
The effectiveness of large language models with RAG for
auto-annotating trait and phenotype descriptions
David Kainer1,2,�

1Faculty of Science, School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
2ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia

�Corresponding author. Faculty of Science, School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia.
Tel. ±61402246494; E-mail: d.kainer@uq.edu.au

Abstract

Ontologies are highly prevalent in biology and medicine and are always evolving. Annotating biological text, such as observed pheno
type descriptions, with ontology terms is a challenging and tedious task. The process of annotation requires a contextual under
standing of the input text and of the ontological terms available. While text-mining tools are available to assist, they are largely
based on directly matching words and phrases and so lack understanding of the meaning of the query item and of the ontology term
labels. Large Language Models (LLMs), however, excel at tasks that require semantic understanding of input text and therefore may
provide an improvement for the auto-annotation of text with ontological terms. Here we describe a series of workflows incorporating
OpenAI GPT’s capabilities to annotate Arabidopsis thaliana and forest tree phenotypic observations with ontology terms, aiming for
results that resemble manually curated annotations. These workflows make use of an LLM to intelligently parse phenotypes into
short concepts, followed by finding appropriate ontology terms via embedding vector similarity or via Retrieval-Augmented
Generation (RAG). The RAG model is a state-of-the-art approach that augments conversational prompts to the LLM with context-
specific data to empower it beyond its pre-trained parameter space. We show that the RAG produces the most accurate automated
annotations that are often highly similar or identical to expert-curated annotations.

Keywords: annotation; ontology; large language model; GPT; RAG; phenotype

Introduction
Large Language Models (LLMs) such as GPT, Claude, LLaMa, and
Gemini hold great promise for solving problems in many fields.
However, caution has been advised when using LLMs for fact-
based tasks such as scientific writing. This is due to their genera
tive nature, which can lead to “hallucinatory” effects where the
model yields plausible sounding, yet incorrect outputs [1].
Nevertheless, there are certain tasks where LLMs excel and may
provide solutions of a quality well beyond the capabilities of
other models or algorithms. One such task is the annotation of
text with ontological terms [2, 3].

Ontologies are highly prevalent in biology and medicine. The
NCBO BioPortal, for example, maintains a library of over 1000
biomedical ontologies. Ontologies are useful for uniting inconsis
tent information from wide sources under a common lexicon.
Once data is annotated with ontological terms, it can be used for
classification, simplification/summarizing, data aggregation and
over-representation analysis (enrichment) [4, 5]. The process of
annotation, however, requires a contextual understanding of the
input text and of the ontological terms available. For domain
experts, the task can be daunting when there is a large body of
items to be annotated, for example, annotating thousands of
gene functions or trait descriptions. Furthermore, new ontologies
are regularly released, while older ones are updated by introduc
ing new terms and obsoleting others, creating ongoing annota
tion tasks.

These challenges have led to the development of various
auto-annotation tools. NCBO Bioportal provides the online
Annotator tool [6] (formerly known as Open Biomedical
Annotator), while EMBL-EBI provides a similar online tool known
as Zooma [7]. Others include Ontobee [8], ontoFast [9], and
Gene2Function [10]. Most of these tools use a form of text-
mining, which limits their ability to find an appropriate term
when the term label does not contain exact words contained in
the query item, or when a concept is not succinctly encapsulated
in the query item. The primary shortcoming of these tools, when
compared to a human domain expert, is the lack of semantic un
derstanding of the meaning of the query item and of the ontology
term labels.

Large language models, such as GPT, are a recent innovation
that move beyond text-mining and into the realm of semantic
understanding, by modeling the relationship between words and
phrases on a massive scale. LLMs show an increasing ability to
find key concepts within complex writing [2], despite varying
tense, tone, sentence structure and ordering of subjects.
Therefore auto-annotation of scientific text descriptors with on
tology terms is a task that plays to the strengths of LLMs. Here,
we describe a series of workflows incorporating OpenAI GPT’s
[11] capabilities to annotate hundreds of Arabidopsis thaliana and
forest tree phenotypic observations with ontology terms, aiming
for results that resemble manually curated annotations. These
workflows make use of an LLM to intelligently parse phenotypes

Received: 21 January 2025; Revised: 14 February 2025; Editorial decision: 17 February 2025; Accepted: 24 February 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-
use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the
Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Biology Methods and Protocols, 2025, 10(1), bpaf016

https://doi.org/10.1093/biomethods/bpaf016
Advance Access Publication Date: 26 February 2025

Innovations

https://orcid.org/0000-0001-7271-4676

into short concepts, followed by finding appropriate ontology
terms via embedding vector similarity or via Retrieval-
Augmented Generation (RAG) [12]. The RAG model is a state-of-
the-art approach that augments conversational prompts to the
LLM with context-specific data to empower it beyond its pre-
trained parameter space. We evaluate the automated workflows
against manually curated annotations using various perfor
mance metrics, including semantic similarity.

