinson (2018). SCDE and DESeq2 (Love et al. 2014) were sup-
plied with the processed raw count data as input. For ROSeq, we
first subjected the processed raw count matrices to the trimmed
mean of M-values (TMM) normalization (Robinson et al. 2010),
followed by Voom transformation (Law et al. 2014).

Mapping expression estimates to ranks

For gene expression modeling, ROSeq accepts normalized read
count data as input. For each gene, ROSeq first defines its range
by identifying theminimum and themaximum values by pooling
the normalized expression estimates across both cell-groups under
study. Next, the range is split into k× σ-sized bins, where k is a sca-
lar with a default value of 0.05, and σ is the standard deviation of
the pooled expression estimates across the cell-groups. Each of
these bins is assigned a rank based on the sequential order of its ex-
pression range. At the level of a cell-group, this leads tomapping of
bin-wise cell frequencies to ranks, such that the bin with the high-
est cellular frequency is assigned the least rank (i.e., one). The

DGBD is used as a probability mass function to express a normal-
ized bin-wise cell-frequency yr as a function of its corresponding
rank r using two real parameters, a and b. In other words, the
DGBD formulation can be thought of as a discrete distribution of
the rank frequencies. If N is the total number of bins for a given
gene, then the DGBD specifies the probability pr for the rth rank
to have a (relative) size of yr, which can be expressed as

pr = A
(N + 1− r)b

ra
, r = 1, . . . , N, (1)

where A is the normalizing constant ensuring
∑

r pr = 1. Note
that the sum of the normalized frequencies also equals one∑

r yr = 1
( )

.

Estimation of the DGBD parameters

For a given gene and a specific cell-group, the best-fitting parame-
ter values (â, b̂) are determined by maximizing, with respect to (a,
b), the log-likelihood corresponding to the model given by
Equation 1. Considering the discrete probability distribution struc-
ture of the DGBD formulation of (relative) rank sizes, the resulting
likelihood function is given by

L =
∏N
r=1

pyrr = A
∏N
r=1

(N + 1− r)byr

rayr
.

Now, taking logarithm, the required log-likelihood function, logL,
can be computed as

log L(a, b) = −a×
∑r=N

r=1

yr log(r) + b×
∑r=N

r=1

yr log(N + 1− r) + log(A).

(2)
The resulting estimates (â, b̂) correspond to the DGBD under

which the observed data aremost likely to be generated. Suchmax-
imum likelihood estimates (MLEs) are the most efficient (least SE)
and enjoy several optimum properties on large sample sizes
(Casella and Berger 2002).

To test differential expression of a gene between two cell-
groups, based on the above MLEs (â, b̂), we additionally need esti-
mates of their SEs (equivalently their variance). From the theory of
maximum likelihood (Myung 2003), the asymptotic variance of
(â, b̂) is given by the inverse of the associated Fisher information
matrix I(a, b), which can be consistently estimated by I(â, b̂). For
the log-likelihood function of the DGBD model given in
Equation 2, the form of the Fisher information matrix I may be
simplified in a more succinct form as follows:

I(a, b) = −
∂2logL
∂a2

∂2logL
∂a∂b

∂2logL
∂b∂a

∂2logL

∂b2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

= A2
∑N
r=1

yr

( )
m2,0m0,0 − m2

1,0 m1,0m0,1 − m1,1m0,0

m1,0m0,1 − m1,1m0,0 m0,2m0,0 − m2
0,1

[ ]
, (3)

where, for each i, j = 0, 1, 2, we define

mi,j =
∑N
r=1

(N + 1− r)b

ra
(log r)i(log (N + 1− r))j.

Note that μ0,0 = 1/A. See the Supplemental Note
(Supplemental Methods) for the derivation of I(a, b).

Testing for differential expression: two-sample Wald test

Further, to statistically test if a gene is differentially expressed be-
tween two subpopulations, ROSeq uses the (asymptotically) opti-
mum two-sample Wald test based on the MLE of the parameters
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and their asymptotic variances, given by the inverse of the Fisher
information matrix.

