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Abstract

Metabolic inference from genomic sequence information is a necessary step in determining

the capacity of cells to make a living in the world at different levels of biological organization.

A common method for determining the metabolic potential encoded in genomes is to map

conceptually translated open reading frames onto a database containing known product

descriptions. Such gene-centric methods are limited in their capacity to predict pathway

presence or absence and do not support standardized rule sets for automated and repro-

ducible research. Pathway-centric methods based on defined rule sets or machine learning

algorithms provide an adjunct or alternative inference method that supports hypothesis gen-

eration and testing of metabolic relationships within and between cells. Here, we present

mlLGPR, multi-label based on logistic regression for pathway prediction, a software pack-

age that uses supervised multi-label classification and rich pathway features to infer meta-

bolic networks in organismal and multi-organismal datasets. We evaluated mlLGPR

performance using a corpora of 12 experimental datasets manifesting diverse multi-label

properties, including manually curated organismal genomes, synthetic microbial communi-

ties and low complexity microbial communities. Resulting performance metrics equaled

or exceeded previous reports for organismal genomes and identify specific challenges

associated with features engineering and training data for community-level metabolic

inference.

Author summary

Predicting the complex series of metabolic interactions e.g. pathways, within and between

cells from genomic sequence information is an integral problem in biology linking geno-

type to phenotype. This is a prerequisite to both understanding fundamental life processes

and ultimately engineering these processes for specific biotechnological applications. A

pathway prediction problem exists because we have limited knowledge of the reactions

and pathways operating in cells even in model organisms like Esherichia coli where the
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majority of protein functions are determined. To improve pathway prediction outcomes

for genomes at different levels of complexity and completion we have developed mlLGPR,

multi-label based on logistic regression for pathway prediction, a scalable open source

software package that uses supervised multi-label classification and rich pathway features

to infer metabolic networks. We benchmark mlLGPR performance against other infer-

ence methods providing a code base and metrics for continued application of machine

learning methods to the pathway prediction problem.

Introduction

Metabolic inference from genomic sequence information is a fundamental problem in biology

with far reaching implications for our capacity to perceive, evaluate and engineer cells at the

individual, population and community levels of organization [1, 2]. Predicting metabolic inter-

actions can be described in terms of molecular events or reactions coordinated within a series

or cycle. The set of reactions within and between cells defines a reactome, while the set of

linked reactions defines pathways within and between cells. Reactomes and pathways can be

predicted from primary sequence information and refined using mass spectrometry to both

validate known and uncover novel pathways.

The development of reliable and flexible rule sets for metabolic inference is a non-trivial

step that requires manual curation to add accurate taxonomic or pathway labels [3]. This prob-

lem is compounded by the ever increasing abundance of different data structures sourced

from organismal genomes, single-cell amplified gemomes (SAGs) and metagenome assembled

genomes (MAGs) (Fig 1). Under ideal circumstances, pathways are inferred from a bounded

reactome that has been manually curated to reflect detailed biochemical knowledge from a

closed reference genome e.g. T1 in the information hierarchy in (Fig 1). While this is possible

for a subset of model organisms, it becomes increasingly difficult to realize when dealing with

the broader range of organismal diversity found in natural and engineered environments. At

the same time, advances in sequencing and mass spectrometry platforms continue to lower the

cost of data generation resulting in exponential increases in the volume and complexity of

multi-omic information (DNA, RNA, protein and metabolite) available for metabolic infer-

ence [4].

Over the past three decades, several trusted sources have emerged to collect and curate reac-

tomes and pathways based on biochemical knowledge including the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [5], Reactome [6], and MetaCyc [7]. MetaCyc is a multi-organ-

ism member of the BioCyc collection of Pathway/Genome Databases (PGDB) [8] that contains

only experimentally validated metabolic pathways across all domains of life (currently over

2766 pathways from 3067 different organisms). Pathway/Genome Databases can be con-

structed in Pathway Tools, a production-quality software environment developed at SRI that

supports metabolic inference based on the MetaCyc database [9]. Navigable and extensively

commented pathway descriptions, literature citations, and enzyme properties combined

within a PGDB provide a coherent structure for exploring and interpreting pathways in

genomes to biomes. Metabolic inference in Pathway Tools is based on the use of a rule-based

algorithm called PathoLogic [10] producing organismal PGDBs e.g. EcoCyc [11] stored in

repositories e.g. BioCyc [12] that can be refined based on experimental validation. In addition

to organismal PDGBs, pathologic can be used to produce microbiome or environmental Path-

way/Genome Databases (ePGDBs) representing community level metabolic models e.g. T4 on

PLOS COMPUTATIONAL BIOLOGY A machine learning method for organismal and community level pathway inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008174 October 1, 2020 2 / 22

Columbia, the Natural Sciences and Engineering

Research Council (NSERC) of Canada, and

Compute/Calcul Canada through grants award to S.

J.H. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: SJH is a co-founder of

Koonkie Inc., a bioinformatics consulting company

that designs and provides scalable algorithmic and

data analytics solutions in the cloud.

https://doi.org/10.1371/journal.pcbi.1008174


the information hierarchy in (Fig 1) [13–15] that can also be stored in open source repositories

e.g. EngCyc or GutCyc [14, 16].

While PathoLogic provides a powerful engine for pathway-centric inference, it is a hard

coded and relatively inflexible application that does not not scale efficiently for community

sequencing projects. Moreover, PathoLogic does not provide probability scores associated

with inferred pathways further limiting its statistical power with respect to false discovery. An

alternative inference method called MinPath uses integer programming to identify the mini-

mum number of pathways that can be described given a set of defined input sequences e.g. KO

family annotations in KEGG [17]. However, such a parsimony approach is prone to false nega-

tives and can be difficult to scale. Issues of probability and scale have led to the consideration

of machine learning (ML) approaches for pathway prediction based on rich feature informa-

tion. Dale and colleagues conducted a comprehensive comparison of PathoLogic to different

types of supervised ML algorithms including naive Bayes, k nearest neighbors, decision trees

and logistic regression, converting PathoLogic rules into features and defining new features

for pathway inference [18]. They evaluated these algorithms on experimentally validated path-

ways from six T1 PGDBs in the BioCyc collection randomly divided into training and test sets.

Fig 1. Genomic information hierarchy encompassing individual, population and community levels of cellular organization. (a) Building on the BioCyc

curation-tiered structure of Pathway/Genome Databases (PGDBs) constructed from organismal genomes, two additional data structures are resolved from single-

cell and plurality sequencing methods to define a 4 tiered hierarchy (T1-4) in descending order of manual curation and functional validation. (b) Completion

scales for organismal genomes, single-cell amplified gemomes (SAGs) and metagenome assembled genomes (MAGs) within the 4 tiered information hierarchy.

