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An Automated Segmentation 
Pipeline for Intratumoural Regions 
in Animal Xenografts Using 
Machine Learning and Saturation 
Transfer MRI
Wilfred W. Lam1 ✉, Wendy Oakden1, Elham Karami1,2,3, Margaret M. Koletar1, 
Leedan Murray1, Stanley K. Liu2,4,5,6, Ali Sadeghi-Naini1,2,3,6 & Greg J. Stanisz1,2,7

Saturation transfer MRI can be useful in the characterization of different tumour types. It is sensitive 
to tumour metabolism, microstructure, and microenvironment. This study aimed to use saturation 
transfer to differentiate between intratumoural regions, demarcate tumour boundaries, and reduce 
data acquisition times by identifying the imaging scheme with the most impact on segmentation 
accuracy. Saturation transfer-weighted images were acquired over a wide range of saturation 
amplitudes and frequency offsets along with T1 and T2 maps for 34 tumour xenografts in mice. 
Independent component analysis and Gaussian mixture modelling were used to segment the images 
and identify intratumoural regions. Comparison between the segmented regions and histopathology 
indicated five distinct clusters: three corresponding to intratumoural regions (active tumour, necrosis/
apoptosis, and blood/edema) and two extratumoural (muscle and a mix of muscle and connective 
tissue). The fraction of tumour voxels segmented as necrosis/apoptosis quantitatively matched 
those calculated from TUNEL histopathological assays. An optimal protocol was identified providing 
reasonable qualitative agreement between MRI and histopathology and consisting of T1 and T2 
maps and 22 magnetization transfer (MT)-weighted images. A three-image subset was identified 
that resulted in a greater than 90% match in positive and negative predictive value of tumour voxels 
compared to those found using the entire 24-image dataset. The proposed algorithm can potentially be 
used to develop a robust intratumoural segmentation method.

Tumours are highly heterogeneous. Not only do they vary considerably between different individuals, but a sin-
gle tumour often demonstrates regional variations in cell density, cell death, vasculature, and metabolic activ-
ity, among other factors1. These subregions can be due to genetic or local microenvironmental differences1,2. 
Differentiation between active tumour and necrosis is of particular clinical interest3,4 since heterogeneity is often 
predictive of survival, therapeutic response, or metastatic potential2,5,6.

There is a diagnostic advantage to the segmentation of heterogeneous tumours prior to further analysis. 
Considering the tumour as a single entity and calculating whole-tumour metrics, such as perfusion parameters, 
can result in a loss of correlation between biomarkers5. Magnetic resonance imaging (MRI) is ideal for identifying 
intratumoural regions as it is non-invasive and does not utilize ionizing radiation. While tumour heterogeneity 
can be observed on conventional T2-weighted and post-contrast agent injection T1-weighted7,8 MRI, quantitative 
techniques are generally required in order to accurately segment intratumoural regions5,9. Manual segmentation 
is certainly possible2,10. However, it is time consuming, subjective, and typically based on a single image contrast. 
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It is also exacerbated by the fact that tumour boundaries are often irregular and intratumoural regions may not 
be contiguous.

Automatic segmentation can be performed by fitting a model to the imaging data and thresholding the model 
parameters11–13. It can also be done using machine learning. Specific methods include the use of convolutional 
neural networks7,8, Gaussian mixture modelling14–17, k-means clustering9,17–19, non-negative matrix factoriza-
tion20,21, and other techniques17,22. Quantitative MRI data used by these automatic segmentation routines include 
proton density (M0)9,18, transverse relaxation time (T2)9,14,17,18,22, effective transverse relaxation time (T2*)8,12,14,17, 
diffusion-weighted imaging (DWI) model parameters8,9,11,14,15,17,18,21,22, and dynamic contrast enhancement 
(DCE) model parameter maps8,12,14,16,20. While these methods are promising, these are not the only options for 
quantitative imaging.

Saturation transfer MRI is sensitive to differences in tumour metabolism, which differ between intratumoural 
regions1, and can also be particularly useful in the characterization of different tumour types23, since it does offer 
superb tissue contrast, in comparison to other methods, without a need for exogenous contrast agents. The satu-
ration transfer MRI contrast mechanism reflects the exchange rate of magnetization between hydrogen nuclei in 
water and other molecular pools that include macromolecules and dissolved proteins, as well relative pool sizes 
and their intrinsic magnetic resonance properties such as the longitudinal and transverse relaxation times (T1 and 
T2, respectively) of each pool. In saturation transfer-prepared pulse sequences, magnetization is reduced by an 
RF (radiofrequency) saturation pulse across a range of frequencies corresponding to the exchanging molecules. 
When high saturation amplitudes and large frequency offsets relative to the water resonance are used, these 
sequences are typically referred to as magnetization transfer (MT) and are sensitive to the exchange of hydrogen 
nuclei in semisolid macromolecules (mostly lipid bilayers)24–26 with those of water. At lower saturation amplitudes 
and smaller frequency offsets, they are mostly sensitive to the exchange in chemical groups in dissolved pro-
teins (e.g., amide27, amine28, guanidinium29,30, and hydroxyl28) and the mechanism is termed Chemical Exchange 
Saturation Transfer (CEST) or relayed-Nuclear Overhauser Effect (NOE). Importantly, CEST, unlike DCE, does 
not require the injection of an exogenous contrast agent, which can be an issue for renally compromised patients31 
and a complication for longitudinal preclinical studies. CEST MRI in oncology is an active area of research32,33. In 
a previous segmentation study involving saturation transfer, Zhang et al. combined manual tumour delineation 
with MT and contrast to segment tumour from necrosis, which has much lower MT and relayed-NOE contrast10.