Materials and methods
The goal of this analysis was to improve the automated annota
tion of plant phenotype or trait descriptors with terms from the
Plant Trait Ontology (TO) [13] by using an LLM. Starting from the
existing auto-annotation approach that uses text-mining be
tween a raw descriptor and ontology term labels, we tested three
potential improvements: (i) Using an LLM to split the raw descrip
tor into multiple concepts prior to annotation; (ii) using LLM
embedding-vector similarity for the annotation process; iii) find
ing candidate TO terms using (i) and (ii) above, then asking the
LLM to select the best ones for annotation (RAG).

Phenotype and trait descriptors to be annotated
We aimed to auto-annotate descriptors from three plant pheno
type sources. The first source is TAIR’s database [14] of pheno
types observed in mutant lines of the model plant Arabidopsis
thaliana. A mutant line can produce one or more measurable phe
notypic outcomes relative to wild-type. The TAIR database con
tains 19 235 phenotypic records for 7551 genes (mutant lines),
where each record may describe multiple trait observations. For
example: “AT1G34190 Shorter root length; reduced hypocotyl length
after exposure of Antimycin” is a single descriptor containing two
observed phenotypes, both of which are part of a broader re
sponse to Antimycin (AA). The second source is the 1001
Genomes AraPheno database [15], which collates trait data mea
sured on subsets of the 1001G Arabidopsis diversity population
from hundreds of studies. Each trait has a short and often cryptic
name, plus a longer description of how the trait was measured.
The third source is the TreeGenes database [16] of traits aggre
gated from over 400 population-level studies in over 460 tree spe
cies. Each study investigated one or more traits, usually in the
context of GWAS or adaptation, and a subset of those studies
provide metadata about their measured traits.

Gold-standard annotations
The TAIR mutant phenotypes were not already annotated with
TO terms, so we manually annotated 100 randomly selected phe
notypes to create a gold set of TO annotations for testing and
evaluation. The Plant Trait Ontology includes some terms be
longing to other ontologies (e.g. several PO, GO and CHEBI terms),
so we avoided these and ensured that all gold annotations were
terms with “TO” curies. Similarly, the TreeGenes traits were not
already annotated with TO terms so we manually annotated the
trait descriptions provided in study metadata files to create a
gold set. We discarded any climatic and geographic traits, plus
metabolite traits produced by mass-spectrometry as most of
these are not describable by Plant Trait Ontology. Finally, the
AraPheno traits were already annotated with a single TO term
each, which we used for the gold annotation while acknowledg
ing that a single term was often inadequate in capturing the full
implications of the trait descriptor.

Technically, some of these traits and phenotypes could be an
notated more precisely by decomposing them into multiple
ontologies such as PATO, PO, PECO, and CHEBI, which would al
low for capturing dependencies and unique conditions in the de
scriptor. However, doing so can make downstream tasks like
over-representation analysis and calculating semantic similarity
of traits more difficult. Thus for this study we focused on the
challenge of improving auto-annotation with a single ontology
(TO) that was designed for this data type in the first place.

Auto-annotation workflows
We evaluated the use of both text-matching and LLM embedding-
vector similarity for auto-annotation of verbose descriptors.
Additionally, we tested these annotators with an intermediate
step where an LLM parsed the initial descriptor into multiple short
concepts prior to the auto-annotation step (see Fig. 1). Finally, we
combined the outputs of the embedding workflows with the natu
ral language capabilities of the LLM in a RAG approach. The five
workflows in Fig. 1 are explained in detail below.

Descriptor to text-mining
This is the baseline method for auto-annotation. Here we pro
vided each raw text descriptor as input to the online Zooma tool
as a representative of text-mining algorithms, and requested an
notation with the Plant Trait Ontology (TO). We removed any
terms provided by Zooma that were not explicitly of the “TO:” cu
rie that we used for the gold annotations for that dataset.

Descriptor to concepts to text-mining
Most mutant line descriptors from TAIR have long, verbose
descriptors, while AraPheno and TreeGenes traits are typically
shorter but still can be verbose. Often many phenotypic observa
tions or traits are described in the one descriptor. Here, rather
than trying to annotate an entire raw descriptor in one go, we
used an R wrapper of the OpenAI API [17] to ask the GPT-4o LLM
to parse the descriptor into its major concepts, plus to provide
three alternative short phrases for each of those concepts. The
GPT prompts used for this task, which were slightly customized
for each dataset, are available in Supplementary Table S10.