Genome completion will have a direct effect on metabolic inference outcomes with incomplete organismal genomes, SAGs or MAGS resolving fewer metabolic

interactions.

https://doi.org/10.1371/journal.pcbi.1008174.g001
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Resulting performance metrics indicated that generic ML methods equaled or marginally

exceeded the performance of PathoLogic with the benefit of probability estimation for pathway

presence and increased flexibility and transparency of use.

Despite the potential benefits of adopting ML methods for pathway prediction from geno-

mic sequence information, PathoLogic remains the primary inference engine of Pathway

Tools [9], and alternative methods for pathway-centric inference expanding on the algorithms

evaluated by Dale and colleagues remain nascent. Several recent efforts incorporate metabolite

information to improve pathway inference and reaction rules to infer metabolic pathways [3,

19–21]. Others, including BiomeNet [22] and MetaNetSim [23] omit pathways and model

reaction networks based on enzyme abundance information. Here we describe a multi-label

classification approach to metabolic pathway inference using rich pathway feature information

called mlLGPR,multi-label based on logistic regression for pathway prediction. mlLGPR uses

logistic regression and feature vectors inspired by the work of Dale and colleagues to predict

metabolic pathways for individual genomes as well as more complex cellular communities e.g.

microbiomes. We evaluate mlLGPR performance in relation to other inference methods

including PathoLogic and MinPath on a set of T1 PGDBs alone and in combination from the

BioCyc collection, symbiont genomes encoding distributed metabolic pathways for amino

acid biosynthesis [24], genomes used in the Critical Assessment of Metagenome Interpretation

(CAMI) initiative [25], and whole genome shotgun sequences from the Hawaii Ocean Time

Series (HOTS) [26].

The mlLGPR method

In this section, we provide a series of definitions and the problem formulation followed by a

description of mlLGPR components (Fig 2) including: i)- features representation, ii)- the pre-

diction model, and iii)- the multi-label learning process. mlLGPR was written in Python v3

and depends on scikit-learn v0.20 [27], Numpy v1.16 [28], NetworkX v2.3 [29], and SciPy v1.4

[30]. The mlLGPR workflow is presented in (Fig 1).

Definitions and problem formulation

Here, the default vector is considered to be a column vector and is represented by a boldface

lowercase letter (e.g., x) while the matrix of it is denoted by boldface uppercase letter (e.g., X).

Unless otherwise mentioned, if a subscript letter i is attached to a matrix, such as Xi, it indi-

cates the i-th row of X, which is a row vector while a subscript character to a vector, xi, repre-

sents an i-th cell of x. Occasional superscript, x(i), suggests an index to a sample or current

epoch during learning period. With these notations in mind, we introduce the metabolic path-

way inference problem by first defining the pathway dataset.

Metabolic pathway inference can be formulated as a supervised multi-label prediction prob-

lem. This is because a genome encodes multiple pathway labels per instance. Formally, let

S ¼ fðxðiÞ; yðiÞÞ : 1 < i⩽ ng be a pathway dataset consisting of n examples, where x(i) is a vec-

tor indicating abundance information for corresponding enzymatic reactions. An enzymatic

reaction is denoted by e, which is an element of a set E ¼ fe1; e2; . . . ; erg, having r possible

enzymatic reactions, hence, the vector size x(i) is r. The abundance of an enzymatic reaction

for an example i, say eðiÞl , is defined as aðiÞl ð2 R�0Þ. The class labels yðiÞ ¼ ½yðiÞ1 ; . . . ; yðiÞt � 2 f0; 1g
t

is a pathway label vector of size t that represents the total number of pathways, which are

derived from a set of universal metabolic pathway Y. The matrix form of x(i) and y(i) are X and

Y, respectively.

We further denote X ¼ Rd as the d-dimensional input space, and transform each sample

xðiÞ 2 X into an arbitrarym-dimensional vector based on a transformation function where
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m� d. The transformation function for each sample i is defined byF : X ! Rm, which can

be described as a feature extraction and transformation process (see Section Features engineer-

ing). Given the above notation and a multi-label dataset S, we want to learn a hypothesis

function f : FðxÞ ! 2jYj from S, such that it predicts metabolic pathways in new samples as

accurately as possible.

Features engineering

The design of feature vectors is critical for accurate classification and pathway inference. We

consider five types of feature vectors inspired by the work of Dale and colleagues [18]: i)-

Fig 2. mlLGPR workflow. Datasets spanning the information hierarchy are used in feature engineering. The Synthetic dataset with features is

split into training and test sets and used to train mlLGPR. Test data from the Gold Standard dataset (T1) with features and Synthetic dataset

(T1-3) with features is used to evaluate mlLGPR performance prior to the application of mlLGPR on experimental datasets (T4) from different

sources.

https://doi.org/10.1371/journal.pcbi.1008174.g002
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enzymatic reactions abundance vector (ϕa), ii)- reactions evidence vector (ϕf), iii)- pathways

evidence vector (ϕy), iv)- pathway common vector (ϕc), and v)- possible pathways vector (ϕd).
The transformation process ϕa is represented by r-dimensional frequency vector, correspond-

ing to the number of occurrences for each enzymatic reaction as ϕa = [a1, a2, . . ., ar]>. An

enzymatic reaction is characterized by an enzyme commission (EC) classification number

[31]. The reaction evidence vector ϕf indicates the properties of the enzymatic reaction for

each sample. The pathway evidence features ϕy include a modified subset of features developed

by Dale and colleagues expanding on core PathoLogic rule sets to include additional informa-

tion related to enzyme presence, gaps in pathways, network connectivity, taxonomic range, etc

[18]. The pathway common feature vector ϕc, for a sample x(i) is represented by r-dimensional

binary vector and the possible pathways vector ϕd is a t-dimensional binary vector. Each of the

transformation function maps x to a different dimensional vector, and the concatenated fea-

ture vectorF = [ϕa(x(i)), ϕf(x(i)), ϕy(x(i)), ϕc(x(i)), ϕd(x(i))] has a total ofm-dimensional features

for each sample. For a more in-depth description of the feature engineering process please

refer to S2 Appendix).

Prediction model

We use the logistic regression (LR) model to infer a set of pathways given an instance feature

vector F(x(i)). LR was selected because of its proven power in discriminative classification

across a variety of supervised machine learning problems [32]. In addition to direct probabilis-

tic interpretation integrated into the model, LR can handle high-dimensional data, efficiently.