The goal of the present study was to develop an automated algorithm to segment intratumoural regions as 
well as the surrounding tissue in a xenograft model of prostate cancer using only saturation transfer MRI data 
and T1 and T2 maps. This would allow a secondary use of this data, which originally was intended for studying 
metabolism in tumours23. The algorithm was validated using histopathology and was tested for robustness using 
leave-one-out cross-validation. The trade-off between the number of image contrast types and segmentation 
accuracy was investigated for the purpose of minimizing data acquisition and the images with the largest impact 
on accuracy were found via feature selection. Finally, the MT and CEST effects in active tumour vs. necrosis/
apoptosis were also quantitatively compared.

Results
Description of tumours.  Of the 34 DU145 human prostate adenocarcinoma tumour xenografts included 
in this study, 33 ranged in size from 33 to 810 mm3 (with a mean ± SD of 259 ± 210 mm3) and one (shown in 
Fig. 1) was ~1,500 mm3 with a particularly large region of edema. Imaging and histology were acquired 46 ± 12 
days post injection of tumour cells.

Histopathology.  Most tumours were heterogeneous and comprised of a complex mixture of muscle cells, 
tumour cells, necrotic and apoptotic cells, blood cells, and regions of inter-cellular edema. Figure 1 shows an 
example of a particularly complex tumour. Most of the 34 tumours were largely active, indicated by colourless 
terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) images (Supplementary Fig. S1). Eight 
had significant edema indicated by the large hyperintense regions in the T2-weighted images. Edema presented 
a challenge for interpretation of histopathology since the voxel size and liquid signal often masked an intricate 
microenvironment of muscle cells, leukocytes, fibroblasts, tumour cells, and fibrotic necrosis, as illustrated in the 
regions of blood/edema in the haematoxylin and eosin (H&E) histology (boxes with dashed borders in Fig. 1). 
Twelve tumours had large areas of necrosis/apoptosis indicated by the significant brown staining in the TUNEL 
images (Supplementary Fig. S1).

Optimization of segmentation pipeline.  The segmentation pipeline (Fig. 2) consisted of running an 
independent component analysis34 on the input dataset, followed by fitting a Gaussian mixture model (GMM)35, 
assigning cluster labels based on comparison with histology, and generating a segmentation mask of the original 
image data. The optimal number of GMM clusters was determined using the gradient of the Bayesian information 
criterion36, calculated multiple times using unique sets of input images and spanning a range of GMM clusters 
(up to 10). The gradient of the BIC approached zero after five clusters and remained near zero with increasing 
numbers of clusters, indicating that this model can reasonably estimate five clusters (Supplementary Fig. S2).

Segmentation masks were generated for each imaging protocol and number of independent components (ICs) 
ranging from two to four. For each mask, the fraction of intratumoural voxels identified as necrosis/apoptosis was 
calculated, and compared with that derived from histology. The comparison of various imaging protocols and 
different numbers of ICs with anatomical MRI images and histological sections for the complex tumour example 
is shown in Fig. 3A. Spatial proportions of the histological sections did not correspond exactly to the MRI due to 
tissue processing and mounting. The highest Pearson correlation coefficient (ρ = 0.81, p < 10−4) was found for the 
imaging protocol consisting of T1 and T2 maps, and saturation transfer-weighted images with B1 = 3 and 6 µT and 
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three ICs (Fig. 3B,C; see Supplementary Fig. S3 for segmented TUNEL histopathology). Therefore, only this input 
and number of ICs was considered in the remainder of this work and is referred to as the “optimized protocol”.

Cluster label assignment.  Figure 4 shows the labelled GMM means (stars) for the simultaneous seg-
mentation of all 34 mice and GMM means for 34 leave-one-out segmentations (circles; 33 mice each). Of the 
leave-one-out segmentations, only one resulted in substantially different clusters. A graphical explanation of the 
label assignment algorithm can be also found in Supplementary Fig. S4.

Robustness of segmentation pipeline.  The Dice similarity coefficient between whole-dataset and 
leave-one-out segmentation was 98 ± 3% (mean ± SD across all mice). Leave-one-out segmentation differed 
greatly for one of the mice, which had a coefficient of only 84%. In this case, the necrosis/apoptosis voxels from 
simultaneous segmentation were erroneously added to the active tumour cluster. This is likely due to the proxim-
ity of active tumour and necrosis/apoptosis voxels in IC space, which confounded the Gaussian mixture model 
fitting.

Figure 5 compares segmentation performed with the whole-dataset and leave-one-out approaches along with 
anatomical images and histology for three representative cases. The tumours are (A) primarily active tumour; 
(B) active tumour and necrosis/apoptosis; (C) and active tumour, necrosis/apoptosis, and blood/edema. In the 
leave-one-out segmentation, the T2-weighted image, histology, and segmentation masks of the omitted mouse 
are shown. In these cases, the morphology and extent of the brown areas staining for necrosis/apoptosis in the 
TUNEL sections (third column) qualitatively match with the areas segmented in orange on the whole-dataset 
and leave-one-out segmentation masks (fourth and fifth columns, respectively). A similar figure containing 
all the tumours can be found in Supplementary Fig. S1; mouse #13, which had the low Dice coefficient on the 
leave-one-out segmentation, can be seen in that figure.