For each resulting concept we then concatenated the con
cept’s text and its three alternative phrases into a single comma-
delimited text string, and then provided the string as input to
Zooma for text-mining auto-annotation. Thus, if a raw descriptor
could be broken into three separate concepts by GPT, Zooma
would be used three times for that descriptor. A real example is
given below.
Descriptor:

“ABA hypersensitivity of guard cell anion-channel activation

and stomal closing”

GPT detects three concepts (underlined here) with three alternate
phrases each:

“ABA hypersensitivity, abscisic acid response, plant hormone

sensitivity, guard cell regulation”

“guard cell anion-channel activation, anion transport, guard

cell function, stomatal movement”

“stomal closing, stomatal closure, leaf gas exchange, plant wa

ter regulation”

The three strings above are used as three inputs to Zooma for the
original descriptor.

2 | Kainer

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data

Descriptor to embedding
An embedding is a numerical representation of a text input (or
other data) that encodes the parameter space of the model for that
input. It is a vastly compressed representation compared to the
massive parameter space involved in large language models (e.g. a
numeric vector of length 1024 rather than billions). Since embed
ding vectors encode a high-dimensional location in the language
model’s parameter space, similar embeddings typically convey
similar semantic concepts. For example “the quick red fox” and “a
fast scarlet vixen” share no words in common but semantically de
scribe highly similar concepts. Their GPT embedding vectors have
a cosine similarity of 0.66. In contrast, “the quick red fox” and “four
loaves of bread” have embedding similarity of only 0.21.

OpenAI provides a function to request embedding vectors for
any input text. We first used this to get an embedding vector for
each of the ontology terms (1671 TO terms), where the input for
an ontology term was the concatenation of its text label and de
scription. This formed our embedding vector database. Next we
obtained an embedding vector for the raw descriptor, calculated
its cosine similarity to each ontology term in the vector database,
and selected the top four ranked TO terms with cosine similarity
> 0.40 as annotations. All embeddings were calculated using the
“text-embedding-3-large” model, which was the most advanced
OpenAI embedding model available at the time of the study.

Descriptor to concepts to embedding
While the descriptor to embedding (DE) approach used embed
dings of the raw verbose descriptors, in this approach we instead

obtained embeddings of the GPT concepts described in the de

scriptor to concepts to text-mining (DCM) workflow above. So, for

each descriptor we obtained an embedding vector for each of its

major concepts determined by GPT-4o. We calculated cosine

similarity between the concepts’ embedding vectors and the on

tology terms’ embedding vectors in the same way as the DE

workflow, and then selected the single most similar ontology

term for each concept (where cosine similarity > 0.40). Since long

descriptors can be parsed into multiple different concepts by

GPT-4o, this workflow could potentially auto-annotate a descrip

tor with many TO terms.

Descriptor to concepts to retrieval augmented generation
Embeddings are powerful tools but do not make use of LLMs nat

ural language processing capabilities. However, if GPT-4o is

asked directly to annotate a phenotype with ontology terms us

ing pre-trained knowledge it tends to generate false term IDs and

descriptions, so it is not trustworthy as an auto-annotator. The

LLM needs to be provided with the dictionary of terms and defini

tions in the context window so it does not stray from the task.

This is the domain of RAG.
RAG is an established way to extend and focus the capabilities

of an LLM. If an application needs the LLM to be aware of custom

information then the LLM must be provided with that informa

tion as context in the conversation. Often the custom informa

tion is too large to be wholly included within the limited context

space (such is the case with the Plant Trait Ontology which has

over 1600 terms and their descriptions), so only the most relevant

Figure 1. Five auto-annotation workflows. Each workflow begins with a descriptor text input. (i) DM sends the descriptor to a text-mining tool which
annotates it with a set of ontology terms. (ii) DCM asks the LLM to preprocess the descriptor into multiple short concepts (blue pieces), which are then
annotated by the textmining tool. (iii) DE uses the LLM to get an embedding vector of the descriptor, which it then compares to a pre-calculated
database containing embedding vectors of all ontology terms. The descriptor is annotated with the terms with the highest vector similarity to the
descriptor. (iv) DCE performs the same LLM preprocessing step in DCM to obtain concepts. DCE then uses the LLM to get an embedding vector of each
concept, which it then compares to the embedding vector database of all ontology terms. The descriptor is annotated with the terms with the highest
vector similarity to one or more concepts. (v) DCRAG first runs the DE and DCE workflows to get a list of candidate ontology terms. It then asks the LLM
to choose the most appropriate terms for the descriptor from the list of candidates

The effectiveness of LLMs for annotation | 3

parts are retrieved from a local repository and then included in
the conversation with the LLM.