The LR model represents conditional probabilities through a non-linear logistic function f(.)
defined as

f ðyj;FðxðiÞÞÞ ¼ pðy
ðiÞ
j ¼ 1jFðxðiÞÞ; yjÞ ¼

expðy>j Fðx
ðiÞÞÞ

expðy>j FðxðiÞÞÞ þ 1
ð1Þ

where yðiÞj is the j-th element of the label vector y(i) 2 {0, 1}t and θj is am-dimensional weight

vector for the j-th pathway. Each element of F(x(i)) corresponds to an element of θj for the j-
class, therefore, we can retrieve important features that contribute to the prediction of j by

sorting the elements of F(x(i)) according to the corresponding values of the weight vector θj.
The Eq 1 is repeated for all the t classes for an instance i, hence multi-labeling, and, for an indi-

vidual pathway, the results are stored in a vector qðiÞ 2 Rt. Predicted pathways are reported

based on a cut-off threshold τ, which is set to 0.5 by default:

cyðiÞ ¼ vec

(
1 if qðiÞj � t

0 otherwise

0

@

1

A8j 2 t ð2Þ

where vec is a vectorized operation. Given that Eq 1 produces a conditional probability over

each pathway, and the j-th class label will be included to y(i) only if f(θj, F(x(i)))� τ we adopt a

soft decision boundary using T-criterion rule [33] as:

cyðiÞ ¼ vec

1 if qðiÞj � t

1 if qðiÞj ⩾ fmaxðq
ðiÞ
j Þ

0 otherwise

8
>>>><

>>>>:

1

C
C
C
C
A
8j 2 t

0

B
B
B
B
@

ð3Þ

where fmax(f(θj,F(x(i)))) = β �max({f(θj, F(x(i)):8j 2 t}), which is the maximum predictive

probability score. The hyper-parameter β 2 (0, 1] must be tuned based on empirical
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information, and it cannot be set to 0, which implies retrieving all of the t pathways. The pre-

dicted set of pathways using the Eq 3 is referred to as adaptive prediction because the decision

boundary, and its corresponding threshold, are tuned to the test data [34].

Multi-label learning process

The process is decomposed into t independent binary classification problems, where each

binary classification problem corresponds to a possible pathway in the label space. Then, LR is

used to define a binary classifier f(.), such that for a training example (F(x(i)), y(i)), an instance

F(x(i)) will be involved in the learning process of t binary classifiers. Given n training samples,

we attempt to estimate all the weight vectors individually θ1, θ2, . . ., θt by maximizing the logis-

tic loss function as follows:

llðyjÞ ¼ max
yj

1

n

Xn

i¼1

ðyðiÞj y
>

j Fðx
ðiÞÞ � logð1þ expðy>j Fðx

ðiÞÞÞÞ ð4Þ

Usually, a penalty or regularization term O(θj) is inserted into the loss function to enhance

the generalization properties to unseen data, particularly if the dimensionm of features is

high. Thus, the overall objective cost function (after dropping the maximized term for brevity)

is defined as:

CðyjÞ ¼ llðyjÞ � lOðyjÞ ð5Þ

where λ> 0 is a hyper-parameter that controls the trade-off between ll(θj) and O(θj). Here, the

regularization term O(θj) is chosen to be the elastic net:

OðyjÞ ¼
1 � a

2
kyjk

2

2
þ akyjk1

ð6Þ

The elastic net penalty of Eq 6 is a compromise between the L1 penalty of LASSO (by setting

α = 1) and the L2 penalty of ridge-regression (by setting α = 0) [35]. While the L1 term of the

elastic net aims to remove irrelevant variables by forcing some coefficients of θj to 0, leading to

a sparse vector of θj, the L2 penalty ensures that highly correlated variables have similar regres-

sion coefficients. Substituting Eq 6 into Eq 5, yields the following objective function:

CðyjÞ ¼ llðyjÞ � lð
1 � a

2
kyjk

2

2
þ akyjk1

Þ ð7Þ

During learning, the aim is to estimate parameters θj so as to maximize C(θj), which is con-

vex; however, the last term of Eq 7 is non-differentiable, making the equation non-smooth.

For the rightmost term, we apply the sub-gradient [36] method allowing the optimization

problem to be solved using mini-batch gradient descent (GD) [37]. We initialize with random

values for θj, followed by iterations to maximize the cost function C(θj) with the following

derivatives:

@

@yj
CðyjÞ ¼

1

n

Xn

i¼1

FðxðiÞÞ½yðiÞj � f ðyj;Fðx
ðiÞÞÞ� � l½ð1 � aÞyj þ a signðyjÞ� ð8Þ

Finally, the update algorithm for θj at each iteration is obtained as:

y
uþ1

j ¼ y
u
j þ Zð

1

n

Xn

i¼1

FðxðiÞÞ½yðiÞj � f ðyj;Fðx
ðiÞÞÞ� � l½ð1 � aÞyj þ a signðyjÞ�Þ ð9Þ
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where u is the current step. The mathematical derivation of the algorithm can be found in S1

Appendix.

Experimental setup

In this section, we describe an experimental framework used to demonstrate mlLGPR pathway

prediction performance across multiple datasets spanning the genomic information hierarchy

(Fig 1). MetaCyc version 21 containing 2526 base pathways and 3650 enzymatic reactions, was

used as a trusted source to generate samples, build features, and validate results from the pre-

diction algorithms, as outlined in Section Results. For training we constructed two synthetic

datasets Synset 1 and Synset 2 based on the Poisson distribution to subsample pathways, align-

ing with the previous work [22], from a list of MetaCyc pathways.

We evaluated mlLGPR performance using a corpora of 12 experimental datasets manifest-

ing diverse multi-label properties, including manually curated organismal genomes, synthetic

microbial communities and low complexity microbial communities. The T1 golden dataset

consisted of six PGDBs including AraCyc, EcoCyc,HumanCyc, LeishCyc, TrypanoCyc, and

YeastCyc, A composite golden dataset, referred to as SixDB, consisted of 63 permuted combi-

nations of T1 PGDBs. In addition to datasets derived from the BioCyc collection, we evaluated

performance using low complexity data fromMoranella (GenBank NC-015735) and Trem-
blaya (GenBank NC-015736) symbiont genomes encoding distributed metabolic pathways for

amino acid biosynthesis [24], the Critical Assessment of Metagenome Interpretation (CAMI)

initiative low complexity dataset [25], and whole genome shotgun sequences from the Hawaii

Ocean Time Series (HOTS) at 25m, 75m, 110m (sunlit) and 500m (dark) ocean depth intervals

[26]. More information about the datasets are summarized in S3 Appendix.

mlLGPR performance was compared to four additional prediction methods including

BASELINE, Naïve v1.2 [17], MinPath v1.2 [17] and PathoLogic v21 [10]. In the BASELINE

method, the enzymatic reactions of an example x(i) are mapped directly onto the true represen-

tation of all known pathways Y. Then, we apply a cutoff threshold (0.5) to retrieve a list of

pathways for that example. In the Naïve method, reactions are randomly predicted from Meta-

Cyc and linked together to construct pathways that are accepted or rejected based on a speci-

fied cut-off threshold, typically set to 0.5. If one or more enzymatic reactions are assigned to a

pathway then that pathway is identified as present; otherwise, it is rejected. MinPath recovers

the minimal set of pathways that can explain observed enzymatic reactions through an iterative

constrained optimization process using an integer programming algorithm [38]. PathoLogic is

a rule-based metabolic inference method incorporating manually curated biochemical infor-

mation in a two step process that first produces a reactome that is in turn used to predict meta-

bolic pathways within a PGDB [10].