Let us assume that the DGBD parameters corresponding to
the contrasting cell-groups 1 and 2 are denoted by (a1, b1) and
(a2, b2), respectively, and their MLEs based on the available nor-
malized expression data are given by (â1, b̂1) and (â2, b̂2) with
the respective number of bins being m and n. We can estimate
the asymptotic variance matrices for these MLEs, using Equation
3, as V̂1 = I(â1, b̂1)

−1andV̂2 = I(â2, b̂2)
−1, respectively. Under the

DGBD model, the desired testing for differential gene expressions
is equivalent to the test for the null hypothesis H0: a1 = a2, b1 = b2
against the omnibus alternative. The Wald test statistic T for test-
ing H0 can be written as follows:

T = mn
m+ n

( )
â1 − â2
b̂1 − b̂2

[ ]T
(wV̂1 + (1− w)V̂2)

−1 â1 − â2
b̂1 − b̂2

[ ]
,

wherew=n/(m+n). If the null hypothesisH0 is correct, that is, the
genes in the two subpopulations are not differentially expressed,
the above test statistics T asymptotically follows a central chi-
square distribution, x22, with two degrees of freedom. Therefore,
we conclude that the genes are differentially expressed (i.e., reject
H0) at 95% level of significance if the observed value of the test
statistics T exceeds the 95% quantile of the x22 distribution (which
is approximately six). The corresponding P-value is given by
the probability that a x22 random variable exceeds the observed val-
ue of T.

Benchmarking of single-cell DEG calls

To benchmark single-cell DEG calls, we used matched bulk RNA-
seq data from the same studies. DESeq was used for making DEG
calls based on bulk RNA-seq data (Anders and Huber 2010).
DESeq’s standard pipeline uses the median of ratios method of
normalization. DEGs were selected at an FDR cutoff of 0.05. To en-
sure the trustworthiness of the bulk-basedDEG calls, we imposed a
strict fold change criterion (i.e., log2 fold change cutoff of three)
as recommended elsewhere (Hart et al. 2013; Giustacchini et al.
2017).

Dropout induction in real scRNA-seq data

Given a count matrix, to simulate dropouts, we computed Eg=
log2(Rg+1), where Rg denotes the average read count of gene
g across the input transcriptomes. We also computed log-odds
of the dropout probability Dg for a gene g, where Dg= log(pg/1−
pg). Here pg denotes the observed probability of dropouts for g.

WemodeledDgwith regard to Eg using linear regression as in-
dicated below:

Dg = a+ bEg , (4)

which simply describes a line with slope β and y-intercept α. As
dropout rate increases with decrease in expression, one would ex-
pect β<0. We confirmed this by visualizing the relationship be-
tween D′

g and Eg. Of note, Splatter, a popular dropout induction
method, makes similar assumptions about the relationship be-
tween average expression and dropout rate (Zappia et al. 2017).
Given a matrix, the introduction of additional dropouts reduces
average read count for each gene. On the flip side, by using the
above linear model, one can estimateD′

g associated with E′
g , where

E′
g = f × Eg . Here, 0 < f<1 is a factor that determines the decrease in

average read count, and is constant across all genes. By using
Equation 4, one can compute the expected increase Δg inDg owing
to change in Eg as follows:

Dg = D̂′
g − D̂g

= [a+ bE′
g ]− [a+ bEg ]

= b(E′
g − Eg ).

Here, D̂′
g and D̂g are estimated log-odds associated with Eg and E′

g ,
respectively. Also, Δg>0, because β<0 and E′

g , Eg . We can use Δg
to compute D′

g as follows:

D′
g = Dg + Dg .

Finally, the new dropout probability p′g can be computed as fol-
lows:

p′g =
1

1+ e−D′
g
.

We can also retrieve the updated average read count R′
g using

the below equation:

R′
g = 2E′g − 1.

Now, p′g and R′
g are used to introduce additional dropouts and ad-

just average read count, respectively. New dropouts are created by
muting the expression of g in randomly chosen cells in which it
was earlier expressed. The number of additional dropouts can be
easily calculated by tracking the difference between p′g and pg.
After introducing the dropouts, we calculate the interim average
read count Ri

g . Further, we scale the cell-specific read counts of g
by multiplying the values by R′

g/R
i
g .

Software availability

The ROSeq R package (R Core Team 2020) is available at the
Bioconductor portal (http://www.bioconductor.org/packages/
release/bioc/html/ROSeq.html). A more frequently updated ver-
sion of the software can be accessed at the GitHub (https://
github.com/krishan57gupta/ROSeq). The ROSeq source code is
also available for download as Supplemental Code.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE160910.
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