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Recent years have seen a remarkable increase in the practicality of
sequencing whole genomes from large numbers of bacterial isolates. The
availability of this data has huge potential to deliver new insights into the
evolution and epidemiology of bacterial pathogens, but the scalability of
the analytical methodology has been lagging behind that of the sequencing
technology. Here we present a step-by-step approach for such large-scale
genomic epidemiology analyses, from bacterial genomes to epidemiological
interpretations. A central component of this approach is the dated phylo-
geny, which is a phylogenetic tree with branch lengths measured in units
of time. The construction of dated phylogenies from bacterial genomic
data needs to account for the disruptive effect of recombination on phyloge-
netic relationships, and we describe how this can be achieved. Dated
phylogenies can then be used to perform fine-scale or large-scale epidemio-
logical analyses, depending on the proportion of cases for which genomes
are available. A key feature of this approach is computational scalability
and in particular the ability to process hundreds or thousands of genomes
within a matter of hours. This is a clear advantage of the step-by-step
approach described here. We discuss other advantages and disadvantages
of the approach, as well as potential improvements and avenues for future
research.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Over the past decade, the cost and time required to sequence whole bacterial
genomes have reduced dramatically [1]. Sequencing is frequently applied to
many or all isolates in local outbreaks, or to a high proportion of cases in
more endemic situations, as well as large retrospective and longitudinal collec-
tions. This genomic data has huge potential to deliver new insights into the
evolution and epidemiology of bacterial pathogens, which can lead to better
control measures. However, the lack of scalable methodology for analysis of
this genomic data represents an important bottleneck for the realization of
their full potential.

A gold standard for the analysis of pathogen genomic data has been set by
the integrated phylogenetic frameworks implemented for example in BEAST [2]
and BEAST2 [3]. These phylodynamic tools were originally conceived for viral
genetics and are still mostly used for that purpose, but have also been increas-
ingly applied to bacterial genomic data [4]. One of the strengths of these tools is
that they can infer a dated phylogeny by combining the genomic data with the
dates of isolation, resulting in estimates for the dates of the common ancestors
in the phylogeny. Such dated phylogenies are extremely useful to draw epide-
miological interpretations from the genomic data, as we will see. Another
advantage of the integrated phylogenetic frameworks is that they include a
number of powerful extensions, for example, to use relaxed clock models [5],

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2021.0246&domain=pdf&date_stamp=2022-08-22
http://dx.doi.org/10.1098/rstb/377/1861
http://dx.doi.org/10.1098/rstb/377/1861
mailto:xavier.didelot@warwick.ac.uk
https://doi.org/10.6084/m9.figshare.c.6080816
https://doi.org/10.6084/m9.figshare.c.6080816
http://orcid.org/
http://orcid.org/0000-0003-1885-500X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


whole
genome

alignment

recombination
corrected

phylogeny

dated
phylogeny

epidemiological
interpretation

Gubbins
ClonalFrameML

BactDating
LSD

treedater
TreeTime

phylodyn
skygrowth

treestructure
TransPhylo

phydyn

Figure 1. Overview of the step-by-step analytical approach. The names of some of the software tools that can be used in each step are indicated under the arrows.
(Online version in colour.)
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to estimate past population dynamics [6], geographical
spread [7–9] or transmission between hosts [10,11]. This
integrated approach has many natural advantages but also
limitations especially in terms of scalability to analyse
larger datasets.

These limitations of the integrated approach are especially
important in bacterial genomics, where the genomes are
orders of magnitude longer than in viral genetics and often
subject to recombination. The ClonalOrigin model [12] of
bacterial evolution has been integrated into BEAST2 [13],
but the resulting algorithm is too computationally intense
to be applied to whole genome datasets. Here we present
an alternative step-by-step approach.

