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Abstract 

Ontologies are highly prevalent in biology and medicine and are always evolving. Annotating biological text, such as observed pheno
type descriptions, with ontology terms is a challenging and tedious task. The process of annotation requires a contextual under
standing of the input text and of the ontological terms available. While text-mining tools are available to assist, they are largely 
based on directly matching words and phrases and so lack understanding of the meaning of the query item and of the ontology term 
labels. Large Language Models (LLMs), however, excel at tasks that require semantic understanding of input text and therefore may 
provide an improvement for the auto-annotation of text with ontological terms. Here we describe a series of workflows incorporating 
OpenAI GPT’s capabilities to annotate Arabidopsis thaliana and forest tree phenotypic observations with ontology terms, aiming for 
results that resemble manually curated annotations. These workflows make use of an LLM to intelligently parse phenotypes into 
short concepts, followed by finding appropriate ontology terms via embedding vector similarity or via Retrieval-Augmented 
Generation (RAG). The RAG model is a state-of-the-art approach that augments conversational prompts to the LLM with context- 
specific data to empower it beyond its pre-trained parameter space. We show that the RAG produces the most accurate automated 
annotations that are often highly similar or identical to expert-curated annotations.
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Introduction
Large Language Models (LLMs) such as GPT, Claude, LLaMa, and 
Gemini hold great promise for solving problems in many fields. 
However, caution has been advised when using LLMs for fact- 
based tasks such as scientific writing. This is due to their genera
tive nature, which can lead to “hallucinatory” effects where the 
model yields plausible sounding, yet incorrect outputs [1]. 
Nevertheless, there are certain tasks where LLMs excel and may 
provide solutions of a quality well beyond the capabilities of 
other models or algorithms. One such task is the annotation of 
text with ontological terms [2, 3].

Ontologies are highly prevalent in biology and medicine. The 
NCBO BioPortal, for example, maintains a library of over 1000 
biomedical ontologies. Ontologies are useful for uniting inconsis
tent information from wide sources under a common lexicon. 
Once data is annotated with ontological terms, it can be used for 
classification, simplification/summarizing, data aggregation and 
over-representation analysis (enrichment) [4, 5]. The process of 
annotation, however, requires a contextual understanding of the 
input text and of the ontological terms available. For domain 
experts, the task can be daunting when there is a large body of 
items to be annotated, for example, annotating thousands of 
gene functions or trait descriptions. Furthermore, new ontologies 
are regularly released, while older ones are updated by introduc
ing new terms and obsoleting others, creating ongoing annota
tion tasks.

These challenges have led to the development of various 
auto-annotation tools. NCBO Bioportal provides the online 
Annotator tool [6] (formerly known as Open Biomedical 
Annotator), while EMBL-EBI provides a similar online tool known 
as Zooma [7]. Others include Ontobee [8], ontoFast [9], and 
Gene2Function [10]. Most of these tools use a form of text- 
mining, which limits their ability to find an appropriate term 
when the term label does not contain exact words contained in 
the query item, or when a concept is not succinctly encapsulated 
in the query item. The primary shortcoming of these tools, when 
compared to a human domain expert, is the lack of semantic un
derstanding of the meaning of the query item and of the ontology 
term labels.

Large language models, such as GPT, are a recent innovation 
that move beyond text-mining and into the realm of semantic 
understanding, by modeling the relationship between words and 
phrases on a massive scale. LLMs show an increasing ability to 
find key concepts within complex writing [2], despite varying 
tense, tone, sentence structure and ordering of subjects. 
Therefore auto-annotation of scientific text descriptors with on
tology terms is a task that plays to the strengths of LLMs. Here, 
we describe a series of workflows incorporating OpenAI GPT’s 
[11] capabilities to annotate hundreds of Arabidopsis thaliana and 
forest tree phenotypic observations with ontology terms, aiming 
for results that resemble manually curated annotations. These 
workflows make use of an LLM to intelligently parse phenotypes 
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into short concepts, followed by finding appropriate ontology 
terms via embedding vector similarity or via Retrieval- 
Augmented Generation (RAG) [12]. The RAG model is a state-of- 
the-art approach that augments conversational prompts to the 
LLM with context-specific data to empower it beyond its pre- 
trained parameter space. We evaluate the automated workflows 
against manually curated annotations using various perfor
mance metrics, including semantic similarity.