For training purposes Synset-1 and Synset-2, were subdivided in three subsets: (training set,
validation set, and test set), using a stratified sampling approach [39] resulting in 10, 869 train-

ing, 1938 validation and 2193 testing samples for Synset-1 and 10, 813 training, 1, 930 valida-

tion, and 2, 257 instances for Synset-2. Features extraction was implemented for each dataset

in Table 1, resulting in total feature vector size of 12452 for each instance, where |ϕa| = 3650,

|ϕf| = 68, |ϕy| = 32, |ϕc| = 3650, and |ϕd| = 5052. Integral hyper-parameter settings includedΘ
initialized to a uniform random value in the range [0, 1], batch-size set to 500, epoch number

set to 3, adaptive prediction hyper-parameter β in the range (0, 1], regularization hyper-param-

eters λ and α set to 10000 and 0.65, respectively. The learning rate η was adjusted based on 1

lþu,

where u denotes the current step. The development set was used to determine critical values of

λ and α. Default parameter settings were used for MinPath and PathoLogic. All tests were con-

ducted using a Linux server using 10 cores on an Intel Xeon CPU E5-2650.
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Performance metrics

The following metrics were used to report on performance of prediction algorithms used in

the experimental framework outlined above: average precision, average recall, average F1 score
(F1), andHamming loss, [40].

Formally, let us denote y(i) and cyðiÞ to be the true and the predicted pathway set for the i-the

sample, respectively. Then, the four measurements can be defined as:

Average Precision ðPrÞ ¼
1

n

Xn

i¼1

yðiÞ>cyðiÞ
P

j2t
cyðiÞj

0

@

1

A ð10Þ

Average Recall ðRcÞ ¼
1

n

Xn

i¼1

yðiÞ>cyðiÞ
P

j2ty
ðiÞ
j

 !

ð11Þ

Average F1 ¼
2Pr� Rc
Prþ Rc

ð12Þ

Hamming Loss hlossð Þ ¼
1

nt

Xn

i¼1

Xt

j¼1

1ðyðiÞj 6¼
cyðiÞj Þ ð13Þ

where 1(.) denotes the indicator function, respectively. Each metric is averaged based on sam-

ple size.

The values of average precision, average recall, and average F1 vary between 0 − 1 with 1

being the optimal score. Average Precision relates the number of true pathways to the number

Table 1. Experimental dataset properties. The notations jSj, L(S), LCard(S), LDen(S), DL(S), and PDL(S) represent number of instances, number of pathway labels,

pathway labels cardinality, pathway labels density, distinct pathway labels set, and proportion of distinct pathway labels set for S, respectively. The notations R(S), RCard

(S), RDen(S), DR(S), and PDR(S) have similar meanings as before but for the enzymatic reactions E in S. PLR(S) represents a ratio of L(S) to R(S). The last column

denotes the domain of S.

Dataset jSj L(S) LCard

(S)

LDen

(S)

DL

(S)

PDL(S) R(S) RCard(S) RDen

(S)

DR

(S)

PDR(S) PLR

(S)

Domain

EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707 Escherichia coli K-12 substr.

MG1655

HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370 Homo sapiens

AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337 Arabidopsis thaliana

YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371 Saccharomyces cerevisiae

LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397 Leishmania major Friedlin

TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355 Trypanosoma brucei

SixDB 63 37295 591.9841 0.0159 944 14.9841 210080 3334.6032 0.0159 1709 27.1270 0.1775 Composed from six databases

Symbiont 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914 Composed of Moranella and

Tremblaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388 Simulated microbiomes of low

complexity

HOT 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119 Metagenomic Hawaii Ocean

Time-series (10m, 75m, 110m,

and 500m)

Synset-1 15000 6801364 453.4243 0.00007 2526 0.1684 30901554 2060.1036 0.00007 3650 0.2433 0.2201 Synthetically generated

(uncorrupted)

Synset-2 15000 6806262 453.7508 0.00007 2526 0.1684 34006386 2267.0924 0.00007 3650 0.2433 0.2001 Synthetically generated

(corrupted)

https://doi.org/10.1371/journal.pcbi.1008174.t001
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of predicted pathways including false positives, while recall relates the number of true path-

ways to the total number of expected pathways including false negatives. While recall tells us

about the ability of each prediction method to find relevant pathways, precision tells us about

the accuracy of those predictions. Average F1 represents the harmonic mean of average preci-

sion and average recall by taking the trade-off between the two metrics into account. The hloss

is the fraction of pathways that are incorrectly predicted providing a useful performance indi-

cator. From Eq 13, we observe that when all of the pathways are correctly predicted, then

hloss = 0, whereas the other metrics will be equal to 1. On the other hand, when the predictions

of all pathways are completely incorrect hloss = 1, whereas the other metrics will be equal to 0.

Results

Four types of analysis including parameter sensitivity, features selection, robustness, and path-

way prediction potential were used to tune and evaluate mlLGPR performance in relation to

other pathway prediction methods.

Parameter sensitivity

Experimental setup. Three consecutive tests were performed to ascertain: 1)- the impact

of L1, L2, and elastic-net (EN) regularizers on mlLGPR performance using T1 golden datasets,

2)- the impact of changing hyper-parameter λ 2 {1, 10, 100, 1000, 10000} using T1 golden

datasets, and 3)- the impact of adaptive beta β 2 (0, 1] using Synset-2 and the SixDB golden

dataset.

Experimental results. Table 2 indicates test results across different mlLGPR configura-

tions. Although the F1 scores of mlLGPR-L1, mlLGPR-L2 and mlLGPR-EN were comparable,

precision and recall scores were inconsistent across the T1 golden datasets. For example,

Table 2. Predictive performance of mlLGPR on T1 golden datasets. mlLGPR-L1: the mlLGPR with L1 regularizer, mlLGPR-L2: the mlLGPR with L2 regularizer,

mlLGPR-EN: the mlLGPR with elastic net penalty, L2: AB: abundance features, RE: reaction evidence features, and PE: pathway evidence features. For each performance

metric, ‘#’ indicates the lower score is better while ‘"’ indicates the higher score is better.