The step-by-step approach is illustrated in figure 1. In the
first step, a phylogeny is constructed from a genomic align-
ment in a way that accounts for recombination events. In
the second step, this phylogeny is dated. In the third step,
the dated phylogeny is interpreted in terms of a number of
epidemiological properties. Many software packages are
available to perform each of these steps, including but not
limited to the ones named in figure 1, although it is worth
noting that many of these tools have emerged only in the
past few years, and so are still work in progress and expected
to improve in the near future. In this article we review each of
the steps of this approach in turn. We also pay special atten-
tion to the ‘cracks’ between the steps, since these are often
ignored in articles that focus on each of the steps rather
than the whole step-by-step approach. Finally, we demon-
strate the usability of this approach by applying it to a
complete collection of Staphylococcus aureus ST239 genomes.
2. Recombination-aware phylogenetic analysis
Even a relatively low amount of recombination can invalidate
the results of phylogenetic tools if not accounted for [14,15].
It is therefore essential to detect recombination events to
correctly reconstruct the clonal genealogy, that is the phyloge-
netic relationship between genomes when the ancestral lines
of recipient cells rather than donor cells are followed for each
ancestral recombination event. Special phylogenetic methods
have been developed for this purpose, including Gubbins
[16] and ClonalFrameML [17] which is based on the
ClonalFrame model [18]. However, these tools are often
underexploited, typically to build a recombination-corrected
tree without paying attention to the recombination events
and regions that have been detected.

A lot can be learnt from studying the inferred recombina-
tion events themselves. Recombination is useful to help us
understand how species are being formed [19] and the popu-
lation structure within species, especially when the origin of
recombination events is being investigated [20]. These recom-
bination patterns often reflect important driving evolutionary
forces such as ecology [21], adaptation [22] or selective
pressures [23]. For example in Streptococcus pneumoniae,
recombination events have been shown to be driven by anti-
biotic usage in a localized dataset [24] and by immune
pressure in a global collection of the PMEN1 lineage [25].
The latter study also represents a good example of how the
temporal signal can become much clearer once recombination
is correctly accounted for [25,26]. Recombination is also
useful for the analysis of genome-wide associations between
genotypes and phenotypes, since it separates new genetic
variants from their original genomic background [27].

Accounting for recombination when reconstructing phylo-
genies is an important starting point for many epidemiological
studies. A method often used is to extract from the genomic
alignment the sites that have not been affected by recombina-
tion and to build a phylogeny using these sites only. Both
Gubbins and ClonalFrameML are often used in this way, to
create a recombination-free alignment which is then passed
on to BEAST. However, this method works only if relatively
few recombination events happened throughout the tree. For
example, consider the simulated dataset shown in figure 2.
The true clonal genealogy is shown in figure 2a and the true
recombination events that happened on each of the branches
are shown in figure 2b. These data were simulated using a
standard coalescent model for the phylogeny [28], a strict
clock model of mutation with rate θ/2 = 0.005 per site, a
model of recombination coming from external sources [18]
with initiation rate ρ/2 = 0.001 per site, average length of
recombination δ = 1500 bp and distance of the source v =
0.05. For clarity we used a relatively small dataset of 20
sequences of 100 000 bp each. In this simulated dataset, there
was not a single site that was not affected by recombination
on at least one of the branches. On the other hand, every
branch had some sites unaffected by recombination (figure 2b).

