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Abstract: We report the analysis of the genome of a novel Alphabaculovirus, Parapoynx stagnalis
nucleopolyhedrovirus isolate 473 (PastNPV-473), from cadavers of the rice case bearer, Parapoynx
stagnalis Zeller (Lepidoptera: Crambidae), collected in rice fields in Kerala, India. High-throughput
sequencing of DNA from PastNPV occlusion bodies and assembly of the data yielded a circular
genome-length contig of 114,833 bp with 126 annotated opening reading frames (ORFs) and six
homologous regions (hrs). Phylogenetic inference based on baculovirus core gene amino acid se-
quence alignments indicated that PastNPV is a member of the group I clade of viruses in genus
Alphabaculovirus, but different phylogenetic methods yielded different results with respect to the
placement of PastNPV and four similarly divergent alphabaculoviruses in the group I clade. Branch
lengths and Kimura-2-parameter pairwise nucleotide distances indicated that PastNPV-473 cannot
be classified in any of the currently listed species in genus Alphabaculovirus. A unique feature of
the PastNPV genome was the presence of an ORF encoding a homolog of Ran GTPase, a regulator
of nucleocytoplasmic trafficking. PastNPV appears to have acquired a homolog of Ran relatively
recently from a lepidopteran host via horizontal gene transfer.

Keywords: baculovirus; Alphabaculovirus; Parapoynx stagnalis; Ran GTPase; enhancin

1. Introduction

Baculoviruses (family Baculoviridae [1]) have two features that continue to inspire
their development as biopesticides: their high virulence against insect pests, and their
lack of toxicity against non-host organisms and the environment [2]. The latter feature,
however, is accompanied by a narrow host range usually consisting of only one or a few
related species of pests against which any given baculovirus is optimally active. For this
reason, the identification and characterization of new baculoviruses is necessary to identify
isolates with insecticidal activity against current pests of interest as well as potential or
emerging pests.

Species of Baculoviridae are classified into four genera [3]. Viruses from two of these
genera, Alphabaculovirus and Betabaculovirus, infect larvae of Lepidoptera, and some have
been formulated for use against lepidopteran pests of agriculture [4,5]. These viruses have
large (80–180 kbp) double-stranded DNA genomes that are replicated and packaged into
rod-shaped nucleocapsids in the nucleus of infected cells. Initially, these nucleocapsids
exit the nucleus and bud from the plasma membrane, forming enveloped virions that
spread infection to other cells and tissues within infected larvae. Later during the replica-
tion cycle, progeny nucleocapsids are enveloped within the nucleus and assembled into
paracrystalline occlusion bodies (OBs). Alphabaculovirus OBs are polyhedral in shape with
a typical diameter of 0.5–5 µm, and contain several enveloped virions, often with multiple
nucleocapsids bundled within a single virion. Betabaculovirus OBs are smaller (0.12 µm
wide × 0.50 µm long), ovocylindrical in shape, and contain a single virion with a single
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nucleocapsid. OBs can be harvested from dead host larvae and applied in the field to
trigger epizootics in pest populations. The OB matrix, consisting of the polyhedrin protein
(or granulin, for betabaculovirus OBs), provides a degree of protection to the occluded
virions against environmental degradation, but readily dissolves in the alkaline environ-
ment of the host larval midgut. The occluded virions liberated from the dissolving OBs
initiate infection of larval midgut epithelial cells. Infection spreads to other tissues in the
larvae, causing nuclear polyhedrosis disease characterized by cell lysis, larval death, and
weakening and rupture of the larval cuticle. The OBs released from dead larvae serve to
spread the infection to other larvae feeding on virus-contaminated foliage.

In 1977, researchers of the College of Agriculture, Vellayani, Kerala in India observed
and collected dead, occlusion-containing larvae of the rice case bearer, Parapoynx stagnalis
Zeller (Lepidoptera: Crambidae), from local rice fields [6]. The rice case bearer, also referred
to as the rice caseworm with the synonym Nymphula depunctalis Guenée, is a widespread
pest of rice [7,8]; https://www.cabi.org/isc/datasheet/44593 (accessed on 29 August 2022)).
Feeding occlusions from the collected cadavers to P. stagnalis larvae caused symptoms of
nuclear polyhedrosis leading to larval mortality. Infection of the larvae was characterized
by the appearance of polyhedral OBs which contained rod-shaped virions and dissolved
in alkaline solutions [9]. The properties and appearance of the OBs and symptoms of the
disease they caused resembled those of an Alphabaculovirus.