Optimization of protocol via feature selection.  The subsets of saturation transfer-weighted images 
and T1 and T2 maps which discriminated most accurately between tissue types are listed in Table 1. As expected, 
increasing the number of images in the analysis subset provides a better match to the full optimized protocol 
with 24 images in total, going from a Dice similarity coefficient of 93% with three images up to 98% with nine 
images. The positive predictive value (PPV) and negative predictive value (NPV) of the subsets for both active 
tumour and necrosis/apoptosis increase with the size of the image subset as expected. Of the three-image subset, 
which is the smallest allowed with three ICs, the PPV and NPV for active tumour and NPV for necrosis/apop-
tosis are at least 94%. Eight images are required to yield a PPV for necrosis/apoptosis of 90%, but this continues 
to rapidly improve, reaching 95% with nine images. The images common to most subsets were: the T1 and T2 

Figure 1.  H&E stained section with details of three clusters for an illustrative tumour. Images are presented at 
5× and 20× magnification for the whole-tissue slice and details, respectively.
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map and saturation transfer-weighted images with B1 = 6 µT at Δω ≈ 48 ppm, which is highly sensitive to MT. 
Representative segmentation masks are shown in Supplementary Fig. S5. Qualitatively, masks calculated using 
image subsets are very similar to those using the full protocol.

Quantitative MT model fitting.  The observed T1 (T1,obs) and estimated MT model parameters for the five 
clusters are listed in Table 2. The product of R and M0,B (fourth column), termed the MT effect, is significantly 
different between the active tumour and necrosis/apoptosis clusters (Fig. 6E). The blood/edema cluster (third 
row) has particularly large uncertainties due to its mixed composition. Representative quantitative MT model fits 
(used to estimate the values in Table 2) and Z-spectrum differences between clusters as a function of saturation 
amplitude are shown in Supplementary Fig. S6. The largest differences between interpolated MT Z-spectra of 

Figure 2.  The automatic segmentation pipeline. (A) Normalized T1 and T2 maps and Z-spectrum images 
acquired with various saturation B1 amplitudes and at various frequency offsets, Δω (3 ppm shown). The T1 
and T2 maps are normalized to values selected as being slightly higher than the highest values typically seen in 
tumour regions. (B) Non-background voxels are concatenated into an observation matrix and transformed by 
a trained independent component analysis transform, which is set to generate three independent component 
(IC) images. The ICs are sorted in order of increasing mutual information with respect to the input. (C) The ICs 
are then input to a trained Gaussian mixture model (GMM), which is set to five clusters, and the clusters are 
assigned labels using a pre-defined ruleset.

https://doi.org/10.1038/s41598-020-64912-6


5Scientific Reports |         (2020) 10:8063  | https://doi.org/10.1038/s41598-020-64912-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

individual clusters were predicted between 37 and 62 ppm for spectra obtained at 6 µT (Supplementary Fig. S6B–G).  
This range corresponds well to the MT-sensitive saturation parameter set (6 µT at 48 ppm; see Table 1) that pro-
vided maximal discrimination between clusters as chosen by feature selection. Furthermore, extrapolation to 
higher and lower saturation powers indicates that increased B1 confers greater discrimination between some but 
not all tissues, at a frequency offset that increases with B1.

Isolation of CEST and relayed-NOE contributions.  CEST and relayed-NOE effects were calculated 
separately for active tumour regions, necrosis/apoptosis regions, and whole tumour (consisting of both active 
tumour and necrosis/apoptosis regions). The mean and standard deviation of representative high and low B1 
Z-spectra and CEST and relayed-NOE contribution spectra over all mice for both regions plus the combined 
regions are shown in Fig. 6A–C. Unpaired t-test comparisons of the MT-weighted image common to all the 
optimal image subsets (with B1 = 6 µT at 48 ppm), MT effect, and CEST contribution at the amide frequency 
offset (3.5 ppm) with B1 = 2 µT for the same clusters are shown in Fig. 6D–F. There are significant differences are 
between the tumour and necrosis/apoptosis clusters. The values for combined tumour and necrosis/apoptosis 
clusters lie between those of the tumour and necrosis/apoptosis clusters as expected. This supports the require-
ment for separate tumour and necrosis/apoptosis clusters when analysing quantitative data.

Figure 3.  Selection of the ICA input and number of independent components. (A) A T2-weighted anatomical 
image and histological sections with H&E staining for general tissue discrimination and a TUNEL assay for 
necrosis/apoptosis are shown in the first column. Clusters calculated with various ICA inputs and numbers of 
independent components (ICs) are in subsequent columns. Masks were not generated with T1 and T2 maps as 
ICA input using three and four ICs because the number of unique image types must be equal to or greater than 
the number of ICs. The Gaussian mixture model was set to five clusters in all cases. The cluster label assignment 
is arbitrary at this stage. (B) Comparison of necrosis/apoptosis fractions calculated from TUNEL and machine 
learning (ML) using T1 and T2 maps and B1 = 3 and 6 µT as ICA input and three ICs (indicated by the red 
box in A) for all 24 mice with TUNEL assays. The line of identity and Pearson correlation coefficient ρ are also 
displayed. (C) Correlation coefficients for the ICA inputs and numbers of ICs in A. Segmentation masks from 
the optimized protocol with T1 and T2 maps and B1 = 3 and 6 µT with three ICs had the highest correlation 
coefficient. Only this protocol and number of ICs was considered in the remainder of this work.
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Discussion
In this study, an automatic framework was developed for segmenting intratumoural regions using T1 and T2 maps 
and saturation transfer-weighted images. The segmentation pipeline consisted of a three-component ICA trans-
form and a five-cluster GMM which took less than one second to calculate. The optimal imaging protocol was 
determined to be the set of T1 and T2 maps and saturation transfer weighted images with B1 = 3 and 6 µT. Using 
histology, the five clusters were identified as corresponding to three intratumoural regions (active tumour, necro-
sis/apoptosis, and blood/edema) and two extratumoural (muscle and a mix of muscle and connective tissue). This 
automated segmentation qualitatively matched anatomical and histological images. Although there are no other 
studies using saturation transfer weighted MRI to automatically segment intratumoural regions to our knowl-
edge, we discuss several relevant studies below. This will be followed by discussion of possible improvements to 
the pipeline. Finally, the novel use in this work of the apparent exchange-dependent relaxation (AREX) metric 
with an extrapolated MT reference (EMR) to isolate an aggregate CEST and rNOE contribution spectrum instead 
of the conventional multi-Lorentzian reference to yield individual contributions for each pool will be discussed.