We applied ClonalFrameML [17] to this dataset using a
PhyML tree [29] as starting point. The reconstructed clonal
genealogy is shown in figure 2c and the inferred recombina-
tion events are shown in figure 2d, and they are in very good
agreement with the true simulated tree and events shown in
figure 2a,b. ClonalFrameML correctly inferred that there was
not a single site unaffected by recombination on at least one
of the branches. Therefore an alignment containing only the
non-recombinant sites would contain no sites, and could
not be used as a starting point for further analysis. On the
other hand, the inferred clonal genealogy shown in
figure 2c can be used in our proposed step-by-step approach.
It has the same topology as the true clonal genealogy
(figure 2a) and very similar branch lengths, with a weighted
Robinson-Foulds distance [30] of 0.005 between the true and
ClonalFrameML trees. Gubbins [16] was also applied to this
dataset using RAxML [31] as a tree builder. The correct top-
ology was inferred, with a weighted Robinson-Foulds
distance of 0.03 between the true and Gubbins trees.
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Figure 2. Illustration of the effect of recombination on phylogenetic inference. A phylogeny was simulated (a) with recombination events happening on the
branches at a constant rate. (b) ClonalFrameML was applied to this simulated dataset, resulting in a good reconstruction of both the clonal genealogy (c) and
recombination events (d ).
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3. Dating the ancestors in a phylogeny
Once a recombination-corrected tree has been reconstructed,
it is possible to study the temporal signal in this tree and to
date the common ancestors in the tree. Multiple software
tools have recently been developed to perform dating on a
phylogeny, including BactDating [26] which is specifically
aimed at bacterial genomes, but also LSD [32], treedater
[33] and TreeTime [34]. BactDating uses Bayesian statistics,
whereas treedater and TreeTime are based on maximum
likelihood, which is equivalent to Bayesian maximum a-pos-
teriori (MAP) inference under a uniform prior on dates [35]
so that the posterior distribution is proportional to the likeli-
hood. It is often important to use a relaxed clock model in
this step that allows the evolutionary rate to vary between
lineages [5]. An additive relaxed clock model has recently
been developed which is more biologically realistic and
leads to better dating of pathogen phylogenies than
the previous relaxed clock model [36].
In our proposed step-by-step approach, the reconstruction
of a dated phylogeny and its epidemiological interpretation
are separated. One disadvantage of this is that the prior (or
lack of) on dates used to reconstruct the dated phylogeny is
not the same as the one that would be implied by the
epidemiological models used in subsequent analyses. This
statistical issue could be resolved by considering the differ-
ence between the probability of a tree in the two models
used for the dating and the epidemiology. For example, an
importance sampler could be applied to postprocess the
results, and produce corrected results that account for this
difference between the two tree distributions [37]. Alterna-
tively, the role of the prior can be assessed by comparing
inference with and without the genomic data, or by compar-
ing inference under different prior models to make sure that
the posterior distributions remain consistent [38]. However,
this issue is often small enough in practice to make little
difference to the results [39], especially if the method used
to build the dated phylogeny was based on the likelihood
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only, or if a mild prior was used such as the coalescent with
constant population size [28].

To illustrate this, we simulated five years of an outbreak
model [40] with within-host diversity Neg = 0.25 year, basic
reproduction number R0 = 2, generation time distribution
Exponential(1) in years and sampling proportion π = 0.1. A
total of 59 cases were sampled in this outbreak, with the
samples being related to each other as shown in the ‘true’
dated phylogeny in figure 3a. We applied a strict clock
model to this true dated phylogeny in order to produce an
undated ‘observed’ phylogeny. We used a rate μ = 5 substi-
tutions per year which is of the same order of magnitude
as many bacterial pathogens [41]. The undated ‘observed’
phylogeny was then used, along with the known dates of
sampling, to infer an ‘estimated’ dated phylogeny using Bact-
Dating [26] with prior set to the coalescent with constant
population size [28]. This prior is completely different from
the outbreak model that was used to generate the phylogeny
[40], which is not coalescent due to the host structure and
where the population size is clearly growing since the repro-
duction number was greater than one. Figure 3b shows the
‘estimated’ dated phylogeny, which is in good agreement
with the ‘true’ dated phylogeny in figure 3a despite the
complete difference between the epidemic model used for
simulation and the coalescent model used for inference.

At the same time as dating is performed, the substitution
rate is typically estimatedwhichprovides a useful value to com-
parewith previous estimates [41] in order to make sure that the
dating is working as expected. Statistical methods can also be
used to ensure that the temporal signal is significant, in particu-
lar by using a date-randomization test [42,43]. This test involves
making sure that the inferred substitution rate is larger when
using the correct dates for the genomes than when the dates
are permutated in at least 20 randomized datasets [42]. This
method requires several runs of the dating method to be per-
formed, and it is, therefore, useful for this to be as fast as
possible, which is achieved in our step-by-step method by sep-
arating the phylogenetic inference from the dating.