A sample of this virus was sent to the Insect Biocontrol Laboratory in Beltsville,
MD, USA in 1979. To identify and characterize this virus, we determined and analyzed
its complete genome sequence. Our results indicate that this virus, henceforth named
Parapoynx stagnalis nucleopolyhedrovirus (PastNPV), is a new member of the group I clade
of genus Alphabaculovirus.

2. Materials and Methods
2.1. Virus Sample

A PastNPV occlusion body (OB) sample was received from Abraham Jacob at the
Kerala Agricultural University College of Agriculture in Vellayani, India, on 29 January
1979. The virus was designated isolate 473 and deposited in the USDA-ARS insect virus
collection in Beltsville, MD.

2.2. DNA Isolation and Sequencing

OBs were pelleted from 500 µL of the PastNPV sample by microcentrifugation at
9168× g for 2 min. The supernatant was removed and the pelleted material was re-
suspended in 0.1 M Na2CO3. The suspension was incubated for 30 min at the benchtop,
then neutralized by addition of Tris-HCl pH 7.5 solution to a final volume of 0.1 M. Sodium
dodecyl sulfate (10%) and proteinase K (Thermo Fisher Scientific, Waltham, MA, USA,
catalog #AM2546) were added to final concentrations of 0.25% v/v and 500 µg/mL, respec-
tively, and the suspension was incubated at 55 ◦C for 1 hr. DNA was extracted by mixing
the dissolved OB solution with an equal volume of 25:24:1 phenol: chloroform: isoamyl
alcohol saturated with 10 mM Tris-HCl pH 8/1 mM EDTA and separating aqueous and
organic phases by centrifugation. The aqueous phase was transferred to a fresh Eppendorf
tube and the DNA was precipitated with ethanol at −30 ◦C overnight. Precipitated DNA
was pelleted by centrifugation, re-suspended in deionized distilled H2O, and quantified
with Quant-iT ™ PicoGreen ™ dsDNA Assay Kit (Thermo Fisher Scientific, #P7589) and
a QuantiFluor ™-ST Fluorometer (Promega, Madison, WI, USA). The procedure yielded
197 ng of DNA.

A library for sequencing the DNA sample on an Illumina MiSeq system was con-
structed from 100 ng of the sample as previously described [10]. Reads were assembled
into a contigs and positions with variants were identified using Lasergene NGen v. 16
(DNAStar, Madison, WI, USA).

The first nucleotide of the polyhedrin (polh) open reading frame (ORF) was set as the
first nucleotide in the genome sequence, and downstream annotated ORFs were numbered
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accordingly. The annotated PastNPV-473 genome sequence has been deposited in GenBank
with the accession number ON704650.

2.3. Genome Annotation

ORFs were initially identified using the NCBI Open Reading Frame Finder (https:
//www.ncbi.nlm.nih.gov/orffinder/ (accessed on 3 March 2022)). ORFs were annotated
if they encoded amino acid sequences with significant sequence similarity with other
baculovirus ORFs or genes from other sources. ORFs of at least 50 codons with no sequence
similarity detected by BLASTp were also annotated if (a) they did not occur within an hr;
(b) they did not overlap an hr or larger ORF by >75 bp, and (c) they were predicted by
both FGENESV (http://linux1.softberry.com/berry.phtml (accessed on 3 March 2022)) and
GeneMarkS [11] to be protein-encoding sequences. ORFs with no match in a BLASTp query
were used in HMM-HMM queries with HHpred [12].

A search for baculovirus homologous regions (hrs; [13]) in the PastNPV-473 genome
sequence was conducted with Tandem Repeats Finder [14] and the pattern-finding function
of Lasergene GeneQuest 17 (DNASTAR). Unit repeats were aligned with MUSCLE [15] as
implemented in Lasergene MegAlign Pro 17 (DNASTAR) with default parameters.