Materials and methods
The goal of this analysis was to improve the automated annota
tion of plant phenotype or trait descriptors with terms from the 
Plant Trait Ontology (TO) [13] by using an LLM. Starting from the 
existing auto-annotation approach that uses text-mining be
tween a raw descriptor and ontology term labels, we tested three 
potential improvements: (i) Using an LLM to split the raw descrip
tor into multiple concepts prior to annotation; (ii) using LLM 
embedding-vector similarity for the annotation process; iii) find
ing candidate TO terms using (i) and (ii) above, then asking the 
LLM to select the best ones for annotation (RAG).

Phenotype and trait descriptors to be annotated
We aimed to auto-annotate descriptors from three plant pheno
type sources. The first source is TAIR’s database [14] of pheno
types observed in mutant lines of the model plant Arabidopsis 
thaliana. A mutant line can produce one or more measurable phe
notypic outcomes relative to wild-type. The TAIR database con
tains 19 235 phenotypic records for 7551 genes (mutant lines), 
where each record may describe multiple trait observations. For 
example: “AT1G34190 Shorter root length; reduced hypocotyl length 
after exposure of Antimycin” is a single descriptor containing two 
observed phenotypes, both of which are part of a broader re
sponse to Antimycin (AA). The second source is the 1001 
Genomes AraPheno database [15], which collates trait data mea
sured on subsets of the 1001G Arabidopsis diversity population 
from hundreds of studies. Each trait has a short and often cryptic 
name, plus a longer description of how the trait was measured. 
The third source is the TreeGenes database [16] of traits aggre
gated from over 400 population-level studies in over 460 tree spe
cies. Each study investigated one or more traits, usually in the 
context of GWAS or adaptation, and a subset of those studies 
provide metadata about their measured traits.

Gold-standard annotations
The TAIR mutant phenotypes were not already annotated with 
TO terms, so we manually annotated 100 randomly selected phe
notypes to create a gold set of TO annotations for testing and 
evaluation. The Plant Trait Ontology includes some terms be
longing to other ontologies (e.g. several PO, GO and CHEBI terms), 
so we avoided these and ensured that all gold annotations were 
terms with “TO” curies. Similarly, the TreeGenes traits were not 
already annotated with TO terms so we manually annotated the 
trait descriptions provided in study metadata files to create a 
gold set. We discarded any climatic and geographic traits, plus 
metabolite traits produced by mass-spectrometry as most of 
these are not describable by Plant Trait Ontology. Finally, the 
AraPheno traits were already annotated with a single TO term 
each, which we used for the gold annotation while acknowledg
ing that a single term was often inadequate in capturing the full 
implications of the trait descriptor.

Technically, some of these traits and phenotypes could be an
notated more precisely by decomposing them into multiple 
ontologies such as PATO, PO, PECO, and CHEBI, which would al
low for capturing dependencies and unique conditions in the de
scriptor. However, doing so can make downstream tasks like 
over-representation analysis and calculating semantic similarity 
of traits more difficult. Thus for this study we focused on the 
challenge of improving auto-annotation with a single ontology 
(TO) that was designed for this data type in the first place.

Auto-annotation workflows
We evaluated the use of both text-matching and LLM embedding- 
vector similarity for auto-annotation of verbose descriptors. 
Additionally, we tested these annotators with an intermediate 
step where an LLM parsed the initial descriptor into multiple short 
concepts prior to the auto-annotation step (see Fig. 1). Finally, we 
combined the outputs of the embedding workflows with the natu
ral language capabilities of the LLM in a RAG approach. The five 
workflows in Fig. 1 are explained in detail below.