Furthermore, the root of the phylogeny is typically esti-
mated during the dating step, since the trees generated by
standard phylogenetic tools are not rooted whereas dated
trees are always rooted by definition, with the date of the
root being the date of the last common ancestor of the
whole sample. If the root has already been determined
robustly, for example using one or ideally several closely
related outgroups [44], then this information can be pre-
served during the dating. This can be achieved by using as
input into the dating software a phylogeny that does not
include the outgroups but that is rooted as was informed
by the outgroups, and turning off the estimation of root pos-
ition [26,33]. If on the other hand the root is undetermined, or
arbitrarily selected for example using the midpoint method
[45], then the fact that dating the phylogeny simultaneously
performs rooting provides an additional reason for dating
the tree, which becomes much more informative in terms of
epidemiology once it is dated and rooted.
4. From dated phylogeny to epidemiology
A dated phylogeny is very useful to learn about the epide-
miology of the bacteria under study, and sometimes the
dating directly provides answers to questions of interest
beyond the age of pathogens [46]. For example, several anti-
biotic-resistant lineages have been dated to have emerged
around the time when the corresponding antibiotics were
starting to be used, highlighting the link between consump-
tion and resistance [47,48]. As another example, the dating
of the common ancestors between pairs of Clostridium difficile
patients in a hospital allowed transmission for many pairs to
be ruled out, concluding that nosocomial transmission was
less frequent than previously thought [49].

It can often be useful to identify clusters of significantly
similar genomes in a dataset. The most commonly used
approach is to use a separate dedicated algorithm that uses
the genomic data for this purpose, such as HierBAPS [50],
fastbaps [51] or PopPunk [52]. These methods do not make
use of a phylogeny, but it is often useful to show their results
overlaid on a dated phylogeny using colours for example.
Another approach is to use additional non-genomic data to
do the clustering given the phylogeny, as performed for
example by AdaptML [53], treebreaker [54] and treeSeg
[55]. Finally a third option is to try and identify directly on
the dated phylogeny the lineages that seem to be ruled by
different dynamics, for example using treestructure which
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does not rely on an explicit phylodynamic model [56] or
CaveDive [57] which is focused on the detection of clonal
expansions.

The dated phylogeny can also be used as a starting point
for further analysis. In particular, past variations in the bac-
terial population size have a direct effect on the shape of
the dated phylogeny, so that the population size through
time can be estimated and presented as a skyline plot [58].
The methodology for performing such an analysis was
originally developed within BEAST, which simultaneously
estimates the dated phylogeny and the demographic function
[6]. However, the step-by-step approach requires estimation
of the demographic function from a dated phylogeny
(figure 1), and several software tools have recently been
released for this purpose including phylodyn [59,60], sky-
growth [61] and mlesky [62]. Beyond a simple model of
varying population size, it is also possible to fit an epidemio-
logical compartmental model such as the susceptible-
infected-recovered model [63], and therefore to estimate the
parameters of this model such as the transmission rate or
removal rate. Such an inference can be achieved by formulat-
ing a structured coalescent model that corresponds to the
compartmental model [64,65]. Existing software for fitting
such a model to a given dated phylogeny include rcolgem
[66] and phydyn [67]. The same methods based on the struc-
tured coalescent can also be applied to a dated phylogeny in
order to reconstruct past geographical migrations [9],
although such phylogeographic inference is much more
often based on discrete trait analysis, for example using the
ace command from the R package ape [68] or in the Next-
Strain platform [69]. The worldwide spread of the current
pandemic of Vibrio cholerae has been described using such
techniques [70,71]. BEAST can also be useful in this step
from dated phylogeny to epidemiology, by inputting the
dated tree estimated in the previous step as the initial tree
to be used in the Markov chain Monte Carlo (MCMC) and
deactivating the updates on the tree. This results in a run in
which the dated phylogeny is fixed, so that the run time is
typically much faster. This strategy can be used for example
to reconstruct a demographic function or to perform a trait
analysis on large datasets [72,73].