Henning et al.18 identified two regions of viable tumour (normoxic and hypoxic), two of non-viable tumour in 
xenografts (n = 13) and a background region using apparent diffusion coefficient (ADC), T2, and proton density 
maps input into a k-means clustering algorithm. A significant Pearson correlation coefficient between k-means 
and histologically derived tumour volumes of 0.94 was found.

Jardim-Perassi et al.14 also identified the same four regions in xenografts using T2, T2*, and ADC maps and 
three dynamic contrast enhanced (DCE) model parameter maps input into a GMM. Histological sections were 
cut while each excised tumour was placed in a tumour-specific 3D printed sectioning template, which improved 
co-registration between MRI and histology. The quality of fit to the histologic slices was quantified with the 
Jaccard index which was 82 ± 4% (n = 16). Chang et al.20 identified two regions of active tumour (well-perfused 

Figure 4.  Gaussian mixture model output. Gaussian mixture model cluster means in the 3D space defined by 
the three independent components (ICs) when performing simultaneous segmentation on all datasets (stars; 
34 mice) and leave-one-out segmentation on unique sets of 33 mice (circles) are plotted. The clusters show tight 
groupings, which indicate robust performance in leave-one-out cross validation. The marker size is scaled by 
cluster weight (circles), or 4× cluster weight (stars). For improved visibility, the variances of the Gaussians are 
not shown.

https://doi.org/10.1038/s41598-020-64912-6


7Scientific Reports |         (2020) 10:8063  | https://doi.org/10.1038/s41598-020-64912-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

and hypoxic) and one of necrotic using only DCE scans of xenografts (n = 1 prostate and n = 2 brain tumours). 
The clustering was performed based on the area under the contrast agent wash-in and wash-out curve. They 
showed a prostate xenograft histological section, which had some overlap with the segmentation mask, but 
also notable differences. However, these were not quantified. These two protocols required the injection of a 
gadolinium-based contrast agent to generate DCE images, which is contraindicated in renally impaired patients31 
and the background appeared to be removed manually.

Figure 5.  Comparison of whole-dataset and leave-one-out segmentation with anatomical images and histology 
for three representative cases. The tumours are (A) primarily active tumour; (B) active tumour and necrosis/
apoptosis; (C) and active tumour, necrosis/apoptosis, and blood/edema. The leave-one-out segmentation 
(fifth column) was conducted using all data but the tumour shown, and the results of the segmentation were 
then applied to this tumour. In these cases, the morphology and extent of the brown areas indicating necrosis/
apoptosis in the TUNEL sections (third column) qualitatively match with orange areas in the whole-dataset and 
leave-one-out segmentation masks (fourth and fifth columns, respectively). The extent of the necrosis/apoptosis 
in the fourth column is slightly greater than that indicated by TUNEL (third column), possibly due to the 1 mm 
imaging slice capturing more necrosis than the 5 µm histopathological section. A similar figure containing all 
the tumours can be found in Supplementary Figure S1.

No. of 
Images T1 T2

3 µT 6 µT Dice  
similarity 
coefficient (%)

Active tumour
Necrosis/
apoptosis

3 
ppm

5 
ppm

30 
ppm

48 
ppm

5 
ppm

8 
ppm

48 
ppm

75 
ppm

PPV
(%)

NPV
(%)

PPV
(%)

NPV
(%)

3 X X X 93 ± 3 94 ± 4 96 ± 3 60 ± 30 99 ± 2

4 X X X X 94 ±3 94 ± 5 97 ± 3 70 ± 30 98 ± 2

5 X X X X X 95 ± 2 97 ± 3 96 ± 3 70 ± 30 99 ± 1

6 X X X X X X 95 ± 2 97 ± 3 97 ± 3 70 ± 30 99 ± 1

7 X X X X X X X 95 ± 2 95 ± 4 99 ± 1 70 ± 30 99 ± 2

8 X X X X X X X X 97 ± 2 97 ± 3 99 ± 1 90 ± 10 99 ± 1

9 X X X X X X X X X 98 ± 1 98 ± 1 99 ± 1 95 ± 4 100 ± 1

Table 1.  Assessment of image subsets via feature selection. Image subsets were selected by an exhaustive search 
using the Dice similarity coefficient (mean ± SD across all mice) between labels generated using the subset and the 
optimized protocol (i.e., T1 and T2 maps and all 22 saturation transfer-weighted images with B1 = 3 and 6 µT) as the 
metric. The positive and negative predictive value (PPV and NPV, respectively) of tumour and necrosis/apoptosis 
labels are also given with respect to those generated from all images from the optimized protocol.
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Katiyar et al.17 identified three regions: viable, necrotic, and peri-necrotic using T2-weighted images, ADC 
maps, and pre- and post-contrast T2 and T2* maps of xenografts (n = 6) input into several clustering methods. 
The method that performed the best was spatially regularized spectral clustering, which yielded Pearson corre-
lation coefficients of 0.98, 0.92, and 0.82 for the three regions, respectively. The contrast agent was an injected 
superparamagnetic iron oxide nanoparticle approved to treat iron deficiency anaemia. However, it is unsuitable 
for frequent use because alteration of MRI imaging studies may persist for up to three months37. This group also 
published a method15 to identify necrotic and viable voxels using an ADC map and 18F-FDG positron emission 
tomography image in xenografts (n = 4) input into a 2D GMM. Pearson correlation coefficients of 0.87 and 0.88, 