In the descriptor to concepts to retrieval augmented genera
tion (DCRAG) workflow we used the embedding similarity ap
proach from the DE and descriptor to concepts to embedding
(DCE) workflows to form a list of candidate TO terms. These are
terms that, according to their embedding vector similarity with
the descriptor or its concepts, have the best chance of being good
annotations for the descriptor. For DCRAG a cosine similarity
≥0.35 (rather than 0.40) is used to grab a greater amount of TO
terms. The list of candidate TO terms is concatenated onto a new
LLM conversation prompt that asks the LLM to act as a plant biol
ogist and choose the best terms from the candidates (see
Supplementary Table S10). The motivation behind this approach
is to use the LLM’s demonstrated reasoning capabilities to intelli
gently winnow down the candidate TO terms, hopefully remov
ing those that have a high embedding similarity with the
descriptor but are actually false positives given the full context.

Evaluating workflows
In each workflow we compared the set of auto-annotated terms to
the set of gold standard terms for each descriptor using Jaccard
similarity and semantic similarity (semsim). Jaccard provides a
score between 0 (no terms in common between the sets) and 1 (a
perfect set of terms that is identical to the gold standard).
However, given that ontologies are structured in a hierarchical
graph, there are often terms existing at higher or lower levels in
the graph that could be considered as valid annotations. The in
ability to positively score matches between similar (but not identi
cal) terms is a shortcoming of Jaccard, and of any other similarity
measure based on intersection of term IDs. Conceptually related
terms with different IDs have a jaccard similarity of zero.
Semantic similarity, on the other hand, provides a more nuanced
score between 0 and 1 that considers the structure of the ontology
graph. Two sets of ontology terms can have no IDs in common yet
still obtain a high similarity score if their terms are strongly con
nected in the graph. We used the ontologySimilarity v2.7 [18] pack
age in R to calculate Lin semantic similarity scores between sets
of terms. Additionally, we calculated the precision and recall of
auto-annotated term sets with respect to the gold term sets. All
analysis was performed using R v4.3.0.

Semantic similarity with random to terms
It is difficult to know how easy or hard it is to attain a certain se
mantic similarity score, especially as the score can be affected by
the size of the term sets. For example, is semsim¼0.62 a strong
score when calculated between a set of 3 gold terms and a set of
4 auto-annotated terms? To answer this we took each descriptor
and generated 100 sets of random TO terms of equal size to the
set that was auto-annotated by a given workflow. We were thus
able to calculate a ‘null’ distribution of semsim scores for each
descriptor to compare the expected semsim of an unskilled auto-
annotator to the semsim from the AI workflows.

Results
Gold standard annotation of descriptors
We manually annotated 100 randomly selected phenotypes from
the TAIR mutant line dataset. On average, each phenotype re
ceived 2.14 TO terms, with the maximum being 8 terms. Four
phenotypes could not be manually annotated with any TO terms
so they were assigned NA. For the TreeGenes dataset, 224 traits
were manually annotated in a similar manner to the TAIR

phenotypes. On average the traits were annotated with 1.26
terms, with a maximum of 4. For the AraPheno dataset, the 231
unique trait descriptors were already annotated with a single TO
term each. The complete gold annotations can be viewed in
Supplementary Tables S1–S3.

Parsing concepts with GPT
We asked GPT-4o to parse each input descriptor into concepts
and provide three alternative short phrases for each concept.
GPT appeared to be highly adept at this task. As an example, the
TAIR descriptor “ABA hypersensitivity of guard cell anion-
channel activation and stomal closing” was parsed into three
concepts, each with three alternate phrases:

i) ABA hypersensitivity: abscisic acid response, plant hormone
sensitivity, guard cell regulation

ii) guard cell anion-channel activation: anion transport, guard
cell function, stomatal movement

iii) stomal closing: stomatal closure, leaf gas exchange, plant
water regulation

The descriptors varied in length within and between the data
sets, and there was a strong positive correlation between the
length (word count) of a descriptor and the number of concepts
determined by GPT (Pearson’s rTAIR ¼ 0.71; rTreeGenes¼0.72;
rAraPheno ¼ 0.49). On average the TAIR descriptors produced the
most concepts (3.44), followed by AraPheno (2.61) and TreeGenes
(1.50). The entire set of concepts and phrases for all three gold
datasets can be found in Supplementary material. Note that a
small percentage of responses by GPT were badly formatted and
needed to be remedied manually. All concepts generated by the
LLM can be viewed in Supplementary Tables S4–S6.