2.4. Phylogeny

Baculovirus core gene amino acid alignments were downloaded from the Baculoviri-
dae chapter of the ICTV Online Report (https://ictv.global/report/chapter/baculoviridae/
baculoviridae/resources (accessed on 7 April 2022)) and re-aligned with core gene amino acid
sequences from PastNPV-473 and selected other baculoviruses (Table S1) with MAFFT [16]
or MUSCLE [15] as implemented in Lasergene MegAlign v. 17. The core gene alignments,
which contained sequences from 97 baculoviruses, were concatenated with BioEdit 7.2.6 [17]
and phylogeny was inferred by maximum likelihood (ML) using RAxML [18] from the
concatenated core gene alignments using the Le and Gascuel (LG) substitution matrix [19]
with variable rates among sites, empirical amino acid frequencies, and 100 rapid bootstrap
replicates. Phylogenies were also inferred by minimum evolution (ME) in MEGA XI [20] with
distances calculated using the JTT-based matrix method [21] with a gamma shape parameter
of 0.79 and 500 bootstrap replicates.

PastNPV-473 ORFs 69 (enhancin) and ORF126 were aligned with other baculovirus
homologs (Table S1) by MUSCLE and phylogenies inferred with RAxML as described
above for the core gene phylogeny.

2.5. ORF Synteny and Pairwise Distance Estimation

Synteny of ORFs between PastNPV-473 and selected alphabaculoviruses was assessed
with gene-parity plots [22]. Pairwise nucleotide distances between Alphabaculovirus partial
lef-8, lef-9, and polh sequences were estimated using the Kimura-2-parameter substitution
matrix with gamma parameters estimated using MEGA XI [20,23].

3. Results
3.1. Characteristics of the PastNPV-473 Genome

Sequencing of the PastNPV-473 sample yielded 160,135 reads with an average length of
150 nt that assembled into a 114,833 bp circular contig with an average coverage of 211X and
a nucleotide distribution of 34.17% GC. One hundred and twenty-six ORFs were annotated,
including the 38 ORFs that constitute the core gene set for family Baculoviridae [24,25]
(Figure 1, Table S2).

In addition, six regions with conserved repeat sequences were identified as hrs. These
hrs consist of 2–6 59-bp conserved unit sequences containing inverted imperfect repeats,
with the consensus sequence 5′-TTGAACTCGCTTTACAAGTTTAAATGTACTCGTAAAGC
AAGATCAGTGGATGATGTCA-3′ (Figure 2).

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
http://linux1.softberry.com/berry.phtml
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Figure 1. Physical map of the genome of Parapoynx stagnalis nucleopolyhedrovirus (PastNPV) iso-
late 473. The position and orientation of open reading frames (ORFs) are represented by arrows, 
which are color-coded to indicate ORFs corresponding to core genes of family Baculoviridae (yellow), 
ORFs that are conserved among viruses of genus Alphabaculovirus (green), ORFs with homologs in 
a subset of baculoviruses (black), or ORFs unique to PastNPV-473 (red). ORFs are designated by the 
names with which they are referenced in the literature, or by a number corresponding to their an-
notation in the PastNPV-473 genome. Gray boxes correspond to homologous regions (hrs). 

In addition, six regions with conserved repeat sequences were identified as hrs. These 
hrs consist of 2–6 59-bp conserved unit sequences containing inverted imperfect repeats, 
with the consensus sequence 5′-TTGAACTCGCTTTACAAGTTTAAATGTACTCG-
TAAAGCAAGATCAGTGGATGATGTCA-3′ (Figure 2). 

Variant positions were documented in the assembly, including 116 single-nucleotide 
polymorphisms (SNPs) and 16 insertions and deletions (indels) occurring at frequencies 
>10% (Table S3). Of the 116 SNPs, 30 of the positions occur in hrs or intergenic regions, 
while the remainder occur in annotated ORFs, resulting in synonymous (40 SNPs) and 
nonsynonymous (46 SNPs) changes. Of the 16 indels, 12 occur in hrs or intergenic regions. 
The remaining four indels occurred in annotated ORFs, with three maintaining the read-
ing frame and one indel causing a frame-shift. 