Cluster T1,obs (ms) T2,A (ms) MT Effect T2,B (µs)

Active tumour (n = 34) 2200 ± 100 53 ± 6 1.2 ± 0.1 8.2 ± 0.3

Necrosis/apoptosis (n = 10) 2600 ± 100 80 ± 9 1.1 ± 0.3 7.8 ± 0.2

Blood/edema (n = 8) 2800 ± 300 130 ± 60 0.9 ± 0.8 100 ± 100

Muscle/connective (n = 11) 1810 ± 80 31 ± 6 1.5 ± 0.5 7.4 ± 0.4

Muscle (n = 31) 1840 ± 80 27 ± 2 3.8 ± 0.5 7.2 ± 0.2

Table 2.  Estimated parameters (mean ± SD) of observed T1 and the two-pool quantitative MT model for the 
five clusters. T1,obs is the observed longitudinal relaxation time. T2,A and T2,B are the transverse relaxation times 
of the liquid and macromolecular pools, respectively. R is the magnetization exchange rate from the semisolid 
macromolecular to liquid pools. M0,B is the macromolecular pool size relative to that of water (defined to be 
unity). The product of R and M0,B, termed MT effect, is presented because these two parameters are coupled. 
Blood/edema is expected to have a relatively small MT pool size41, which is reflected in the large uncertainties 
in MT effect and T2,B. All parameters were estimated for individual mice before averaging. Any given cluster per 
mouse was included only if it contained at least seven voxels.

Figure 6.  Measured saturation transfer-weighted signal and derived metrics. Measured Z-spectra and derived 
metrics are shown for tumour (n = 34), necrosis/apoptosis (n = 10), and combined tumour and necrosis/
apoptosis (n = 10) regions containing at least seven voxels. Mean and standard deviation of Z-spectra with 
B1s of (A) 6 and (B) 2 µT, over all mice. (C) CEST and relayed-NOE contribution spectra calculated using 
the apparent exchange-dependent relaxation (AREX) metric, which removes the effect of T1. Unpaired t-test 
comparisons of (D) the MT-weighted image common to all the optimal image subsets (with B1 = 6 µT at 
48 ppm), (E) MT effect, and (F) CEST contribution with B1 = 2 µT at the amide frequency offset (3.5 ppm). 
*p < 0.05. **p < 0.01. ***p < 0.001.
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respectively, were found between histology and clustering. In this case, the use of ionizing radiation is undesira-
ble. The background also appeared to be removed manually.

Alignment of histopathology with MRI and segmentation masks was a significant challenge and is an area of 
active research. Determination of complex tumour histopathology requires interpretation by a clinical radiologist 
and/or pathologist, which can produce variant annotation between observers38. There is disproportionate image 
resolution between a large MRI voxel, capturing greater tissue heterogeneity, versus the cellular composition rep-
resented by histology39. Furthermore, contrast achieved in MRI may not easily align with variations of chromogen 
staining in tissue. Shape and orientation of the tissue depends on positioning of the body part in MRI. Similarly, 
excision of the tumour, tissue fixation causing dehydration, and a shift in the slicing plane through the tissue, add 
to the complexity aligning size and shape39. The mismatched uniformity between the two techniques, along with 
subjective interpretation of images, facilitates error in anatomical and pathological measurements.

The choice of ICA over principal component analysis (PCA)40,  another commonly used 
dimensionality-reduction technique, is logically based on ICA’s assumption of independent sources. PCA, 
on the other hand, tries to find components that explain maximum variance drawn from across all clusters. 
Segmentation of this dataset using PCA resulted in more overlap between clusters, although the segmentation 
masks generated were largely similar (data not shown).

For the necrosis/apoptosis cluster, the positive predictive value (PPV) of segmentation masks generated from 
the three- to seven-image subsets was below 90%. It may be possible to increase this by choosing another metric 
for feature selection. The metric used in this work was the Dice similarity coefficient between image-subset and 
whole-dataset segmentation. However, a metric which explicitly includes for the PPV of necrosis/apoptosis clus-
ter may increase this PPV for smaller image subsets.

The large degree of uncertainty in the estimated parameters of the blood/edema cluster are likely due to dif-
ferent sources. For the observed T1 (T1,obs) and T2 of the free water pool (T2,A), the source is probably both mixed 
composition and the relatively small number of samples. As an example, the regions with the two highest coeffi-
cients of variation (SD/mean) of T1,obs are muscle/connective tissue and blood/edema (19% and 15%, respectively) 
are the smallest regions, representing 7% and 2% of all voxels, respectively. The uncertainty in the MT effect (R × 
M0,B) and T2 of the MT pool (T2,B) is probably due the fact that blood/edema is expected to have little MT effect41.

There is further evidence that the blood/edema cluster is of mixed composition and could be sub-clustered. 
A scatter plot of the blood/edema voxels in the complex tumour in Fig. 2 as a function of their observed T1 and 
T2 shows the presence of a possible second cluster (Supplementary Fig. S7). The larger cluster, probably edema, 
is between the literature values of blood, cerebrospinal fluid, and synovial fluid. The second cluster contains far 
fewer voxels scattered around the observed T1 and T2 of blood. However, there was an insufficient number of 
these voxels in our dataset to train the model to detect a sixth cluster.