Auto-annotation
We tested five auto-annotation workflows (Fig. 1 and Section
Materials and methods) on each of the three gold-labeled datasets,
and evaluated their performance using jaccard, precision, recall,
and semantic similarity (semsim) metrics (Table 1). The base ap
proach of providing the raw descriptor to a text-mining annotation
tool (DM) gave poor results in all datasets with all metrics. DM was
generally unable to auto-annotate the exact terms found in the
gold annotation, as evidenced by low mean recall values across
each dataset (TAIR¼0.134; TreeGenes¼ 0.228; AraPheno¼0.091)
and the fact that only a small proportion of descriptors had their
entire set of gold terms recalled in full (r1: TAIR¼10%;
TreeGenes¼21.9%; AraPheno¼ 9.1%). There was no single evalua
tion metric in any dataset where the DM approach was the best,
and it was the worst performer in 12/15 such evaluations
(Supplementary Table S8).

The relatively poor performance of DM could be attributed to
either its use of raw descriptors as input, or to its use of text-
mining for auto-annotation. These aspects were addressed with
the DCM workflow (which replaces the raw descriptor input with
LLM-parsed concepts), the DE workflow (which replaces text-
mining with LLM embedding-vector similarity), and the DCE
workflow which does both. The results show that it is beneficial
to use concepts as input instead of the full descriptor, or
embedding-vector similarity as the auto-annotator. Using both
together offers further improvement still (Fig. 2). The DCRAG
workflow, however, was clearly the best as it scored the highest
for every metric in every dataset (Table 1). Notably, DCRAG
achieved much higher precision than all others while also
achieving the highest recall, validating the use of an LLM’s natu
ral language processing capabilities to accurately refine down a

4 | Kainer

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data

list of candidate ontology terms. Furthermore, DCRAG was often
able to retain the exact same set of annotations as the manually
curated gold annotations (Fig. 2), achieving this feat for 39% of
the TreeGenes descriptors.

To understand how DCRAG improved auto-annotation perfor
mance we plotted the joint distribution of semsim scores from
DCRAG and each competing workflow. In Fig. 3, brighter regions
of green-yellow indicate a high density of descriptors with similar

score outcomes. If the brighter regions are above the diagonal
line then the workflow on the y-axis tends to improve the perfor
mance for those descriptors compared to the workflow on the x-
axis, while below the line indicates the opposite. For example, in
each dataset the DM workflow produces a high-density region of
poor semsim scores (0–0.25) which generally indicates a large
number of descriptors with incorrect annotation. The DCRAG
workflow, however, majorly improves the annotations for many

Table 1. Mean performance metrics for the five workflows in three datasets.

Dataset Workflow Preprocess Annotator Recall Precision Jaccard semsim r1

AraPheno DCRAG Concepts RAG 0.372 0.269 0.269 0.598 0.372
DCE Concepts Embedding 0.268 0.177 0.177 0.511 0.268
DCM Concepts Text-mining 0.199 0.113 0.113 0.479 0.199
DE None Embedding 0.355 0.089 0.089 0.575 0.355
DM None Text-mining 0.091 0.071 0.071 0.270 0.091

TAIR DCRAG Concepts RAG 0.575 0.480 0.417 0.769 0.370
DCE Concepts Embedding 0.475 0.397 0.340 0.743 0.310
DCM Concepts Text-mining 0.411 0.332 0.279 0.627 0.250
DE None Embedding 0.314 0.143 0.121 0.596 0.200
DM None Text-mining 0.134 0.150 0.111 0.242 0.100

TreeGenes DCRAG Concepts RAG 0.583 0.517 0.494 0.731 0.558
DCE Concepts Embedding 0.388 0.362 0.342 0.664 0.366
DCM Concepts Text-mining 0.480 0.335 0.320 0.628 0.451
DE None Embedding 0.517 0.146 0.144 0.663 0.496
DM None Text-mining 0.228 0.163 0.158 0.399 0.219

Figure 2. Performance of workflows. (A) Each boxplot represents the distribution of semsim scores from all of the descriptors in the given dataset. The
semsim score is a measure of how similar the auto-annotations are to the gold annotations for a descriptor, without relying on exactly matching
ontology term IDs like Jaccard. (B) The proportion of descriptors for which a workflow made perfect annotations (i.e. Jaccard¼1)