Figure 1. Physical map of the genome of Parapoynx stagnalis nucleopolyhedrovirus (PastNPV) isolate
473. The position and orientation of open reading frames (ORFs) are represented by arrows, which
are color-coded to indicate ORFs corresponding to core genes of family Baculoviridae (yellow), ORFs
that are conserved among viruses of genus Alphabaculovirus (green), ORFs with homologs in a subset
of baculoviruses (black), or ORFs unique to PastNPV-473 (red). ORFs are designated by the names
with which they are referenced in the literature, or by a number corresponding to their annotation in
the PastNPV-473 genome. Gray boxes correspond to homologous regions (hrs).

Variant positions were documented in the assembly, including 116 single-nucleotide
polymorphisms (SNPs) and 16 insertions and deletions (indels) occurring at frequencies
>10% (Table S3). Of the 116 SNPs, 30 of the positions occur in hrs or intergenic regions,
while the remainder occur in annotated ORFs, resulting in synonymous (40 SNPs) and
nonsynonymous (46 SNPs) changes. Of the 16 indels, 12 occur in hrs or intergenic regions.
The remaining four indels occurred in annotated ORFs, with three maintaining the reading
frame and one indel causing a frame-shift.
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Figure 2. Alignment of the conserved repeats in PastNPV-473 hrs. The four bases in the sequences
are shaded with different colors to help visualize sequence identity. Repeats present in an orientation
opposite to that of the hr1 repeats are indicated (reverse), as are the consensus sequence and a
sequence logo displaying the relative frequency of nucleotide residues at each position [26]. Arrows
denote an imperfect palindrome within the unit repeats.

3.2. Comparisons of PastNPV-473 with Other Viruses

BLASTx queries with PastNPV-473 ORFs yielded top matches predominantly with
group I alphabaculoviruses, including Lonomia obliqua multiple nucleopolyhedrovirus
(LoobMNPV [27], 29 ORFs), Bombyx mori nucleopolyhedrovirus (BmNPV [28]; 20 ORFs),
Rachiplusia ou multiple nucleopolyhedrovirus (RoMNPV [29], 11 ORFs), Catopsilia pomona
nucleopolyhedrovirus (CapoNPV [30], 11 ORFs), Thysanoplusia orichalcea nucleopolyhe-
drovirus (ThorNPV [31], 10 ORFs), Autographa californica multiple nucleopolyhedrovirus
([32], 8 ORFs), Maruca vitrata nucleopolyhedrovirus (MaviNPV [33], 6 ORFs), Plutella
xylostella multiple nucleopolyhedrovirus (PlxyMNPV [34], 6 ORFs), and Troides aeacus nu-
cleopolyhedrovirus (TraeNPV [35], 4 ORFs). Another 11 PastNPV ORFs exhibited matches
with one or two ORFs each from eleven other alphabaculoviruses (Table S2).