Although feature selection and quantitative MT modelling indicated that 48 ppm was the frequency offset 
giving the largest contrast differences between clusters, the inclusion of images at 5–8 ppm by feature selection 
could be due to sensitivity to CEST that these offsets provide, since necrotic and apoptotic cells are expected to 
have decreased metabolism to which CEST is sensitive. Overall, however, MT contrast appears to better inform 
the segmentation algorithm presented than does CEST contrast. Note that MT modelling is not necessary for the 
segmentation algorithm presented in this work.

To evaluate the CEST contribution, we used the EMR42 technique, but added, for the first time to our knowl-
edge, the AREX metric43,44 in order to remove the effects of T1. The original multi-pool AREX method requires 
fitting a summed-Lorentzian model45 to one low B1 Z-spectrum. Then, one Lorentzian spectral contribution 
for each pool is extracted using the sum of the other modelled pools’ signals as a baseline46 (called the reference 
Z-spectrum Zref) and an observed T1 map. The adapted method, used here, extracts only one spectrum, with the 
contributions of all CEST and rNOE pools in aggregate, using the EMR Z-spectrum as Zref. This is potentially 
faster because the number of measurements required to generate an EMR Zref is much less than a low B1 Zref (22 
offsets at high B1 and a T1 map vs 66 offsets, respectively, in this work). Note that, using the EMR as the reference 
spectrum, measurements at low B1 only need to be made at the offset(s) where one wishes to assess the CEST or 
rNOE contribution. The aggregate CEST and rNOE contribution spectrum contains contributions from multiple 
chemical groups at each offset, but requires less data acquisition and, unlike a summed-Lorentzian model, doesn’t 
assume a fixed number of pools.

Future work will incorporate multi-slice imaging enabling through-plane registration, adding an intermediate 
ex vivo MRI scan, creating a tissue sectioning template, and developing 3D imaging techniques for histopathology 
such as whole tumour slice reconstruction14,38,39. Together these will provide quantification of whole tissue and 
sub-regional detail for improved alignment and translation between MRI and histopathology. Another possible 
modification to the segmentation pipeline would be to introduce an individual weighting for each IC before input 
to the GMM. This is left for future work because, when a grid search of the correlation of necrosis fraction from 
machine learning and histology as a function of IC weight (up to 9, 16, and 16 for IC1, IC2, and IC3, respectively), 
no trend was apparent. Although there was a local maximum in correlation (ρ = 0.90 with an IC1:IC2:IC3 weight-
ing of 1:3:2 compared to 0.81 with a weighting of 1:1:1 as shown in Fig. 3B), it was decided not to weight the ICs 
in this work because there was no logical rationale to do so.

Methods
Animal model.  Approximately 3 × 106 DU145 human prostate adenocarcinoma (ATCC, Manassas, VA) cells 
mixed in a 1:1 ratio by volume with growth factor reduced Matrigel matrix (BD Canada, Mississauga, ON) were 
injected in the right hind limbs of 34 female athymic nude mice (Charles River Canada, Saint-Constant, QC) and 
allowed to grow into tumours for at least 34 days post-injection. Tumours were measured using callipers every 
one to four days and their volume was calculated using the formula volume = length × width2/2. All experimental 
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procedures were approved by the Animal Care Committee of the Sunnybrook Research Institute, which adheres 
to the Policies and Guidelines of the Canadian Council on Animal Care and meets all the requirements of the 
Animals for Research Act of Ontario and the Health of Animals Act of Canada.

Magnetic resonance imaging.  Tumours were scanned at 7T (BioSpec 70/30 USR with BGA-12SHP gra-
dients running ParaVision 6.0.1, Bruker BioSpin, Billerica, MA) using an 86 mm inner diameter volume coil for 
transmit and a 20 mm diameter loop surface coil for receive. A fifteen-slice 2D axial T2-weighted rapid acquisition 
with refocused echoes47 (RARE; TR  =  2500 ms; TEeff  =  55 ms; FOV  =  20 mm × 20 mm; slice thickness = 0.5 mm; 
matrix = 128 × 128; RARE factor = 12; bandwidth = 33 kHz; averages = 4; 6 min, 40 s) was used for prescribing 
the slice of interest, chosen to be at the thickest point of the tumour. B0-map-based shimming (MapShim) of 
second order gradients was performed on an ellipsoidal volume enclosing the tumour in the slice of interest. Flip 
angle scale factor maps48 were calculated for the first four mice using a series of 3D high flip angle fast low angle 
shot (FLASH)49 scans and the T1 map for the slice of interest and the flip angle in the tumour region of interest 
was found to be within 6% of nominal (Supplementary Fig. S7 in our previous work23). Thus, B1 correction was 
deemed unnecessary going forward.

Saturation transfer-weighted images were acquired using a 490 ms block RF saturation pulse per k-space line 
and single-slice FLASH acquisition (TR = 500 ms; TE   =  3 ms; flip angle = 30°; FOV = 20 mm × 20 mm; slice 
thickness = 1 mm; matrix = 64 × 64; bandwidth = 50 kHz; and 1 dummy scan) as in our previous work45. 
The cumulative saturation time when acquiring the centre of k-space was approximately 16 s. Five datasets were 
acquired: two Z-spectra sensitive to the direct water saturation effect (DE), CEST, and MT with B1 = 0.5 and 2 µT 
at 66 frequency offsets Δω = (ω − ω0)/ω0 × 106 (where ω is the saturation frequency and ω0, the water resonance 
frequency) between ±5 ppm; two Z-spectra mainly sensitive to DE and MT with B1 = 3 and 6 µT at 11 logarith-
mically spaced Δω between 300 and 3 ppm; and one WASSR Z-spectrum50 sensitive only to DE with B1 = 0.1 µT 
at 21 Δω between ±0.5 ppm.