Descriptor to text-mining
This is the baseline method for auto-annotation. Here we pro
vided each raw text descriptor as input to the online Zooma tool 
as a representative of text-mining algorithms, and requested an
notation with the Plant Trait Ontology (TO). We removed any 
terms provided by Zooma that were not explicitly of the “TO:” cu
rie that we used for the gold annotations for that dataset.

Descriptor to concepts to text-mining
Most mutant line descriptors from TAIR have long, verbose 
descriptors, while AraPheno and TreeGenes traits are typically 
shorter but still can be verbose. Often many phenotypic observa
tions or traits are described in the one descriptor. Here, rather 
than trying to annotate an entire raw descriptor in one go, we 
used an R wrapper of the OpenAI API [17] to ask the GPT-4o LLM 
to parse the descriptor into its major concepts, plus to provide 
three alternative short phrases for each of those concepts. The 
GPT prompts used for this task, which were slightly customized 
for each dataset, are available in Supplementary Table S10.

For each resulting concept we then concatenated the con
cept’s text and its three alternative phrases into a single comma- 
delimited text string, and then provided the string as input to 
Zooma for text-mining auto-annotation. Thus, if a raw descriptor 
could be broken into three separate concepts by GPT, Zooma 
would be used three times for that descriptor. A real example is 
given below.
Descriptor: 

“ABA hypersensitivity of guard cell anion-channel activation 

and stomal closing”

GPT detects three concepts (underlined here) with three alternate 
phrases each: 

“ABA hypersensitivity, abscisic acid response, plant hormone 

sensitivity, guard cell regulation”

“guard cell anion-channel activation, anion transport, guard 

cell function, stomatal movement”

“stomal closing, stomatal closure, leaf gas exchange, plant wa

ter regulation”

The three strings above are used as three inputs to Zooma for the 
original descriptor.
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Descriptor to embedding
An embedding is a numerical representation of a text input (or 
other data) that encodes the parameter space of the model for that 
input. It is a vastly compressed representation compared to the 
massive parameter space involved in large language models (e.g. a 
numeric vector of length 1024 rather than billions). Since embed
ding vectors encode a high-dimensional location in the language 
model’s parameter space, similar embeddings typically convey 
similar semantic concepts. For example “the quick red fox” and “a 
fast scarlet vixen” share no words in common but semantically de
scribe highly similar concepts. Their GPT embedding vectors have 
a cosine similarity of 0.66. In contrast, “the quick red fox” and “four 
loaves of bread” have embedding similarity of only 0.21.

OpenAI provides a function to request embedding vectors for 
any input text. We first used this to get an embedding vector for 
each of the ontology terms (1671 TO terms), where the input for 
an ontology term was the concatenation of its text label and de
scription. This formed our embedding vector database. Next we 
obtained an embedding vector for the raw descriptor, calculated 
its cosine similarity to each ontology term in the vector database, 
and selected the top four ranked TO terms with cosine similarity 
> 0.40 as annotations. All embeddings were calculated using the 
“text-embedding-3-large” model, which was the most advanced 
OpenAI embedding model available at the time of the study.

Descriptor to concepts to embedding
While the descriptor to embedding (DE) approach used embed
dings of the raw verbose descriptors, in this approach we instead 

obtained embeddings of the GPT concepts described in the de

scriptor to concepts to text-mining (DCM) workflow above. So, for 

each descriptor we obtained an embedding vector for each of its 

major concepts determined by GPT-4o. We calculated cosine 

similarity between the concepts’ embedding vectors and the on

tology terms’ embedding vectors in the same way as the DE 

workflow, and then selected the single most similar ontology 

term for each concept (where cosine similarity > 0.40). Since long 

descriptors can be parsed into multiple different concepts by 

GPT-4o, this workflow could potentially auto-annotate a descrip

tor with many TO terms.