When the genomes are densely sampled within an
epidemic, it can be useful to try and reconstruct the trans-
mission tree of who infected whom [74]. Within-host diversity
and evolution is significant for many bacterial pathogens
which blurs the relationships between transmission tree and
phylogeny [75]. However, TransPhylo can infer the trans-
mission tree from a dated phylogeny in a way that accounts
for within-host evolution [40,76,77]. Significant uncertainty
typically remains in the inferred transmission tree, which is cap-
tured by the use of Bayesian statistics within TransPhylo. More
precise inference can sometimes be obtained by combining the
genomic inference with epidemiological data [78].

A drawback of separating the dating step from the
interpretation step is that the uncertainty in dating is typically
not passed on to the epidemiological analysis. This can be
achieved by running on multiple samples from the posterior
of dated phylogeny and averaging the results [79], or
reweighting according to the posterior probability in the epi-
demiological analysis [37], but in practice the phylogenetic
uncertainty is usually not accounted for. However, this is
not often a significant issue in practice. To illustrate this, we
simulated a dataset for a small outbreak with just 10 cases,
using an epidemic model [40] with basic reproduction
number R0 = 1, within-host diversity Neg = 0.25 year, mean
generation time of 1 year, sampling proportion of π = 0.5
and a strict clock model with rate μ = 5 substitutions per
year. The dated phylogeny was inferred using BactDating
[26] and we extracted the first (after burnin) and the last
trees sampled by the MCMC, as shown in figure 4a,c. We
then reconstructed the transmission events using TransPhylo
[40] separately for each of these two dated trees, as shown in
figure 4b,d. These analyses used default parameters except
that the parameters for the generation time distribution,
offspring distribution, within-host diversity and sampling
proportion were assumed known. In spite of small differ-
ences in the two dated phylogenies, the inferred results in
terms of transmission chains were very similar.
5. Example of application
To illustrate the use of the step-by-step approach from bacterial
genomes to epidemiology, we apply it to a state-of-the-art data-
set, using only a standard laptop computer and paying
particular attention to the time taken by each step. We collected
all available genomes of Staphylococcus aureus ST239 (electronic
supplementary material, table S1). This collection is made of
521 assembled genomes, only small subsets of which had
been comparatively analysed in previous studies [80–83]. The
genomes were collected between 1982 and 2010 from all parts
of theworld (451 fromAsia, 46 fromEurope, 18 fromAmericas,
2 from Africa, 2 from Oceania and 2 unknown). All genomes
were aligned using MuMMER v. 3.1 [84] against the reference
genome TW20 which is a member of ST239 [85] and therefore
included in the collection. This resulted in a reference-anchored
alignment that took only a few minutes to generate, since each
pairwise alignment against the reference genome can be per-
formed in parallel. Alternatively, assembly pipelines are often
based on reference-based mapping of the sequencing reads,
for example using BWA [86] and SamTools [87]. This can also
be performed in parallel and results in a similar reference-
anchored alignment. Note that the whole genome alignment
was used as input for phylogenetic reconstruction, rather than
an alignment of variant sites only, as would be produced for
example using the software SNP-sites [88]. Alignments of var-
iant sites can be used for standard phylogenetic inference if
some correction is applied [89], but they cannot be used for
recombination-aware phylogenetics since the genomic distance
between variant sites becomes an important factor [18].