Methods Hamming Loss #

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR-L1 (+AB+RE+PE) 0.0776 0.0645 0.1069 0.0487 0.0412 0.0602 0.1365

mlLGPR-L2 (+AB+RE+PE) 0.0606 0.0515 0.1112 0.0412 0.0234 0.0344 0.1426

mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods Average Precision Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR-L1 (+AB+RE+PE) 0.6253 0.6686 0.7390 0.6815 0.4525 0.5395 0.7391

mlLGPR-L2 (+AB+RE+PE) 0.7437 0.7945 0.8418 0.7934 0.6186 0.7268 0.8488

mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods Average Recall Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR-L1 (+AB+RE+PE) 0.9023 0.8244 0.7275 0.8690 0.9310 0.8971 0.6738

mlLGPR-L2 (+AB+RE+PE) 0.7655 0.7204 0.5529 0.7380 0.8391 0.8057 0.5211

mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods Average F1 Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR-L1 (+AB+RE+PE) 0.7387 0.7384 0.7332 0.7639 0.6090 0.6738 0.6919

mlLGPR-L2 (+AB+RE+PE) 0.7544 0.7556 0.6675 0.7647 0.7122 0.7642 0.6306

mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

https://doi.org/10.1371/journal.pcbi.1008174.t002
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high precision scores were observed for mlLGPR-L2 on AraCyc (0.8418) and YeastCyc

(0.7934) with low recall scores of 0.5529 and 0.7380, respectively. In contrast, high recall scores

were observed for mlLGPR-L1 on AraCyc (0.7275) and YeastCyc (0.8690) with low precision

scores of 0.7390 and 0.6815, respectively. The increased recall with reduced precision scores by

mlLGPR-L1 indicates a low variance model that may eliminate many relevant coefficients. The

impact is especially observed for datasets encoding a small number of pathways as is the case

for LeishCyc (87 pathways) and TrypanoCyc (175 pathways). Similarly, the increased precision

with reduced recall scores by mlLGPR-L2 is a consequence of the existence of highly correlated

features present in the test datasets [41], resulting in a high variance model. The impact is espe-

cially observed for LeishCyc and TrypanoCyc suggesting that mlLGPR-L2 performance

declines with increasing pathway number. mlLGPR-EN tended to even out the scores relative

to mlLGPR-L1 and mlLGPR-L2 providing more balanced performance outcomes.

Based on these results, hyper-parameters λ and β were tested to tune mlLGPR-EN perfor-

mance. Fig 3 indicates that the relationship between F1 score and the regularization hyper-

parameter λ increases monotonically for the T1 golden datasets peaking at λ = 10000 (having

an F1 score of> 0.6 for all datasets). For the adaptive β test, Fig 4 shows the performance of

mlLGPR-EN on Synset-2 test samples across a range of β 2 (0, 1] values, indicating that this

hyper-parameter has minimal impact on performance.

Taken together, parameter testing results indicated that mlLGPR-EN provided the most

balanced implementation of mlLGPR, and the regularization hyper-parameter λ at 10000

resulted in the best performance for T1 golden datasets. This hyper-parameter should be

tuned when applied to new datasets to reduce false positive pathway discovery. Minimal effects

on prediction performance were observed when testing the adaptive hyper-parameter β.

Features selection

Experimental setup. A series of feature set “ablation” tests were conducted using Synset-2

as a training set in a reverse manner, starting with only reaction abundance features (AB), a

Fig 3. Average F1 score of mlLGPR-EN on a range of regularization hyper-parameter λ 2 {1, 10, 100, 1000, 10000}

values on EcoCyc, HumanCyc, AraCyc, YeastCyc, LeishCyc, TrypanoCyc, and SixDB dataset. The x-axis is log

scaled.

https://doi.org/10.1371/journal.pcbi.1008174.g003
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fundamental feature set consisting of 3650 features and then successively aggregating addi-

tional feature sets while recording predictive performance on golden T1 datasets using the set-

tings and metrics described in Section Experimental setup. Because testing individual features

is not practical, this form of aggregate testing provides a tractable method to identify the rela-

tive contribution of feature sets to pathway prediction performance.

Experimental results. Table 3 indicates ablation test results. The AB feature set promotes

the highest average recall on EcoCyc (0.9511) and a comparable F1-score of 0.6952. This is not

unexpected given the ratio of pathways to the number of enzymatic reactions (PLR) indicated

by EC numbers for EcoCyc is high. However, although functional annotations with EC num-

bers increase the probability of predicting a given pathway, pathways with few or no EC num-

bers such as pregnenolone biosynthesis require additional feature sets to avoid false negatives.

As additional feature sets are aggregated, mlLGPR-EN performance tends to improve

unevenly for different T1 organismal genomes. For example, adding the enzymatic reaction

evidence (RE) feature set consisting of 68 features to the AB features set improves F1 scores for

YeastCyc (0.7394), LeishCyc (0.5830), and TrypanoCyc (0.6753). Further aggregating the path-

way evidence (PE) feature set, consisting of 32 features to the AB feature set improves the F1

score for AraCyc (0.7532) but reduces the F1 score for the remaining T1 organismal genomes.

Aggregating AB, RE and pathway evidence (PE) feature sets resulted in the highest F1 scores

for HumanCyc (0.7468), LeishCyc (0.6220), TrypanoCyc (0.6768), and SixDB (0.7078) with

only marginal differences between the highest F1 scores for EcoCyc (0.7275) and AraCyc

(0.7343). Additional combinations of features did not improve overall performance across the

T1 golden datasets.

Taken together, ablation testing results indicated that mlLGPR-EN in combination with

AB, RE and PE feature sets result in the most even pathway prediction performance for golden

T1 datasets.

Fig 4. Performance of mlLGPR-EN according to the β adaptive decision hyper-parameter on datasets. (a)- Synset-2 test dataset. (b)- SixDB dataset.

https://doi.org/10.1371/journal.pcbi.1008174.g004
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Table 3. Ablation tests of mlLGPR-EN trained using Synset-2 on T1 golden datasets. AB: abundance features, RE: reaction evidence features, PP: possible pathway fea-

tures, PE: pathway evidence features, and PC: pathway common features. mlLGPR is trained using a combination of features, represented by mlLGPR-�, on Synset-2 train-

ing set. For each performance metric, ‘#’ indicates the lower score is better while ‘"’ indicates the higher score is better.