The effectiveness of LLMs for annotation | 5

of these descriptors, indicated by the green and yellow regions in the

upper left of the panels in the top row. In the AraPheno dataset there

are a number of low-scoring descriptors that could only be margin

ally improved by DCRAG. DCRAG also has an impact on descriptors

that already scored reasonably well with the other workflows, as

shown by brighter regions in the middle and top right of many pan

els that appear above the diagonal line. These are particularly notice

able against the DE and DCM workflows, but less so against DCE

which performs strongly in the semsim metric and is hard to im

prove upon. DCRAG, notably, dominates DCE in both recall and pre

cision, so its subtle improvements in semantic similarity score are

generated by the selection of fewer and more accurate TO terms,

which is highly desirable for auto-annotation.

Semantic similarity with random to terms
We calculated a ‘null’ distribution of semsim scores for each de
scriptor by randomly selecting TO terms for each descriptor 100
times and scoring the similarity to the gold terms. This let us
compare the semsim of an unskilled auto-annotator to the sem
sim from the AI workflows (Fig. 4, Supplementary Table S11).

The random (unskilled) auto-annotator achieved a mean sem
sim of 0.22 and a maximum of 0.42 and was clearly beaten by the
auto-annotators to varying degrees. Semsim scores were correlated
with the number of terms auto-annotated to a descriptor, but this
effect was much stronger for random sets than for the AI work
flows (random: r¼0.66; workflows: r¼0.31). This indicates that it is
easier to get a higher semsim score by making more annotation

Figure 3. Comparing semsim performance of DCRAG to other workflows. Each panel shows the joint distribution of semsim score for descriptors
annotated by two competing workflows. Brighter regions of green-yellow indicate a high density of descriptors with similar score outcomes. The
diagonal line represents identical performance, so bright regions above the line indicates the workflow on the y-axis performs better than the workflow
on the x-axis for a dense group of descriptors

6 | Kainer

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data

“guesses,” but the performance of the AI annotators is not as de
pendent on this effect as the random annotator is.

Since semsim score is somewhat confounded by the number
of terms in the annotation set, and each workflow varied in the
number of terms annotated to each descriptor, we used fold-
change between a workflow’s semsim score and its random sem
sim score as a robust indicator of skill. DCRAG was once again
the best performer in all datasets, with a semsim score up to 3.4
fold greater than random annotation for the TreeGenes dataset
(Supplementary Table S11).

Annotating the un-annotatable
The TAIR dataset contained four descriptors without gold anno
tations as there were no suitable TO terms for them. It is a chal
lenge for a workflow to refrain from assigning any terms to these
descriptors. The DM workflow correctly assigned zero TO terms
to 3 out of the 4 un-annotatable descriptors, but that must be
viewed within the context that DM also assigned zero terms to 55
other descriptors out of the 100 in the TAIR dataset. In compari
son, DCRAG correctly assigned zero TO terms to three out of four
while assigning zero terms to just two other TAIR descriptors.
DCE was the best performer here as it assigned zero terms for all
4 un-annotatable descriptors plus just one other TAIR descriptor
(Supplementary Table S12). This indicates that AI workflows like
DCRAG and DCE are capable of recognizing and annotating plant
traits within broader text while also recognizing when no mean
ingful trait is present.

Discussion
Annotating scientific text with ontology terms is a difficult task for
humans with domain expertise, let alone for automated tools. We
demonstrated this by using a text-mining tool to auto-annotate
hundreds of plant phenotypes and gene functions. For these

inputs, which were not written with auto-annotation in mind, the
resulting annotations rarely included the gold (curated) terms,
even for the simplest, shortest, descriptors found in the TreeGenes
traits dataset. This is because text-mining approaches can fail
when words do not match exactly. For example, Arabidopsis trait
#278 (https://arapheno.1001genomes.org/phenotype/278/) found
in the AraPheno database is described as “iron concentrations in
leaves”. NCBO’s Bioportal Annotator finds no matching TO terms,
even when using the “match partial words” option. Similarly,
Zooma was unable to match “iron concentrations in leaves” to any
TO terms, instead focusing on the word “leaves” and annotating it
to Plant Ontology (PO) terms for leaves. Yet if we slightly modify
the descriptor by removing the ‘s’ in “concentrations” then both
tools find the correct match to TO : 0006049 “iron concentration”.
While some text-mining algorithms may incorporate more sophis
ticated rules that can handle this situation, an LLM would not be
so easily tripped up by plurals, tenses or word ordering, nor get
“distracted” from the subject of the sentence.