Descriptor to concepts to retrieval augmented generation
Embeddings are powerful tools but do not make use of LLMs nat

ural language processing capabilities. However, if GPT-4o is 

asked directly to annotate a phenotype with ontology terms us

ing pre-trained knowledge it tends to generate false term IDs and 

descriptions, so it is not trustworthy as an auto-annotator. The 

LLM needs to be provided with the dictionary of terms and defini

tions in the context window so it does not stray from the task. 

This is the domain of RAG.
RAG is an established way to extend and focus the capabilities 

of an LLM. If an application needs the LLM to be aware of custom 

information then the LLM must be provided with that informa

tion as context in the conversation. Often the custom informa

tion is too large to be wholly included within the limited context 

space (such is the case with the Plant Trait Ontology which has 

over 1600 terms and their descriptions), so only the most relevant 

Figure 1. Five auto-annotation workflows. Each workflow begins with a descriptor text input. (i) DM sends the descriptor to a text-mining tool which 
annotates it with a set of ontology terms. (ii) DCM asks the LLM to preprocess the descriptor into multiple short concepts (blue pieces), which are then 
annotated by the textmining tool. (iii) DE uses the LLM to get an embedding vector of the descriptor, which it then compares to a pre-calculated 
database containing embedding vectors of all ontology terms. The descriptor is annotated with the terms with the highest vector similarity to the 
descriptor. (iv) DCE performs the same LLM preprocessing step in DCM to obtain concepts. DCE then uses the LLM to get an embedding vector of each 
concept, which it then compares to the embedding vector database of all ontology terms. The descriptor is annotated with the terms with the highest 
vector similarity to one or more concepts. (v) DCRAG first runs the DE and DCE workflows to get a list of candidate ontology terms. It then asks the LLM 
to choose the most appropriate terms for the descriptor from the list of candidates
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parts are retrieved from a local repository and then included in 
the conversation with the LLM.

In the descriptor to concepts to retrieval augmented genera
tion (DCRAG) workflow we used the embedding similarity ap
proach from the DE and descriptor to concepts to embedding 
(DCE) workflows to form a list of candidate TO terms. These are 
terms that, according to their embedding vector similarity with 
the descriptor or its concepts, have the best chance of being good 
annotations for the descriptor. For DCRAG a cosine similarity 
≥0.35 (rather than 0.40) is used to grab a greater amount of TO 
terms. The list of candidate TO terms is concatenated onto a new 
LLM conversation prompt that asks the LLM to act as a plant biol
ogist and choose the best terms from the candidates (see 
Supplementary Table S10). The motivation behind this approach 
is to use the LLM’s demonstrated reasoning capabilities to intelli
gently winnow down the candidate TO terms, hopefully remov
ing those that have a high embedding similarity with the 
descriptor but are actually false positives given the full context.

Evaluating workflows
In each workflow we compared the set of auto-annotated terms to 
the set of gold standard terms for each descriptor using Jaccard 
similarity and semantic similarity (semsim). Jaccard provides a 
score between 0 (no terms in common between the sets) and 1 (a 
perfect set of terms that is identical to the gold standard). 
However, given that ontologies are structured in a hierarchical 
graph, there are often terms existing at higher or lower levels in 
the graph that could be considered as valid annotations. The in
ability to positively score matches between similar (but not identi
cal) terms is a shortcoming of Jaccard, and of any other similarity 
measure based on intersection of term IDs. Conceptually related 
terms with different IDs have a jaccard similarity of zero. 
Semantic similarity, on the other hand, provides a more nuanced 
score between 0 and 1 that considers the structure of the ontology 
graph. Two sets of ontology terms can have no IDs in common yet 
still obtain a high similarity score if their terms are strongly con
nected in the graph. We used the ontologySimilarity v2.7 [18] pack
age in R to calculate Lin semantic similarity scores between sets 
of terms. Additionally, we calculated the precision and recall of 
auto-annotated term sets with respect to the gold term sets. All 
analysis was performed using R v4.3.0.