Methods Hamming Loss #

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR+AB 0.1013 0.0887 0.1025 0.0907 0.1124 0.1073 0.1412

mlLGPR+AB+RE 0.0788 0.0697 0.1101 0.0558 0.0447 0.0598 0.1348

mlLGPR+AB+PP 0.2835 0.2922 0.2898 0.2724 0.2553 0.2759 0.2842

mlLGPR+AB+PE 0.1017 0.0835 0.1002 0.0891 0.1172 0.1089 0.1387

mlLGPR+AB+PC 0.1041 0.0938 0.1409 0.0879 0.1081 0.0899 0.1844

mlLGPR+AB+RE+PP 0.2815 0.2882 0.2961 0.2648 0.2526 0.2759 0.2825

mlLGPR+AB+RE+PE 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

mlLGPR+AB+RE+PC 0.0966 0.0732 0.1394 0.0677 0.0515 0.0625 0.1793

mlLGPR+AB+PE+PC 0.1029 0.0899 0.1441 0.0914 0.1148 0.0903 0.1820

mlLGPR+AB+RE+PE+PP 0.2019 0.2070 0.2142 0.1876 0.1884 0.1880 0.2299

mlLGPR+AB+RE+PE+PP 0.2894 0.2993 0.2953 0.2736 0.2530 0.2755 0.2838

mlLGPR+AB+RE+PE+PC 0.0954 0.0816 0.1441 0.0673 0.0451 0.0641 0.1806

mlLGPR+AB+RE+PE+PP+PC 0.2003 0.2063 0.2209 0.1924 0.1924 0.1928 0.2317

Methods Average Precision Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR+AB 0.5478 0.5610 0.7390 0.5000 0.2316 0.3873 0.7323

mlLGPR+AB+RE 0.6205 0.6373 0.7275 0.6410 0.4293 0.5414 0.7412

mlLGPR+AB+PP 0.2755 0.2508 0.3926 0.2303 0.1037 0.1855 0.4300

mlLGPR+AB+PE 0.5473 0.5773 0.7495 0.5048 0.2257 0.3843 0.7402

mlLGPR+AB+PC 0.5618 0.5673 0.7810 0.5113 0.2265 0.4217 0.7650

mlLGPR+AB+RE+PP 0.2795 0.2536 0.3845 0.2375 0.1081 0.1885 0.4322

mlLGPR+AB+RE+PE 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

mlLGPR+AB+RE+PC 0.6019 0.6926 0.7992 0.6330 0.3862 0.5362 0.7761

mlLGPR+AB+PE+PC 0.5681 0.5844 0.7645 0.4969 0.2188 0.4223 0.7727

mlLGPR+AB+RE+PE+PP 0.3241 0.3000 0.4730 0.2761 0.1309 0.2283 0.5122

mlLGPR+AB+RE+PE+PP 0.2706 0.2482 0.3870 0.2301 0.1068 0.1873 0.4309

mlLGPR+AB+RE+PE+PC 0.6065 0.6466 0.7744 0.6277 0.4237 0.5291 0.7715

mlLGPR+AB+RE+PE+PP+PC 0.3299 0.2997 0.4580 0.2701 0.1285 0.2244 0.5084

Methods Average Recall Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

mlLGPR+AB 0.9511 0.9068 0.7608 0.9258 0.9770 0.9429 0.6775

mlLGPR+AB+RE 0.9055 0.8566 0.7275 0.8734 0.9080 0.8971 0.6774

mlLGPR+AB+PP 0.8176 0.8280 0.7961 0.8559 0.8391 0.8800 0.7696

mlLGPR+AB+PE 0.9414 0.9104 0.7569 0.9170 0.9885 0.9486 0.6795

mlLGPR+AB+PC 0.6515 0.6344 0.4196 0.6900 0.8851 0.8000 0.3827

mlLGPR+AB+RE+PP 0.8339 0.8280 0.7765 0.8690 0.8736 0.9029 0.7768

mlLGPR+AB+RE+PE 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

mlLGPR+AB+RE+PC 0.6059 0.6057 0.4137 0.6026 0.8391 0.7200 0.3820

mlLGPR+AB+PE+PC 0.6384 0.6452 0.4137 0.6900 0.9080 0.8229 0.3923

mlLGPR+AB+PP+PC 0.6091 0.6559 0.5333 0.6594 0.7931 0.7200 0.5053

mlLGPR+AB+RE+PE+PP 0.8143 0.8423 0.7922 0.8603 0.8621 0.8914 0.7758

mlLGPR+AB+RE+PE+PC 0.6124 0.5771 0.4039 0.6332 0.8621 0.6743 0.3776

mlLGPR+AB+RE+PE+PP+PC 0.6287 0.6487 0.5137 0.6594 0.7931 0.7257 0.5074

Methods Average F1 Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

(Continued)
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Robustness

Experimental setup. Robustness also known as accuracy loss rate was determined for

mlLGPR-EN with AB, RE and PE feature sets using the intact Synset-1 dataset and a “cor-

rupted” or noisy version of the Synset-2 dataset. Relative Loss of Accuracy (RLA) and equal-

ized loss of accuracy (ELA) scores [42] were used to describe the expected behavior of

mlLGPR-EN in relation to introduced noise. The ELA score explained in Section 2 in S3

Appendix, encompasses i)- the robustness of a model determined at a controlled noise thresh-

old ρ, and ii)- the performance of a model without noise, i.e., s(M0), where s represents the F1

score for a modelM0 without noise (any performance metrics can be employed). A low robust-

ness score indicates that model continues to exhibit good performance with increasing back-

ground noise.

Experimental results. Table 4 indicates robustness test scores. mlLGPR-EN with intro-

duced noise performed better for HumanCyc (−0.0502), YeastCyc (−0.0301), LeishCyc

(−0.1189), and TrypanoCyc (−0.0151), but was less robust for AraCyc (0.0416) and SixDB

(0.0470) based on RLAρ scores. This suggests that noise inversely correlates with the pathway

size. The more pathways present within a dataset can upset correlations among features. How-

ever, the impact of negative correlations is minimized when a dataset contains fewer pathways.

Note that the average number of ECs associated with pathways has little or negligible effects on

robustness.

Table 3. (Continued)

mlLGPR+AB 0.6952 0.6932 0.7498 0.6493 0.3744 0.5491 0.6754

mlLGPR+AB+RE 0.7364 0.7309 0.7275 0.7394 0.5830 0.6753 0.6938

mlLGPR+AB+PP 0.4122 0.3850 0.5259 0.3630 0.1846 0.3065 0.5386

mlLGPR+AB+PE 0.6922 0.7065 0.7532 0.6512 0.3675 0.5470 0.6802

mlLGPR+AB+PC 0.6033 0.5990 0.5459 0.5874 0.3607 0.5523 0.4683

mlLGPR+AB+RE+PP 0.4186 0.3882 0.5143 0.3730 0.1924 0.3119 0.5422

mlLGPR+AB+RE+PE 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

mlLGPR+AB+RE+PC 0.6039 0.6463 0.5452 0.6174 0.5290 0.6146 0.4853

mlLGPR+AB+PE+PC 0.6012 0.6133 0.5369 0.5777 0.3527 0.5581 0.4779

mlLGPR+AB+PP+PC 0.4231 0.4117 0.5014 0.3892 0.2248 0.3466 0.4857

mlLGPR+AB+RE+PE+PP 0.4062 0.3834 0.5199 0.3631 0.1901 0.3095 0.5407

mlLGPR+AB+RE+PE+PC 0.6094 0.6098 0.5309 0.6304 0.5682 0.5930 0.4805

mlLGPR+AB+RE+PE+PP+PC 0.4327 0.4100 0.4843 0.3832 0.2212 0.3428 0.4847

https://doi.org/10.1371/journal.pcbi.1008174.t003

Table 4. Performance and robustness scores for mlLGPR-EN with AB, RE and PE feature sets trained on both Synset-1 and Synset-2 training sets at 0 and ρ noise.