Concept parsing offers easy improvements
It is tempting to use an LLM like GPT-4o to directly annotate phe
notypes with TO terms by simply prompting it to do so. However,
when we tried this, GPT-4o intermittently “hallucinated” TO
terms to match the concepts it intrinsically found in the pheno
type text. Regardless, it was clear that the GPT-4o model was
highly capable of finding the key concepts in the phenotype de
spite the complex and often abstract language being used.
Additionally, by asking GPT to rephrase a concept multiple times,
the annotation of that concept could be approached from differ
ent angles which gives downstream tools a greater chance of
finding the correct ontology terms. This was evident from result
comparisons between workflows. DCM and DCE included a
concepts-parsing preprocess step prior to annotation and per
formed consistently better than their DM and DE counterparts.

Retrieval augmented generation is a powerful
tool for annotation
The DCRAG workflow can be viewed as a logical extension of the
DE and DCE workflows. While DE and DCE are a major improve
ment over DM, their final selection of ontology terms relies on an
arbitrary cutoff of embedding vector similarity (e.g. cosine >
0.40). Make the cutoff too low and too many false positive terms
will result; make the cutoff too high and many true positive
terms will be left out. It is telling, for example, that the DE work
flow achieved a strong average recall of 0.517 for the TreeGenes
dataset but average precision of only 0.146. Clearly, for many
TreeGenes descriptors, a great deal of true positive ontology
terms made it through the cosine similarity cutoff but they were
accompanied by even more false positives. A subject expert
would be able to review this list of terms and discard those that
don’t fit, improving precision without sacrificing recall. In the
case of DCRAG the LLM was instructed to act as that expert, and
it did so with a proficiency that resulted in considerably higher
scores in every metric and dataset. DCRAG was able to select per
fect annotations (i.e. Jaccard¼1) for 18%, 21%, and 39% of all
descriptors in the AraPheno, TAIR and TreeGenes datasets re
spectively. While this is not enough to confidently replace a hu
man annotator, it does suggest that LLM-based workflows may
have the potential to do so in future.

A limitation of DCRAG is the number of candidate ontology
terms to include as context in the augmented prompt. If the list
gets too large GPT-4o may struggle to use their information accu
rately. We combined TO terms generated from the DE and DCE

Figure 4. Workflow performance versus random (unskilled) annotator.
The filled grey area shows the distribution of semsim scores when TO
terms were selected at random, while the color lines show the
distribution of scores by each workflow. The number of terms selected at
random for a descriptor was always the same as the number of terms
annotated by the workflow. This was repeated 10 000 times, so the black
line is a mean distribution

The effectiveness of LLMs for annotation | 7

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://arapheno.1001genomes.org/phenotype/278/

approaches using a cutoff of cosine > 0.35, which typically pro
duced between 10 and 30 candidates. Using both DE and DCE
outputs meant that some terms were candidates due to their
similarity with the entire descriptor (the DE approach) while
others were candidates due to similarity with one or more short
concepts (the DCE approach). Thus, the LLM was given local and
global options to choose from.

Conclusions
Here we have shown that LLM-based approaches for auto-
annotation of plant phenotypes offer an improvement over a
text-mining approach. Concept parsing and embedding with an
LLM helps to avoid the pitfalls of text-mining, can be automated
using an API, and results in much improved auto-annotations.
Further improvements are gained using a RAG approach to guide
the LLM in finding the best ontology terms for annotation. In es
sence, our RAG workflow emulates that of a human annotator
who would read the input text, understand the concepts within,
peruse the target ontology for candidate terms, and then decide
on which candidate terms are most appropriate based on the
broader meaning and the concepts within the input text. The ac
curacy of RAG annotations is by no means yet at a level to re
place human experts, but can provide a high-throughput
automated way to produce a first pass set of annotations for
rapid curation by experts.

Acknowledgements
I thank Dr Stephanie Conway for providing expert plant biology
assistance when curating the gold annotations for the
TAIR dataset.

Author contributions
David Kainer (Conceptualization [lead], Data curation [lead],
Formal analysis [lead], Funding acquisition [lead], Investigation
[lead], Methodology [lead], Software [lead], Validation [lead],
Visualization [lead])

Supplementary data
Supplementary data is available at Biology Methods and
Protocols online.

Conflict of interest statement. None declared.

Funding
This work was conducted by The Australian Research Council
Centre of Excellence for Plant Success in Nature and Agriculture
(CE200100015) and funded by the Australian Government.