Phylogenetic inference based on baculovirus concatenated alignments of core gene
amino acid sequences placed PastNPV-473 in the group I clade of viruses in genus Alphabac-
ulovirus with strong bootstrap support (Figure 3). The assignment of PastNPV as a group I
Alphabaculovirus is further supported by the occurrence of PastNPV-473 ORF11, a homolog
for the Alphabaculovirus gene gp64 (Table S2). The gp64 gene encodes a budded virus enve-
lope protein (GP64) and is the distinguishing feature of clade I alphabaculoviruses [36]. A
previous analysis divided all group I alphabaculoviruses into two sub-clades designated
clade I.a and clade I.b [37]. However, in a phylogram produced with the same procedures
(ML with the LG substitution matrix inferred from MAFFT-aligned core gene sequences,
Figure 3a), PastNPV and four other alphabaculoviruses—CapoNPV, Cyclophragma un-
dans nucleopolyhedrovirus (CyunNPV; [38]), Oxyplax ochracea nucleopolyhedrovirus
(OxocNPV; [39]), and LoobMNPV—were not placed in either clade I.a or clade I.b. Instead,
PastNPV-473 and the other four viruses occurred on branches lying outside of these two
subclades, with PastNPV-473 occupying a position that is basal to the rest of the viruses in
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the group I clade. A different phylogram produced by ME with JTT-based distances from
MUSCLE-aligned core gene sequences placed PastNPV and these four viruses in clade
I.a (Figure 3b), while a second ML phylogram based on the same MUSCLE alignments
(Figure S1) exhibited the same topology as the ML tree based on the MAFFT alignments
(Figure 3a).
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Figure 3. Phylogeny of alphabaculoviruses in the group I clade. (a) A subtree of the group I
alphabaculoviruses, derived from a phylograms inferred from concatenated MAFFT alignments
of baculovirus core gene amino acid sequences by maximum likelihood. (b) A subtree of group I
alphabaculoviruses derived from a phylogram inferred from MUSCLE alignments of baculovirus
core gene amino acid sequences inferred by minimum evolution. Both subtrees show the level of
bootstrap support for each branch. Abbreviations and Genbank accession numbers of viruses in
the tree are provided; the viruses used in this analysis are listed in Table S1. Clade I.a and I.b are
indicated by brackets, and a red bracket and asterisk denotes a group of five alphabaculoviruses with
variable placement in the (a,b) group I subtrees. PastNPV-473 is indicated in bold type.

The branch lengths in all three phylograms suggested that PastNPV represents a new
species in genus Alphabaculovirus. The ranges of Kimura-2-parameter pairwise nucleotide
distances in alignments of lef-8, lef-9, and polh between PastNPV-473 and alphabaculoviruses
were estimated as 0.860–2.092 (lef-8), 0.400–2.330 (lef-9), and 0.468–1.205 (polh) substitu-
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tions/site (Table S4). These values were well above the 0.050 substitutions/site demarcation
criterion defined for baculovirus species [23,40], further indicating that PastNPV-473 should
be classified into a new Alphabaculovirus species.

In gene-parity plots comparing PastNPV to a clade I.a virus (AcMNPV), a clade
I.b virus (OpMNPV), and the four viruses with variable placement in the group I subtree
(LoobMNPV, CapoNPV, CyunNPV, and OxocNPV), a small number of ORFs in the region of
the polh (polyhedrin) ORF were found to occur in an orientation in PastNPV that is opposite
to their orientation in AcMNPV and OpMNPV, but in the same orientation in the other
four viruses (Figure 4). This trend has also been reported in prior comparisons between
clade I alphabaculoviruses [30,38,39], indicating that ORF orientation relative to polh is a
feature that distinguishes the group of alphabaculoviruses including PastNPV, LoobMNPV,
CapoNPV, CyunNPV, and OxocNPV from other clade I.a and I.b alphabaculoviruses. In
addition, two inversions are evident in the PastNPV-473 genome: one inversion (red box A
in Figure 4) encompasses PastNPV ORFs 6 (p26) to 9 (me53), and the second (red box B)
encompasses PastNPV ORFs 21 (p24 capsid) to 26 (alk-exo). The ORFs in the A inversion are
in the same orientation in LoobMNPV and PastNPV, suggesting that this inversion was
present in both PastNPV and LoobMNPV.
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PastNPV-473 relative to ORFs of the other viruses in the plots are indicated by red boxes (A and B).



Viruses 2022, 14, 2289 8 of 14

A BLASTn query with the consensus hr repeat sequence of PastNPV-473 resulted in
matches to hr sequences from isolates of clade I.a viruses, especially AcMNPV and BmNPV,
with e-values ranging from 1 × 10−4 to 2 × 10−9. An alignment of the hr consensus se-
quences for the exemplar isolates of BmNPV and AcMNPV with the hr consensus sequence
of PastNPV-473 and OxocNPV-435 revealed a conserved imperfect palindromic sequence
with the EcoR I endonuclease site of the AcMNPV hr repeats at its center [41] (Figure S2).
The hr sequences from different viruses usually share relatively little sequence similarity,
but similarity has been observed among hrs of related viruses of some clades [42].