Semantic similarity with random to terms
It is difficult to know how easy or hard it is to attain a certain se
mantic similarity score, especially as the score can be affected by 
the size of the term sets. For example, is semsim¼0.62 a strong 
score when calculated between a set of 3 gold terms and a set of 
4 auto-annotated terms? To answer this we took each descriptor 
and generated 100 sets of random TO terms of equal size to the 
set that was auto-annotated by a given workflow. We were thus 
able to calculate a ‘null’ distribution of semsim scores for each 
descriptor to compare the expected semsim of an unskilled auto- 
annotator to the semsim from the AI workflows.

Results
Gold standard annotation of descriptors
We manually annotated 100 randomly selected phenotypes from 
the TAIR mutant line dataset. On average, each phenotype re
ceived 2.14 TO terms, with the maximum being 8 terms. Four 
phenotypes could not be manually annotated with any TO terms 
so they were assigned NA. For the TreeGenes dataset, 224 traits 
were manually annotated in a similar manner to the TAIR 

phenotypes. On average the traits were annotated with 1.26 
terms, with a maximum of 4. For the AraPheno dataset, the 231 
unique trait descriptors were already annotated with a single TO 
term each. The complete gold annotations can be viewed in 
Supplementary Tables S1–S3.

Parsing concepts with GPT
We asked GPT-4o to parse each input descriptor into concepts 
and provide three alternative short phrases for each concept. 
GPT appeared to be highly adept at this task. As an example, the 
TAIR descriptor “ABA hypersensitivity of guard cell anion- 
channel activation and stomal closing” was parsed into three 
concepts, each with three alternate phrases:

i) ABA hypersensitivity: abscisic acid response, plant hormone 
sensitivity, guard cell regulation 

ii) guard cell anion-channel activation: anion transport, guard 
cell function, stomatal movement 

iii) stomal closing: stomatal closure, leaf gas exchange, plant 
water regulation 

The descriptors varied in length within and between the data
sets, and there was a strong positive correlation between the 
length (word count) of a descriptor and the number of concepts 
determined by GPT (Pearson’s rTAIR ¼ 0.71; rTreeGenes¼0.72; 
rAraPheno ¼ 0.49). On average the TAIR descriptors produced the 
most concepts (3.44), followed by AraPheno (2.61) and TreeGenes 
(1.50). The entire set of concepts and phrases for all three gold 
datasets can be found in Supplementary material. Note that a 
small percentage of responses by GPT were badly formatted and 
needed to be remedied manually. All concepts generated by the 
LLM can be viewed in Supplementary Tables S4–S6.

Auto-annotation
We tested five auto-annotation workflows (Fig. 1 and Section 
Materials and methods) on each of the three gold-labeled datasets, 
and evaluated their performance using jaccard, precision, recall, 
and semantic similarity (semsim) metrics (Table 1). The base ap
proach of providing the raw descriptor to a text-mining annotation 
tool (DM) gave poor results in all datasets with all metrics. DM was 
generally unable to auto-annotate the exact terms found in the 
gold annotation, as evidenced by low mean recall values across 
each dataset (TAIR¼0.134; TreeGenes¼ 0.228; AraPheno¼0.091) 
and the fact that only a small proportion of descriptors had their 
entire set of gold terms recalled in full (r1: TAIR¼10%; 
TreeGenes¼21.9%; AraPheno¼ 9.1%). There was no single evalua
tion metric in any dataset where the DM approach was the best, 
and it was the worst performer in 12/15 such evaluations 
(Supplementary Table S8).