A first phylogeny was built using PhyML v. 3.3 [29] which
took approximately 3 h. This was used as the starting point to
build a recombination-corrected phylogeny using ClonalFra-
meML v. 1.12 [17], which took approximately two days to
run. The same analysis using Gubbins v. 2.4.1 [16] gave very
similar results and took approximately one day to run. The
PhyML, ClonalFrameML and Gubbins analyses used default
parameters. This step currently represents a clear bottleneck
in the application of the step-by-step approach, which should
be addressed in the near future through the development of
new parallelised algorithms. Significant recombination was
found, with a total of 198 recombination events detected
throughout the phylogeny. The relative rate of recombination
versus mutation was estimated to be R/θ= 0.144, meaning
that on average mutation events were about f7 times more
frequent than recombination events. The mean length of
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Figure 4. Illustration of the relative lack of effect of the uncertainty in the reconstructed dated phylogeny on interpretation as a transmission tree. Two dated
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recombination events was estimated to be δ= 619 bp which is
in good agreement with previous estimates for S. aureus
[17,90,91]. The mean distance between donor and recipient
was estimated to be ν= 0.31%, which corresponds approxi-
mately to the distance between ST239 and some of its closest
relatives such as CC8 [92]. The relative effect of recombination
versus mutation was therefore estimated to be r/m=R/θ × ν ×
δ= 0.28, so that 3 to 4 times more substitutions are caused by
mutation than by recombination. These results confirm that
recombination plays a role in S. aureus evolution, although
not as dramatic as in some other bacterial pathogens [14,93,94].

We detected a strong temporal signal in the recombina-
tion-corrected phylogeny on the basis of a regression
analysis of root-to-tip distances against isolation dates (R2 =
0.57) and using the date-randomization test [42] (with 100
replicates and CR2 criterion). We, therefore, computed a
dated phylogeny using BactDating v. 1.1 [26] with default
parameters including use of the additive relaxed clock
model [36]. This step took approximately 3 h to run for 106
MCMC iterations, and the inferred dated phylogeny is
shown in figure 5a. The isolation dates were unknown for
36 of the 521 genomes (electronic supplementary material,
table S1), but BactDating can accommodate this by treating
the missing dates as additional parameters that are inferred
simultaneously as the dates of the common ancestors [26].
The evolutionary rate was estimated to be 7.05 substitutions
per year throughout the genome, with credible interval
between 6.43 and 7.67. This estimate is in good agreement
with several previous estimates in ST239 [80,82] and other
lineages of S. aureus [48]. The root of the ST239 phylogeny
was estimated to have existed in 1958, with credible interval
ranging between 1951 and 1965. This is again in good agree-
ment with previous estimates and coincides with penicillins
being increasingly used to treat bacterial infections [80,82,95].

We used the dated phylogeny as input into treestructure
v. 0.1.2 [56] with default parameters to determine whether
there were significant differences in the phylodynamic prop-
erties of sublineages within the tree. This analysis took less
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than a minute to perform and found no significant differ-
ences, which means that the tree can be treated as a whole
in phylodynamic reconstructions [56]. We therefore applied
skygrowth v. 0.3.1 [61] to the whole dated tree using the
maximum a-posteriori method. This analysis took less than
a minute and the estimated demographic function is shown
in figure 5b, with an approximately exponential rise of the
effective population size between 1960 and 1995, and a pla-
teau between 1995 and 2010. This is in good agreement
with previous skyline analyses of ST239 [82,95]. We do not
seek to say more about the epidemiological dynamics of
ST239 since our aim with this application was to test the
applicability of the step-by-step method to a relatively large
dataset, rather than study it in detail.
6. Discussion
The step-by-step approach described above (figure 1) has
several drawbacks compared to an integrated approach. A
practical disadvantage is that multiple tools need to be
applied one after the other, with the need to make sure that
the output of one tool is a suitable input for the next tool.
The software tools have been developed separately, and
format conversion is sometimes required when combining
them, which introduces a risk of error being made. Method
developers should make every effort to minimize this risk,
for example by providing practical examples of source code
combining new tools with pre-existing ones, and including
verifications in each tool that the input is formatted as
expected. Furthermore, any results from a step-by-step
approach are only as good as the software components
involved, many of which are imperfect and under develop-
ment, which highlights the importance of thorough testing
using both simulated and real datasets.