The best performance scores are highlighted in bold. The ‘#’ indicates the lower score is better while ‘"’ indicates the higher score is better.

Dataset Average F1 Score " Robustness Score #

mlLGPR-EN0 mlLGPR-ENρ RLAρ s(M0) ELAρ

EcoCyc 0.7280 0.7275 0.0007 0.3736 0.3743

HumanCyc 0.7111 0.7468 −0.0502 0.4063 0.3561

AraCyc 0.7662 0.7343 0.0416 0.3051 0.3468

YeastCyc 0.7176 0.7392 −0.0301 0.3935 0.3634

LeishCyc 0.5559 0.6220 −0.1189 0.7989 0.6800

TrypanoCyc 0.6667 0.6768 −0.0151 0.4999 0.4848

SixDB 0.7448 0.7098 0.0470 0.3426 0.3896

https://doi.org/10.1371/journal.pcbi.1008174.t004
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Taken together, the RLA and ELA results for T1 golden datasets indicate that mlLGPR-EN

trained on noisy datasets is robust to perturbation. This is a prerequisite for developing super-

vised ML methods tuned for community-level pathway prediction.

Pathway prediction potential

Experimental setup. Pathway prediction potential of mlLGPR-EN with AB, RE and PE

feature sets trained on Synset-2 training set was compared to four additional prediction meth-

ods including Baseline, Naïve v1.2 [17], MinPath v1.2 [17] and PathoLogic v21 [10] on T1

golden datasets using the settings and metrics described above. For community-level pathway

prediction on the T4 datasets including symbiont, CAMI low complexity, and HOTS datasets,

mlLGPR-EN and PathoLogic (without taxonomic pruning) results were compared.

Experimental results. Table 5 shows performance scores for each pathway prediction

method tested. The BASELINE, Naïve, and MinPath methods infer many false positive path-

ways across the T1 golden datasets, indicated by high recall with low precision and F1 scores.

In contrast, high precision and F1 scores were observed for PathoLogic and mlLGPR-EN

across the T1 golden datasets. Although both methods gave similar results, PathoLogic F1

scores for EcoCyc (0.7631), YeastCyc (0.7890) and SixDB (0.7479) exceeded those for

Table 5. Pathway prediction performance between methods using T1 golden datasets. mlLGPR-EN: the mlLGPR with elastic net penalty, L2: AB: abundance features,

RE: reaction evidence features, and PE: pathway evidence features. For each performance metric, ‘#’ indicates the lower score is better while ‘"’ indicates the higher score is

better.

Methods Hamming Loss #

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

BASELINE 0.2217 0.2486 0.3230 0.2458 0.1591 0.2526 0.3096

Naïve 0.3856 0.4113 0.4592 0.4216 0.3215 0.4319 0.4392

MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561 0.3124

PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424 0.1141

mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods Average Precision Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

BASELINE 0.3531 0.3042 0.3832 0.2694 0.1779 0.2153 0.4145

Naïve 0.2384 0.2081 0.3035 0.1770 0.0968 0.1382 0.3357

MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129 0.4124

PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480 0.7522

mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods Average Recall Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

BASELINE 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860

Naïve 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860

MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860

PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829 0.7499

mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods Average F1 Score "

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB

BASELINE 0.5205 0.4632 0.5516 0.4245 0.3021 0.3543 0.5784

Naïve 0.3843 0.3428 0.4640 0.3007 0.1765 0.2429 0.4939

MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511 0.5763

PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447 0.7479

mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

https://doi.org/10.1371/journal.pcbi.1008174.t005
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mlLGPR-EN. Conversely, mlLGPR-EN F1 scores for HumanCyc (0.7468), AraCyc (0.7343),

LeishCyc (0.6220) and TrypanoCyc (0.6768) exceeded those for PathoLogic.

To evaluate mlLGPR-EN performance on distributed metabolic pathway prediction

between two or more interacting organismal genomes a symbiotic system consisting of the

reduced genomes for Candidatus Moranella endobia and Candidatus Tremblaya princeps,
encoding a previously identified set of distributed amino acid biosynthetic pathways [24], was

selected. mlLGPR-EN and PathoLogic were used to predict pathways on individual symbiont

genomes and a composite genome consisting of both, and resulting amino acid biosynthetic

pathway distributions were determined (Fig 5). mlLGPR-EN predicted 8 out of 9 expected

amino acid biosynthetic pathways while PathoLogic recovered 6 on the composite genome.

The missing pathway for phenylalanine biosynthesis (L-phenylalanine biosynthesis I was

excluded from analysis because the associated genes were reported to be missing during the

ORF prediction process. False positives were predicted for individual symbiont genomes in

Moranella and Tremblaya using both methods although pathway coverage was low compared

to the composite genome. Additional feature information restricting the taxonomic range of

certain pathways or more restrictive pathway coverage could reduce false discovery on individ-

ual organismal genomes.

To evaluate pathway prediction performance of mlLGPR-EN on more complex commu-

nity-level genomes the CAMI low complexity and HOTS datasets were selected. Table G in S3

Appendix shows performance scores for mlLGPR-EN on the CAMI dataset. Although recall

was high (0.7827) precision and F1 scores were low when compared to the T1 golden datasets.

Similar results were obtained for the HOTS dataset. In both cases it is difficult to validate most

pathway prediction results without individual organismal genomes that can be replicated in

culture. Moreover, the total number of expected pathways per dataset is relatively large,

Fig 5. Predicted pathways for symbiont datasets between mlLGPR-EN with AB, RE and PE feature sets and PathoLogic. Red circles

indicate that neither method predicted a specific pathway while green circles indicate that both methods predicted a specific pathway. Blue

circles indicate pathways predicted solely by mlLGPR. The size of circles scales with reaction abundance information.

https://doi.org/10.1371/journal.pcbi.1008174.g005
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encompassing metabolic interactions at different levels of biological organization. On the one

hand, these open conditions confound interpretation of performance metrics while on the

other they present numerous opportunities for hypothesis generation and testing. To better

constrain this tension, mlLGPR-EN and PathoLogic prediction results were compared for a

subset of 45 pathways previously reported in the HOTS dataset [14]. Fig 6 shows pathway dis-

tributions spanning sunlit and dark ocean waters predicted by PathoLogic and mlLGPR-EN,

Fig 6. Comparison of predicted pathways for HOTS datasets between mlLGPR-EN with AB, RE and PE feature sets and PathoLogic. Red circles indicate that

neither method predicted a specific pathway while green circles indicate that both methods predicted a specific pathway. Blue circles indicate pathways predicted

solely by mlLGPR and gray circles indicate pathways solely predicted by PathoLogic. The size of circles scales with reaction abundance information.

https://doi.org/10.1371/journal.pcbi.1008174.g006
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grouped according to higher order functions within the MetaCyc classification hierarchy.