The relatively poor performance of DM could be attributed to 
either its use of raw descriptors as input, or to its use of text- 
mining for auto-annotation. These aspects were addressed with 
the DCM workflow (which replaces the raw descriptor input with 
LLM-parsed concepts), the DE workflow (which replaces text- 
mining with LLM embedding-vector similarity), and the DCE 
workflow which does both. The results show that it is beneficial 
to use concepts as input instead of the full descriptor, or 
embedding-vector similarity as the auto-annotator. Using both 
together offers further improvement still (Fig. 2). The DCRAG 
workflow, however, was clearly the best as it scored the highest 
for every metric in every dataset (Table 1). Notably, DCRAG 
achieved much higher precision than all others while also 
achieving the highest recall, validating the use of an LLM’s natu
ral language processing capabilities to accurately refine down a 
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list of candidate ontology terms. Furthermore, DCRAG was often 
able to retain the exact same set of annotations as the manually 
curated gold annotations (Fig. 2), achieving this feat for 39% of 
the TreeGenes descriptors.

To understand how DCRAG improved auto-annotation perfor
mance we plotted the joint distribution of semsim scores from 
DCRAG and each competing workflow. In Fig. 3, brighter regions 
of green-yellow indicate a high density of descriptors with similar 

score outcomes. If the brighter regions are above the diagonal 
line then the workflow on the y-axis tends to improve the perfor
mance for those descriptors compared to the workflow on the x- 
axis, while below the line indicates the opposite. For example, in 
each dataset the DM workflow produces a high-density region of 
poor semsim scores (0–0.25) which generally indicates a large 
number of descriptors with incorrect annotation. The DCRAG 
workflow, however, majorly improves the annotations for many 

Table 1. Mean performance metrics for the five workflows in three datasets.

Dataset Workflow Preprocess Annotator Recall Precision Jaccard semsim r1

AraPheno DCRAG Concepts RAG 0.372 0.269 0.269 0.598 0.372
DCE Concepts Embedding 0.268 0.177 0.177 0.511 0.268
DCM Concepts Text-mining 0.199 0.113 0.113 0.479 0.199
DE None Embedding 0.355 0.089 0.089 0.575 0.355
DM None Text-mining 0.091 0.071 0.071 0.270 0.091

TAIR DCRAG Concepts RAG 0.575 0.480 0.417 0.769 0.370
DCE Concepts Embedding 0.475 0.397 0.340 0.743 0.310
DCM Concepts Text-mining 0.411 0.332 0.279 0.627 0.250
DE None Embedding 0.314 0.143 0.121 0.596 0.200
DM None Text-mining 0.134 0.150 0.111 0.242 0.100

TreeGenes DCRAG Concepts RAG 0.583 0.517 0.494 0.731 0.558
DCE Concepts Embedding 0.388 0.362 0.342 0.664 0.366
DCM Concepts Text-mining 0.480 0.335 0.320 0.628 0.451
DE None Embedding 0.517 0.146 0.144 0.663 0.496
DM None Text-mining 0.228 0.163 0.158 0.399 0.219

Figure 2. Performance of workflows. (A) Each boxplot represents the distribution of semsim scores from all of the descriptors in the given dataset. The 
semsim score is a measure of how similar the auto-annotations are to the gold annotations for a descriptor, without relying on exactly matching 
ontology term IDs like Jaccard. (B) The proportion of descriptors for which a workflow made perfect annotations (i.e. Jaccard¼1)
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of these descriptors, indicated by the green and yellow regions in the 

upper left of the panels in the top row. In the AraPheno dataset there 

are a number of low-scoring descriptors that could only be margin

ally improved by DCRAG. DCRAG also has an impact on descriptors 

that already scored reasonably well with the other workflows, as 

shown by brighter regions in the middle and top right of many pan

els that appear above the diagonal line. These are particularly notice

able against the DE and DCM workflows, but less so against DCE 

which performs strongly in the semsim metric and is hard to im

prove upon. DCRAG, notably, dominates DCE in both recall and pre

cision, so its subtle improvements in semantic similarity score are 

generated by the selection of fewer and more accurate TO terms, 

which is highly desirable for auto-annotation.

Semantic similarity with random to terms
We calculated a ‘null’ distribution of semsim scores for each de
scriptor by randomly selecting TO terms for each descriptor 100 
times and scoring the similarity to the gold terms. This let us 
compare the semsim of an unskilled auto-annotator to the sem
sim from the AI workflows (Fig. 4, Supplementary Table S11).