To allow for correction of system instability in post-processing, reference scans at Δω = 667 ppm were 
acquired before and after and also interleaved between every five Z-spectrum measurements23,45. The scan time 
for the Z-spectra including reference scans with B1 = 0.5 and 2 µT was 44 min/spectrum; 3 and 6 µT, 8.5 min/
spectrum; and 0.1 µT, 15 min. To evaluate longitudinal relaxation time T1, five inversion recovery RARE scans 
(TR = 10,000 ms; TEeff =  10 ms; TI = 30, 110, 390, 1400, 5000 ms; same FOV, slice thickness, and matrix as 
FLASH; RARE factor = 4; bandwidth = 77 kHz; 2 min each) were also acquired for a T1 map51. The total acquisi-
tion time including scout and shimming was 2.5 h per animal.

Histopathology.  Tumours were excised for histopathological assessment immediately after scanning. Each 
tumour was isolated and marked with a suture on the proximal margin for subsequent alignment with MRI, 
formalin fixed for 24 to 48 h, and then stored in 70% ethanol until submitted for further processing. Tumours 
were trimmed for sectioning in the region that corresponded as closely as possible to the MRI slice. Tissues were 
paraffin embedded, sectioned at 10 µm, and mounted on slides. Two types of histological section were prepared: 
H&E staining for structural detail and a TUNEL assay using 3,3’-diaminobenzidine (DAB) chromogen and hae-
matoxylin counter staining for necrosis/apoptosis. The tissue section that best correlated with the MRI slice was 
imaged using an Axio Imager 2 (version M2, Carl Zeiss Canada Ltd., Toronto, ON) microscope with the Stereo 
Investigator (MBF Bioscience, Williston, VT) stereology system.

MRI data pre-processing.  For each animal, images were registered using the imregister function in 
MATLAB, which was set to rigid body transform, with the first Z-spectrum reference image acquired with 
B1 = 0.5 µT as the registration reference image. In order to avoid misregistration of low SNR images acquired 
with saturation near the water resonance, Z-spectrum images with less than 50% of the mean signal of the ref-
erence scan were registered using the transformation matrix of the last image with sufficient SNR, typically an 
interleaved reference scan. Baseline drift correction of all Z-spectrum scans consisted of fitting a straight line to 
the interleaved reference scans. This was followed by spectrum-wise B0 correction of the WASSR and Z-spectrum 
images with low B1 (0.5 and 2 µT). The correction consisted of fitting one Lorentzian (corresponding to the DE 
contribution) to the WASSR Z-spectrum at frequency offsets between ±0.5 ppm and a sum of two Lorentzians 
(corresponding to the DE and MT contributions) to the low B1 Z-spectra. The spectra were re-centred to the 
peak position of the DE Lorentzian and linearly interpolated to the frequency offsets measured originally. High 
B1 images (MT sensitive) were acquired with logarithmically spaced offsets ranging from 3 to 300 ppm. Thus, B0 
correction was not required for these spectra.

A T1 map was calculated from the inversion recovery scans by fitting to the inversion recovery RARE signal 
equation51. Then, a T2 map was calculated from the T1 map and WASSR Z-spectrum using the steady-state direct 
water saturation signal intensity (as in previous work23):
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where R1 = 1/T1, R2 = 1/T2, and ω1 = γB1. T1 and T2 values were normalized by 4000 and 300 ms, respectively, 
which were values selected as being slightly higher than the highest values typically seen in tumour regions to 
match the range of the saturation transfer images prior to segmentation.

The pre-processing above was performed in MATLAB (Release 2019a, The MathWorks, Natick, MA). 
Subsequent processing was performed in Python (version 3.7) with the SciPy (version 1.4.1) scientific computing, 
OpenCV (version 3.4.1) computer vision, and scikit-learn (version 0.22.1) machine learning libraries.
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Image erosion was used to remove edge voxels, which can be contaminated by partial volume effects. Erosion 
was performed for all masked images using the binary_erosion function in SciPy using a rank 2 structuring ele-
ment where all elements are neighbours.

Optimization of segmentation pipeline.  In order to determine the optimal imaging protocol to accu-
rately segment the tumours, seven different protocols were compared: (1) T1 and T2 maps only, (2) all Z-spectrum 
images, (3) Z-spectrum images acquired at low B1 (0.5 and 2 µT), (4) Z-spectrum images acquired at high B1 (3 
and 6 µT), (5) T1 and T2 maps and Z-spectrum images acquired at high B1 (3 and 6 µT), (6) T1 and T2 maps and 
Z-spectrum images acquired at low B1 (0.5 and 2 µT), and (7) T1 and T2 maps and all Z-spectrum images. The 
segmentation pipeline is shown as a flowchart in Fig. 2 and was applied to all seven protocols.

For each of the seven protocols, the images were used to generate an observation matrix. The number of rows 
m is the total number of voxels across all animals and given by:

∑=
=

m q ,
(2)i

p

i
1

where p is the number of mice and qi the number of voxels in mouse i. The number of columns n is the number of 
contrast types (i.e., T1 map, T2 map, and saturation transfer-weighted images) and varied with protocol.

For each observation matrix, an ICA was performed using the FastICA algorithm34. ICA is a linear trans-
formation from the original feature space to a new one such that the new features are mutually independent 
(Fig. 2B). Transformation into two to four independent components (ICs) was investigated. One of the ambi-
guities with ICA is the order of the ICs. In this study, the ICs of each dataset were sorted in order of increasing 
mutual information between each component and the average of all protocol images, calculated using the normal-
ized_mutal_info_score function in scikit-learn normalized to the arithmetic mean of the ICs and average images, 
and labelled IC1, IC2, and so forth.