3.3. ORF Content of PastNPV-473

In addition to homologs for the 38 core genes of family Baculoviridae, the PastNPV-473
genome contains homologs for the 26 ORFs reported to be conserved among Alphabac-
ulovirus genomes by Garavaglia et al. [24] (Table S2). The PastNPV-473 sequence is missing
ORFs for the viral cathepsin and chitinase genes. These ORFs are present in most al-
phabaculoviruses and several betabaculoviruses, and have been shown to play a role in
liquefaction of the host internal anatomy and weakening of the host larval cuticle [43].
While LoobMNPV is also missing these two genes, cathepsin and chitinase ORFs are present
in CapoNPV, CyunNPV, and OxocNPV, located between the pkip and dbp ORFs. PastNPV
has a homolog of AcMNPV ORF ac57 present at this this location in place of cathepsin and
chitinase ORFs (Table S3).

Of the remaining 62 ORFs, 51 are homologs of ORFs found in AcMNPV. One ORF,
ORF22, appears to be a second, divergent copy of core gene ac78. Although a BLASTx
query with the ORF22 sequence did not yield any matches, an HHpred query produced
UniProt and Pfam matches with AC78 at a probability of >92% with residues 6–59. The
remaining 10 ORFs are a mixture of homologs found in other baculoviruses and ORFs with
no similarity to previously reported baculovirus sequences.

3.3.1. ORFs with Homologs in Other Alphabaculoviruses

PastNPV ORF54 encodes a putative polypeptide with BLAST matches to ORFs from
group I and II alphabaculoviruses that contain the conserved AAA+ ATPase module. The
AAA+ (ATPases Associated with a variety of cellular Activities) superfamily of ATPases
play a role in a wide range of cellular functions [44]. The top BLAST match for ORF54
is with ORF152 of the group II Alphabaculovirus Leucania separata nucleopolyhedrovirus
(LeseNPV; [45]), with 41% sequence identity. However, the PastNPV homolog encodes a
170-amino acid polypeptide, while the other baculovirus AAA+ ATPase homologs range
from 307 to 448 amino acids with an average of 374 amino acids. AAA+ ATPase active
sites are formed by two conserved motifs, Walker A (G(x)4GKT) and Walker B (hhhhDE,
where h denotes hydrophobic amino acids) [46]. While both motifs are present in other
Alphabaculovirus AAA+ homologs, the PastNPV ORF54 sequence only possesses the Walker
A motif and thus is unlikely to encode a functional AAA+ ATPase.

The top match of a BLASTx query with ORF69 was with an enhancin encoded by
Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV [47]; GenBank accession
no. NP_848341). Enhancins are zinc metalloproteases encoded by some alpha- and betabac-
uloviruses as well as bacteria [48]. The enhancins have been shown to promote primary
infection of the host midgut epithelium by degrading proteins of the peritrophic matrix,
which acts as a protective barrier [49–51], though some results suggest an additional or
alternative mechanism for its effects [52,53]. Phylogenetic inference of the relationships
among ORF69 and other enhancins grouped the ORF69 sequence with the enhancins
from group I Choristoneura spp. alphabaculoviruses, including CfMNPV, Choristoneura
occidentalis nucleopolyhedrovirus BC_1 (ChocNPV-BC_1) and Choristoneura rosaceana nucle-
opolyhedrovirus NB_1 (ChroNPV-NB_1) [54] (Figure 5). ORF69 and the Choristoneura spp.
Alphabaculovirus enhancins grouped with a larger set of enhancins from alphabaculoviruses
of hosts from subfamily Noctuinae. Other group I Alphabaculovirus enhancin genes were
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distributed among group II Alphabaculovirus sequences in a separate clade that included
the vef-1 and vef-2 enhancin genes from viruses of Lymantria spp. hosts.
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Figure 5. Phylogeny of PastNPV-473 ORF69 and other enhancin (viral enhancing factor; vef) amino
acid sequences from baculoviruses. A maximum likelihood phylogeny inferred from an alignment of
enhancin homologs is shown, with betabaculovirus enhancin sequences as an outgroup and bootstrap
support for the branches. Abbreviations and Genbank accession numbers of viruses in the tree are
provided; the viruses used in this analysis are listed in Table S1. PastNPV-473 ORF69 is indicated
in bold type, and group I Alphabaculovirus sequences are indicated with red asterisks. Branches for
enhancins from betabaculoviruses and from alphabaculoviruses of Lymantria spp. and Mamestra spp.
hosts are collapsed.