The random (unskilled) auto-annotator achieved a mean sem
sim of 0.22 and a maximum of 0.42 and was clearly beaten by the 
auto-annotators to varying degrees. Semsim scores were correlated 
with the number of terms auto-annotated to a descriptor, but this 
effect was much stronger for random sets than for the AI work
flows (random: r¼0.66; workflows: r¼0.31). This indicates that it is 
easier to get a higher semsim score by making more annotation 

Figure 3. Comparing semsim performance of DCRAG to other workflows. Each panel shows the joint distribution of semsim score for descriptors 
annotated by two competing workflows. Brighter regions of green-yellow indicate a high density of descriptors with similar score outcomes. The 
diagonal line represents identical performance, so bright regions above the line indicates the workflow on the y-axis performs better than the workflow 
on the x-axis for a dense group of descriptors
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“guesses,” but the performance of the AI annotators is not as de
pendent on this effect as the random annotator is.

Since semsim score is somewhat confounded by the number 
of terms in the annotation set, and each workflow varied in the 
number of terms annotated to each descriptor, we used fold- 
change between a workflow’s semsim score and its random sem
sim score as a robust indicator of skill. DCRAG was once again 
the best performer in all datasets, with a semsim score up to 3.4 
fold greater than random annotation for the TreeGenes dataset 
(Supplementary Table S11).

Annotating the un-annotatable
The TAIR dataset contained four descriptors without gold anno
tations as there were no suitable TO terms for them. It is a chal
lenge for a workflow to refrain from assigning any terms to these 
descriptors. The DM workflow correctly assigned zero TO terms 
to 3 out of the 4 un-annotatable descriptors, but that must be 
viewed within the context that DM also assigned zero terms to 55 
other descriptors out of the 100 in the TAIR dataset. In compari
son, DCRAG correctly assigned zero TO terms to three out of four 
while assigning zero terms to just two other TAIR descriptors. 
DCE was the best performer here as it assigned zero terms for all 
4 un-annotatable descriptors plus just one other TAIR descriptor 
(Supplementary Table S12). This indicates that AI workflows like 
DCRAG and DCE are capable of recognizing and annotating plant 
traits within broader text while also recognizing when no mean
ingful trait is present.

Discussion
Annotating scientific text with ontology terms is a difficult task for 
humans with domain expertise, let alone for automated tools. We 
demonstrated this by using a text-mining tool to auto-annotate 
hundreds of plant phenotypes and gene functions. For these 

inputs, which were not written with auto-annotation in mind, the 
resulting annotations rarely included the gold (curated) terms, 
even for the simplest, shortest, descriptors found in the TreeGenes 
traits dataset. This is because text-mining approaches can fail 
when words do not match exactly. For example, Arabidopsis trait 
#278 (https://arapheno.1001genomes.org/phenotype/278/) found 
in the AraPheno database is described as “iron concentrations in 
leaves”. NCBO’s Bioportal Annotator finds no matching TO terms, 
even when using the “match partial words” option. Similarly, 
Zooma was unable to match “iron concentrations in leaves” to any 
TO terms, instead focusing on the word “leaves” and annotating it 
to Plant Ontology (PO) terms for leaves. Yet if we slightly modify 
the descriptor by removing the ‘s’ in “concentrations” then both 
tools find the correct match to TO : 0006049 “iron concentration”. 
While some text-mining algorithms may incorporate more sophis
ticated rules that can handle this situation, an LLM would not be 
so easily tripped up by plurals, tenses or word ordering, nor get 
“distracted” from the subject of the sentence.