Data availability
All datasets used in this study are available as supplementary

files. This includes phenotype descriptors, gold standard annota

tions, concepts parsed by LLMs, auto-annotations from each

workflow and evaluation scores of the auto-annotations. Code to

execute the DE, DCE and DCRAG workflows is available at

https://github.com/dkainer/LLMannotator.

References
01. Zakka C, Shad R, Chaurasia A et al. Almanac—retrieval-aug

mented language models for clinical medicine. Nejm AI 2024;1.
02. Groza T, Caufield H, Gration D et al. An evaluation of GPT mod

els for phenotype concept recognition. BMC Med Inform Decis

Mak 2024;24:30.
03. Joachimiak MP, Caufield JH, Harris NL et al. Gene Set Summarization us

ing Large Language Models. ArXiv [preprint] 2024. arXiv:2305.13338v3
04. Bard JBL, Rhee SY. Ontologies in biology: design, applications

and future challenges. Nat Rev Genet 2004;5:213–22.
05. Hoehndorf R, Schofield PN, Gkoutos GV. The role of ontologies

in biological and biomedical research: a functional perspective.

Brief Bioinform 2015;16:1069–80.

06. Shah NH, Bhatia N, Jonquet C et al. Comparison of concept rec

ognizers for building the Open Biomedical Annotator. BMC

Bioinformatics 2009;10 Suppl 9:S14.
07. Zooma. EMBL-EBI. https://www.ebi.ac.uk/spot/zooma/ (June

2024, date last accessed).
08. Ong E, Xiang Z, Zhao B et al. Ontobee: a linked ontology data

server to support ontology term dereferencing, linkage, query

and integration. Nucleic Acids Res 2017;45:D347–D352.

09. Tarasov S, Mik�o I, Yoder MJ. ontoFAST: an R package for interac

tive and semi-automatic annotation of characters with biologi

cal ontologies. Methods Ecol Evol 2022;13:324–9.
10. Hu Y, Comjean A, Mohr SE, FlyBase Consortium et al.

Gene2Function: an integrated online resource for gene function

discovery. G3 (Bethesda) 2017;7:2855–8.

11. OpenAI AJ, Adler S et al. GPT-4 Technical Report, 2023. https://doi.

org/10.48550/arXiv.2303.08774
12. Lewis P, Perez E, Piktus A et al. Retrieval-augmented generation

for knowledge-intensive NLP tasks, In 34th Conference on Neural

Information Processing Systems (NeurIPS 2020), Vancouver,

Canada, 2020. https://doi.org/10.48550/arXiv.2005.11401
13. Cooper L, Meier A, Laporte MA et al. The Planteome database: an

integrated resource for reference ontologies, plant genomics

and phenomics. Nucleic Acids Res 2018;46:D1168–D1180.
14. Rhee SY, Beavis W, Berardini TZ et al. The Arabidopsis Information

Resource (TAIR): a model organism database providing a central

ized, curated gateway to Arabidopsis biology, research materials

and community. Nucleic Acids Res 2003; 31:224–8.
15. Seren €U, Grimm D, Fitz J et al. AraPheno: a public database for

Arabidopsis thaliana phenotypes. Nucleic Acids Res 2017;

45:D1054–D1059.
16. Wegrzyn JL, Staton MA, Street NR et al. Cyberinfrastructure to

improve forest health and productivity: the role of tree data

bases in connecting genomes, phenomes, and the environment.

Front Plant Sci 2019;10:813.

17. Rudnytskyi I. openai: R Wrapper for OpenAI API, 2023. https://

github.com/irudnyts/openai (April 2024, date last accessed).
18. Greene D, Richardson S, Turro E. ontologyX: a suite of R packages

for working with ontological data. Bioinformatics 2017; 33:1104–6.

Key Points

• Large Language Models are well suited to the task of
auto-annotating phenotype descriptions with trait on
tology terms.

• Using an LLM to deconstruct longer phenotypes into
shorter concepts improves annotation accuracy.

• A Retrieval Augmented Generation (RAG) model boosts
the AI capability for annotation considerably.

8 | Kainer

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaf016#supplementary-data
https://github.com/dkainer/LLMannotator
https://www.ebi.ac.uk/spot/zooma/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2005.11401
https://github.com/irudnyts/openai
https://github.com/irudnyts/openai

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.
org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly
cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained
through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.
permissions@oup.com.
Biology Methods and Protocols, 2025, 10, 1–8
https://doi.org/10.1093/biomethods/bpaf016
Innovations

	Active Content List
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusions
	Acknowledgements
	Author contributions
	Supplementary data
	Funding
	Data availability
	References