Metalloproteases are characterized by a zinc-binding motif, HEXXH, where X is any
amino acid. The histidines in this motif coordinate a zinc ion that is essential for proteolytic
activity, while the glutamate residue catalyzes the hydrolysis of the substrate peptide
bond [55]. An alignment of ORF69 with 89 additional baculovirus enhancin sequences
yielded a consensus zinc-binding motif sequence of HEIGH. However, the sequence of
this motif in PastNPV ORF69 was found to be REIGH, with an arginine replacing the
first histidine in the motif. Some of the Alphabaculovirus and betabaculovirus enhancin
sequences deviate from the consensus zinc-binding motif to an even greater extent [48,56],
and it is not clear if these ORFs or ORF69 encode an active metalloprotease.
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PastNPV ORF75 shared the highest degree of sequence identity with LoobMNPV
ORF78. Homologs of this ORF were also identified in a mixture of alphabaculoviruses and
betabaculoviruses by BLASTx. An HHpred query with a multiple sequence alignment of
24 ORF75 homologs only yielded one reasonably convincing match with the nonstructural
protein NS3 of Diatraea saccharalis densovirus (GenBank accession no. NP_046812.1), with
a probability of 90.07%. The NS3 gene of the related Junonia coenia densovirus was shown
to be required for densovirus DNA replication [57].

The predicted amino acid sequence of ORF126 shares 51.9% sequence identity with
ORF141 of Antheraea pernyi nucleopolyhedrovirus (AnpeNPV, strain Liaoning; [58]). Ho-
mologs of this ORF are also found in other isolates of Antherea sp. NPVs and related
NPVs from other saturniid hosts, as well as isolates of Choristoneura NPVs, Anticarsia
gemmalis multiple nucleopolyhedrovirus (AgMNPV; [59]), Neophasia sp. nucleopoly-
hedrovirus (NespNPV, GenBank accession no. MK293724), and Epiphyas postvittana
nucleopolyhedrovirus (EppoNPV; [60]). No homologs of this ORF were detected in group
II Alphabaculovirus or betabaculovirus genomes, and no convincing matches were obtained
from an HHpred query with an alignment of 19 ORF126 homologs. In a phylogeny inferred
from an alignment of ORF126 and related sequences, ORF126 was placed in a position
basal to the other homologs of this ORF (Figure S3).

3.3.2. ORFs Not Found in Other Baculovirus Genomes

Six ORFs annotated for PastNPV-473 were not found to have homologs in any other
baculovirus sequence available in GenBank (Table S2). Promoter motifs associated with
both early and late baculovirus gene expression were identified for all six ORFs (Table 1).
Queries with four of these ORFs (15, 27, 92, and 104) using BLASTx and HHpred did not
return any matches with significant sequence similarity. A BLASTx query with ORF10
returned a top match with a hypothetical protein of the bacterium Chitinophaga caeni
(GenBank accession no. WP_198405806) with 54.5% sequence identity and an e-value of
2.6 × 10−20. The predicted amino acid sequence of ORF10 contained eight complete copies
and one partial copy of the sequence MAYVTDLS, which aligned with a similar repeat
sequence in the C. caeni polypeptide.

Table 1. Annotated ORFs unique to the PastNPV-473 genome.