Another concern with the step-by-step approach relates to
statistical soundness. In an integrated approach, a complex
model is formed by combining multiple simpler models
into a consistent whole, for example a model describing
how the pathogen population size varied over time, another
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model describing how these fluctuations affect the genealogy
and yet another model describing how mutation and recom-
bination events affect the genomes given the genealogy.
Inference is then performed on the combined model, with
all uncertainties being accounted for simultaneously and in
all directions: for example the uncertainty on a mutation
event will feed into the uncertainty on the past population
size, and vice versa. By contrast, in the step-by-step approach,
each of the tools makes separate modelling assumptions,
which may not always be consistent with each other. An
example of this was discussed in §3, where the prior used
for the reconstruction of a dated phylogeny was not the cor-
rect one, but figure 3 showed that the result can still be
correct. Furthermore, the uncertainty can only be passed
from one tool to the next in the order that they are being
applied, and even in this direction it is frequent to use the
best estimate from one method as the starting point of the
next, without passing on any uncertainty. Again this is not
necessarily a problem in practice, as illustrated in figure 4
where the uncertainty on the phylogeny had little effect on
the uncertainty of the transmission tree. From a statistical
point of view, the integrated approach, therefore, represents
a gold standard, although statisticians have recently noted
that joint inference under a combined model carries the risk
that misspecification in any of the model parts can affect esti-
mates from the others in unpredictable ways [96]. Further
research is needed on this in the context of genomic epide-
miology, as well as research on how to avoid the statistical
issues described above with the step-by-step approach.

A key advantage to the step-by-step approach we
described is that by breaking down the problem into simple
steps, it becomes easier to solve, a strategy often called
‘divide and conquer’ in the computer science literature. The
running time is greatly improved compared to an integrated
approach, which quickly becomes intractable as more model
components are combined into a large model. An example of
this concerns the difficulty to integrate recombination into a
phylodynamic framework [13]. A similar situation occurs
when aligning sequences and building a phylogeny: in prin-
ciple alignment and phylogeny would benefit from being
performed simultaneously [97,98] but in practice this is
too computationally challenging. The lower running time
of the step-by-step approach also means that it is more scal-
able to the large numbers of bacterial genomes currently
available, and this scalability is probably the main reason
for a recent increase in popularity [39,69]. The step-by-
step approach can deal with hundreds or even thousands
of genomes, although some of the steps can become slow.
This is particularly true for the time taken to reconstruct a
recombination-corrected phylogeny, which depends not just
on the number of genomes but also on their lengths, diversity,
and the recombination rate. For very large datasets, it can be
useful to divide them into lineages which can be analysed
separately and in parallel [49,99]. New tools have recently
emerged to deal with the very large numbers of sequences
of SARS-CoV-2 genomes [100,101] which are likely to provide
inspiration for how to improve the future scalability of
bacterial genome analysis.

Perhaps even more importantly, a counterintuitive advan-
tage of the step-by-step approach is that it is less automatic
than the integrated approach. Although this may seem like
a disadvantage, the fact that several software tools have to
be applied one after the other brings great benefits. It
allows the user to check after each step that the result
makes sense before carrying out the next step. For example,
if a phylogeny is clearly wrong due to contamination
during sequencing, there is no point trying to apply dating
of the nodes or interpreting the phylogeny in terms of epide-
miology. Since each tool is focused on a simpler task, it is
easier for the user to check the validity of the assumptions
made, and if needed to compare models or the results of sev-
eral software tools, or apply more complex models, since each
step is relatively quick. These checks and refinements provide
the user with a better understanding of their data and the
analysis process, rather than relying on ‘black-box’ or ‘turn-
key’ analysis. This is one of the most important advantages
of the step-by-step approach, since it creates good conditions
for a balanced interpretation of the data and results.
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