A GMM35 is a probabilistic model that identifies clusters with Gaussian distributions within the 
multi-dimensional IC space, where the number of dimensions corresponds to the number of ICs (NICs). Figure 2C 
shows clusters in 3D IC space. Each cluster had a weighting, mean (in NICs dimensions), and full covariance 
matrix (i.e., each Gaussian may adopt any position and shape). To determine the optimal number of clusters, 
a GMM was fitted using one to ten clusters. The optimal number of clusters for each protocol was computed 
using the gradient of the Bayesian information criterion (BIC)36 as the metric. A lower BIC indicates a greater 
goodness of fit, but it decreases more slowly when more than the optimal number of clusters is used. However, 
the point at which this happens is difficult to discern. Instead, the gradient of the BIC with respect to the number 
of clusters was calculated to give a function that sharply approaches zero until the optimal number of clusters 
and remains relatively constant afterwards. This point is straightforward to determine visually. Once the optimal 
number of clusters was determined, the GMM was re-fitted three times with two, three, and four ICs.

The optimal imaging protocol was selected by quantitatively comparing the necrosis/apoptosis fraction, 
which was defined as the number of necrosis/apoptosis voxels normalized by the sum of the number of tumour 
and necrosis/apoptosis voxels, calculated from the proposed pipeline (where regions were manually assigned) 
and from histopathology. The latter was based on TUNEL histopathology images for all 24 mice with TUNEL 
assays. First, the muscle and skin voxels were manually cropped out of the TUNEL images with the aid of the 
H&E sections and then the blue channel of the cropped RGB image was thresholded. Voxels with blue channel 
values below 0.78 were classified as tumour and above or equal to 0.78 as necrosis/apoptosis. The segmented 
TUNEL images are shown in Supplementary Fig. S3. The comparison was performed using the Pearson correla-
tion coefficient.

Cluster label assignment.  Following the optimization of the imaging protocol, histopathology was used to 
inform the following label assignment algorithm: 1) the cluster with the largest absolute value of the GMM mean 
of IC1 was labelled blood/edema; 2) each dataset was reflected about the IC1 = 0, IC2 = 0, …, ICNICs

 = 0 planes, as 
required, such that the blood/edema cluster was in the first quadrant (if ICA space is 2D), octant (if ICA space is 
3D), and so forth, since ICA does not identify the sign of the source signals; 3) of the remaining clusters, the one 
with the smallest (i.e., most negative) GMM mean of IC2 was labelled muscle; the second smallest, muscle/con-
nective; the second largest, necrosis/apoptosis; and the largest, active tumour. Supplementary Fig. S4 shows this 
graphically.

Robustness of segmentation.  The robustness of the segmentation pipeline was tested using leave-one-out 
cross-validation, where the model was trained using 33 of the 34 datasets and the trained model was applied to 
the final (testing) dataset. Training consisted of the generation of the ICA basis set, determining the order of the 
ICs, calculation of GMM clusters, and assigning labels to the clusters. The segmentation of the testing dataset, 
which was not part of the training dataset, was then quantitatively compared with the original segmentation using 
the Dice similarity coefficient.

Optimization of protocol via feature selection.  In order to reduce the number of images required for 
segmentation, an exhaustive search of the combinations of two to nine different images was performed and the 
clusters were compared with those generated using the full optimal protocol. The metric used was the Dice sim-
ilarity coefficient between the voxel labels generated from the original and reduced datasets. When the optimal 
subsets were found, the positive and negative predictive values (PPV and NPV, respectively) of each subset for 
tumour and necrosis/apoptosis voxels was calculated relative to the clusters generated using the full protocol. 
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The difference between the measured signal at the MT-weighted image common to all the optimal image subsets 
between tumour, necrosis/apoptosis, and combined tumour and necrosis/apoptosis clusters over all mice were 
compared using unpaired t-tests.

Quantitative MT model fitting.  Quantitative MT model fitting was performed in order to test the results 
of the feature selection, as well as to determine whether a different selection of B1 amplitudes or frequency offsets 
would improve the contrast between clusters. T1 maps and Z-spectra with B1 = 0.1, 3, and 6 µT were fitted to a 
two-pool MT model52 using a super-Lorentzian lineshape for the semisolid macromolecular pool for the mus-
cle, muscle/connective, necrosis/apoptosis, and active tumour voxels and a Lorentzian one for the blood/edema 
voxels53. All parameters were fitted for individual mice, provided there were at least seven voxels in a given cluster 
(which was the size of the smallest active tumour cluster), and then averaged together. This model was used to 
extrapolate Z-spectra over a range of B1 values. The difference in extrapolated Z-spectra between each possible 
pair of tissue types was calculated as a measure of inter-cluster contrast. The difference between the MT effect 
(defined as the exchange rate R times the MT pool size M0,B) between tumour, necrosis/apoptosis, and combined 
tumour and necrosis/apoptosis clusters over all mice were compared using unpaired t-tests.

Isolation of CEST and relayed-NOE contributions.  The extrapolated semi-solid magnetization transfer 
reference (EMR)42 was calculated using the MT model parameters, which represents the MT effect. The apparent 
exchange-dependent relaxation (AREX) metric43,44 to remove T1 effects for CEST and rNOE contributions from 
each tumour and necrosis/apoptosis region was calculated as follows:

= −
Z Z

MTR 1 1
(3)AREX

lab EMR

=
T

AREX MTR ,
(4)

AREX

1,obs

where the measured Z-spectrum (B1s of 0.5 and 2 µT were each used) is denoted Zlab, the extrapolated MT refer-
ence is ZEMR, and T1,obs is the measured T1. The difference between the mean CEST-only contribution at 3.5 ppm 
between tumour, necrosis/apoptosis, and combined tumour and necrosis/apoptosis clusters over all mice were 
compared using unpaired t-tests.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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