ORF Position (nt) Amino
Acids/kDa

Promoter
Motifs 1 BLASTx Match

10 11799←−12035 78/8.7 C, L hypothetical protein
[Chitinophaga caeni]

15 17875←−18756 293/35.5 C, L, T -
27 27159←−27761 200/23.3 C -

40 36077←−36721 214/24.6 C

PREDICTED:
GTP-binding nuclear

protein Ran [Amyelois
transitella]

92 85688←−86476 262/31.6 C, L, T -
104 95660←−96394 244/29.2 C, T -

1 Early (C, T) and late (L) gene promoter motifs identified within 200 bp of the start codon. C: CAKT; L: TAAG; T: TATAA.

Queries with the ORF40 amino acid sequence indicated that it was a homolog of the
Ran GTPase, a member of the Ras superfamily [61]. Ran regulates nucleocytoplasmic
trafficking of macromolecules across the nuclear envelope and is involved in steps of the
eukaryotic cell cycle, including mitotic spindle assembly and nuclear envelope forma-
tion [62]. The ORF40 polypeptide was found to share 84.0–88.3% sequence identity with
Ran homologs from insects, with the highest BLASTx match being with the Ran GTPase
of the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae; GenBank accession
no. XP_013194495). An examination of the alignment of the ORF40 amino acid sequence
with other Ran sequences suggested that ORF40 encodes a full-length, functional Ran
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GTPase, with a conserved phosphate-binding loop (P-loop; GDGGTGKT) (Figure 6). The
Ran Switch I and Switch II motifs, which undergo conformational changes in Ran when
GDP is exchanged for GTP, were also present in ORF40, as was a conserved C-terminal
acidic tail which interacts with a conserved basic sequence to stabilize the GDP-bound
form of Ran [63,64].
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4. Discussion

PastNPV is one of five group I alphabaculoviruses including LoobMNPV, CapoNPV,
CyunNPV, and OxocNPV that can be distinguished from other group I alphabaculoviruses
on the basis of branch lengths in phylograms and ORF synteny (Figures 3 and 4). These
viruses originate from a disparate group of host families including Crambidae (PastNPV),
Pieridae (CapoNPV), Lasiocampidae (CyunNPV), Saturniidae (LoobMNPV), and Limaco-
didae (OxocNPV). A previous study failed to detect infectivity of PastNPV against larvae
of seven other crambid species, three species of family Noctuidae, and one species of family
Autostichidae [9]. We similarly were unable to detect infectivity of our sample of PastNPV
when fed to neonate larvae of Plutella xylostella (diamondback moth, family Plutellidae)
or Trichoplusia ni (cabbage looper, family Noctuidae), although we cannot exclude the
possibility that our sample had lost infectivity during storage. Hence, the biological control
potential of PastNPV may be limited to addressing outbreaks of P. stagnalis in rice.

The remaining 17 group I alphabaculoviruses of Figure 3 occur in two well-supported
subclades, clade I.a and clade I.b. Clade I.a includes AcMNPV and other closely related
alphabaculoviruses, and clade I.b consists of a more divergent group of alphabaculoviruses
mostly from tree and forest pests, such as OpMNPV [65]). While Kimura-2-parameter
nucleotide distances clearly indicate that PastNPV cannot be classified into any currently
existing Alphabaculovirus species [40], the relationships of PastNPV and the four other more
disparate viruses to the clade I.a and I.b alphabaculoviruses are unclear. The incongruence
of the group I trees in Figure 3 could be due to the divergent nature of sequences from
PastNPV and the other four viruses resulting in relatively long branch lengths, and rela-
tionships of these viruses with each other and the other group I alphabaculoviruses will
likely require additional sequences from similar viruses to resolve.
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The absence of a Ran GTPase homolog in other baculovirus genomes and the high
degree of sequence identity between insect Ran GTPases and PastNPV ORF40 suggests
that a virus of the PastNPV lineage had acquired a homolog of a cellular Ran sequence
by horizontal gene transfer relatively recently. The preservation of motifs involved in
Ran’s function in the ORF40 sequence further suggests that ORF40 encodes a functional
Ran GTPase. Expression of the PastNPV homolog may affect egress of progeny PastNPV
nucleocapsids from the host nucleus, or alter the nuclear or cellular mileau in a way that
impacts DNA replication or virion assembly. The impact of expression of a Ran GTPase on
baculovirus replication will require additional research.
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