Between 25 and 500 m depth intervals, 7 pathways were exclusively predicted by PathoLogic

and 6 were exclusively predicted by mlLGPR-EN. Another 20 pathways were predicted by

both methods, while 6 pathways were not predicted by either method including glycine biosyn-
thesis IV, thiamine diphosphate biosynthesis II and IV, flavanoid biosynthesis, 2-methylcitrate
cycle II and L-methionine degradation III. In several instances, the depth distributions of pre-

dicted pathways were also different from those described in [14] including L-selenocysteine
biosythesis II and acetate formation from acetyl-CoA II. It remains uncertain why current

implementation of PathoLogic resulted in inconsistent pathway prediction results, although

changes have accrued in PathoLogic rules and the structure of the MetaCyc classification hier-

archy in the intervening time interval.

Taken together, the comparative pathway prediction results indicate that mlLGPR-EN per-

formance equals or exceeds other methods including PathoLogic on organismal genomes but

diminishes with dataset complexity.

Discussion

We have developed mlLGPR, a new method using multi-label classification and logistic regres-

sion to predict metabolic pathways at different levels in the genomic information hierarchy

(Fig 1). mlLGPR effectively maps annotated enzymatic reactions using EC numbers onto refer-

ence metabolic pathways sourced from the MetaCyc database. We provide a detailed open

source process from features engineering and the construction of synthetic samples, on which

the mlLGPR is trained, to performance testing on increasingly complex real world datasets

including organismal genomes, nested symbionts, CAMI low complexity and HOTS. With

respect to features engineering, five feature sets were re-designed from Dale and colleagues

[18] to guide the learning process. Feature ablation studies demonstrated the usefulness of

aggregating different combinations of feature sets using the elastic-net (EN) regularizer to

improve mlLGPR prediction performance on golden datasets. Using this process we deter-

mined that abundance (AB), enzymatic reaction evidence (RE) and pathway evidence (PE) fea-

ture sets contribute disproportionately to mlLGPR-EN performance. After tuning several

hyper-parameters to further improve mlLGPR performance, pathway prediction outcomes

were compared to other methods including MinPath and PathoLogic. The results indicated

that while mlLGPR-EN performance equaled or exceeded other methods including Patho-

Logic on organismal genomes, its performed more marginally on complex datasets. This is

likely due to multiple factors including the limited validation information for community-

level metabolism as well as the need for more subtle features engineering and algorithmic

improvements.

Several issues were identified during testing and implementation that need to be resolved

for improved pathway prediction outcomes using machine learning methods. While rich fea-

ture information is integral to mlLGPR performance, the current definition of feature sets

relies on manual curation based on prior knowledge. We observed that in some instances the

features engineering process is susceptible to noise resulting in low performance scores. More-

over, individual enzymes may participate in multiple pathways, e.g. multiple mapping prob-

lem, resulting in increased false discovery without additional feature sets that relate the

presence and abundance of EC numbers to other factors. This problem has been partially

addressed by designing features based on side knowledge of a pathway, such as information

about “key-reactions” in pathways that increase the likelihood that a given pathway is present.

Additional factors including taxonomy, gene expression, or environmental context should

also be considered in features engineering for specific information structures. For example,
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taxonomic constraints on metabolic potential are difficult to use when predicting pathways at

the community level given the limited number of closed genomes present in the data. In con-

trast, environmental context information such as physical and chemical parameter data could

be used to constrain specific metabolic potential e.g. aerobic versus anaerobic or light- versus

dark-dependent processes. Missing EC numbers also present a challenge especially when try-

ing to define “key-reactions” in pathways with less biochemical validation. An alternative

method might be to apply representational learning [43], e.g. learning features from data auto-

matically that can be supplemented with side knowledge to improve pathway prediction out-

comes. Finally, alternative algorithms used to analyze high dimensional datasets such as graph

based learning [44] has potential to provide even more accurate models needed to inform

future experimental design and pathway engineering efforts.

Supporting information

S1 Appendix. Mathematical derivations of mlLGPR. This file describes the process of deriv-

ing the objective cost function in Eq 9.

(PDF)

S2 Appendix. Features used for mlLGPR. This file describes features engineering aspects of

the work. Given a set of enzymatic reactions with abundance information, we extract sets of

features to capture salient aspects of metabolism for pathway inference.

(PDF)

S3 Appendix. Additional experiments. This file contains additional test results that are not

presented in the main article including more in-depth information related to datasets and the

ELA robustness metric.

(PDF)

S1 Table. Pathway abundance information from symbiont data. MetaCyc Pathway ID: The

unique identifier for the pathway as provided by MetaCyc; MetaCyc Pathway Name: The

name of the pathway as outlined by MetaCyc; Moranella: the Moranella endosymbiont (Gen-

Bank NC-015735); Tremblaya: the Tremblaya endosymbiont (GenBank NC-015736); Com-

posite: a composite genome consisting of both endosymbiont genomes. Each numeric value

encodes the coverage information of a pathway associated with each endosymbiont or com-

posite genome. The coverage is computed based on mapping enzymes onto true representa-

tions of each pathway and is within the range of [0, 1], where 1 indicates that all enzymes

catalyzing reactions in a given pathway were identified while 0 means no enzymes were

observed for a given pathway.

(TSV)

S2 Table. Pathway abundance information from HOTS data. MetaCyc Pathway ID: The

unique identifier for the pathway as provided by MetaCyc; MetaCyc Pathway Name: The

name of the pathway as outlined by MetaCyc; 25m: the 25 m depth interval in the HOTS water

column; 75m: the 75m depth interval in the HOTS water column; 110m: the 110 m depth

interval in the HOTS water column; and 500m: the 500 m depth interval in the HOTS water

column. Each numeric value encodes abundance information for a given pathway associated

with each depth interval. The abundance is expected pathway copies normalized based on

mapping identified enzymes onto true representations of each selected pathway.

(TSV)
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42. Sáez JA, Luengo J, Herrera F. Evaluating the Classifier Behavior with Noisy Data Considering Perfor-

mance and Robustness. Neurocomput. 2016; 176(C):26–35.

43. Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2013; 35(8):1798–1828. https://doi.org/10.

1109/TPAMI.2013.50 PMID: 23787338

44. Shi C, Li Y, Zhang J, Sun Y, Philip SY. A survey of heterogeneous information network analysis. IEEE

Transactions on Knowledge and Data Engineering. 2017; 29(1):17–37. https://doi.org/10.1109/TKDE.

2016.2598561

PLOS COMPUTATIONAL BIOLOGY A machine learning method for organismal and community level pathway inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008174 October 1, 2020 22 / 22

https://doi.org/10.1016/j.ab.2014.10.014
http://www.ncbi.nlm.nih.gov/pubmed/25449328
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1371/journal.pcbi.1008174