Concept parsing offers easy improvements
It is tempting to use an LLM like GPT-4o to directly annotate phe
notypes with TO terms by simply prompting it to do so. However, 
when we tried this, GPT-4o intermittently “hallucinated” TO 
terms to match the concepts it intrinsically found in the pheno
type text. Regardless, it was clear that the GPT-4o model was 
highly capable of finding the key concepts in the phenotype de
spite the complex and often abstract language being used. 
Additionally, by asking GPT to rephrase a concept multiple times, 
the annotation of that concept could be approached from differ
ent angles which gives downstream tools a greater chance of 
finding the correct ontology terms. This was evident from result 
comparisons between workflows. DCM and DCE included a 
concepts-parsing preprocess step prior to annotation and per
formed consistently better than their DM and DE counterparts.

Retrieval augmented generation is a powerful 
tool for annotation
The DCRAG workflow can be viewed as a logical extension of the 
DE and DCE workflows. While DE and DCE are a major improve
ment over DM, their final selection of ontology terms relies on an 
arbitrary cutoff of embedding vector similarity (e.g. cosine >
0.40). Make the cutoff too low and too many false positive terms 
will result; make the cutoff too high and many true positive 
terms will be left out. It is telling, for example, that the DE work
flow achieved a strong average recall of 0.517 for the TreeGenes 
dataset but average precision of only 0.146. Clearly, for many 
TreeGenes descriptors, a great deal of true positive ontology 
terms made it through the cosine similarity cutoff but they were 
accompanied by even more false positives. A subject expert 
would be able to review this list of terms and discard those that 
don’t fit, improving precision without sacrificing recall. In the 
case of DCRAG the LLM was instructed to act as that expert, and 
it did so with a proficiency that resulted in considerably higher 
scores in every metric and dataset. DCRAG was able to select per
fect annotations (i.e. Jaccard¼1) for 18%, 21%, and 39% of all 
descriptors in the AraPheno, TAIR and TreeGenes datasets re
spectively. While this is not enough to confidently replace a hu
man annotator, it does suggest that LLM-based workflows may 
have the potential to do so in future.

A limitation of DCRAG is the number of candidate ontology 
terms to include as context in the augmented prompt. If the list 
gets too large GPT-4o may struggle to use their information accu
rately. We combined TO terms generated from the DE and DCE 

Figure 4. Workflow performance versus random (unskilled) annotator. 
The filled grey area shows the distribution of semsim scores when TO 
terms were selected at random, while the color lines show the 
distribution of scores by each workflow. The number of terms selected at 
random for a descriptor was always the same as the number of terms 
annotated by the workflow. This was repeated 10 000 times, so the black 
line is a mean distribution

The effectiveness of LLMs for annotation | 7  

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://arapheno.1001genomes.org/phenotype/278/


approaches using a cutoff of cosine > 0.35, which typically pro
duced between 10 and 30 candidates. Using both DE and DCE 
outputs meant that some terms were candidates due to their 
similarity with the entire descriptor (the DE approach) while 
others were candidates due to similarity with one or more short 
concepts (the DCE approach). Thus, the LLM was given local and 
global options to choose from.

Conclusions
Here we have shown that LLM-based approaches for auto- 
annotation of plant phenotypes offer an improvement over a 
text-mining approach. Concept parsing and embedding with an 
LLM helps to avoid the pitfalls of text-mining, can be automated 
using an API, and results in much improved auto-annotations. 
Further improvements are gained using a RAG approach to guide 
the LLM in finding the best ontology terms for annotation. In es
sence, our RAG workflow emulates that of a human annotator 
who would read the input text, understand the concepts within, 
peruse the target ontology for candidate terms, and then decide 
on which candidate terms are most appropriate based on the 
broader meaning and the concepts within the input text. The ac
curacy of RAG annotations is by no means yet at a level to re
place human experts, but can provide a high-throughput 
automated way to produce a first pass set of annotations for 
rapid curation by experts.
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•  Large Language Models are well suited to the task of 
auto-annotating phenotype descriptions with trait on
tology terms. 

•  Using an LLM to deconstruct longer phenotypes into 
shorter concepts improves annotation accuracy. 

•  A Retrieval Augmented Generation (RAG) model boosts 
the AI capability for annotation considerably. 
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