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Dynamic predictions using flexible joint
models of longitudinal and time-to-event
data
Jessica Barretta,‡ and Li Sub,*,†,‡

Joint models for longitudinal and time-to-event data are particularly relevant to many clinical studies where lon-
gitudinal biomarkers could be highly associated with a time-to-event outcome. A cutting-edge research direction
in this area is dynamic predictions of patient prognosis (e.g., survival probabilities) given all available biomarker
information, recently boosted by the stratified/personalized medicine initiative. As these dynamic predictions are
individualized, flexible models are desirable in order to appropriately characterize each individual longitudinal
trajectory. In this paper, we propose a new joint model using individual-level penalized splines (P-splines) to flex-
ibly characterize the coevolution of the longitudinal and time-to-event processes. An important feature of our
approach is that dynamic predictions of the survival probabilities are straightforward as the posterior distribu-
tion of the random P-spline coefficients given the observed data is a multivariate skew-normal distribution. The
proposed methods are illustrated with data from the HIV Epidemiology Research Study. Our simulation results
demonstrate that our model has better dynamic prediction performance than other existing approaches. © 2017
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

In many clinical trials and observational studies, longitudinal biomarker information is often collected
together with information on a time-to-event outcome (e.g., patient survival). Joint modeling is becom-
ing increasingly popular in characterizing the coevolution of the longitudinal and time-to-event processes
[1]. Recently boosted by the stratified/personalized medicine initiative, a cutting-edge research direction
in the joint modeling area is individualized dynamic predictions of patient prognosis (e.g., survival prob-
abilities) using all available biomarker information. Pioneer works include Yu et al. [2], Proust-Lima and
Taylor [3], Rizopoulos [4], and Taylor et al. [5].

As dynamic predictions for patient prognosis are individualized, flexible joint models are desirable in
order to appropriately characterize the longitudinal process for each individual. In this paper, we pro-
pose a new flexible joint model with individual-level penalized splines (P-splines) [6] to characterize the
coevolution of the longitudinal and time-to-event processes. One important strength of our model is that
predicting survival probabilities becomes straightforward because the posterior distribution of individual-
level (random) P-spline coefficients is a multivariate skew-normal distribution. We will start by reviewing
relevant literature on flexible joint models, and then, we will describe the main idea of our approach,
followed by details of our data example.
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1.1. Flexible joint models

In existing joint models of longitudinal and time-to-event (survival) data, it is often assumed that indi-
vidual longitudinal trajectories are characterized by a linear model with random intercepts and random
time slopes [7]. However, in long-term follow-up studies, individual longitudinal trajectories may not
follow this simple linear model, which makes it challenging to examine the associated evolutions of
the longitudinal and time-to-event processes. To overcome this problem, Brown et al. [8] proposed a
flexible Bayesian B-spline model for the longitudinal process; Ding and Wang [9] also developed a
nonparametric multiplicative random effects model to flexibly model the longitudinal process. More
recently, Rizopoulos and Ghosh [10] proposed a Bayesian semiparametric multivariate joint model for
multiple longitudinal outcomes and a time to event and discussed various parameterizations in the sur-
vival sub-model. Non-spline-based methods such as fractional polynomials have also been developed
[11, 12], where the survival sub-model was based on cumulative hazard. None of the aforementioned
works focused on dynamic predictions. Recently, Rizopoulos [7, Chapter 7] exemplified dynamic predic-
tions based on a flexible joint model using B-splines with one interval knot in the longitudinal sub-model,
but the smoothness (degree of freedom) of the B-splines was predefined and not chosen based on the
data. Overall, frequentist approaches based on maximum likelihood estimation to flexible modeling of
the longitudinal process in the joint modeling setting are still limited because of computational cost and
complexity [13].

Recently, Barrett et al. [14] developed a joint model that allows more flexible random effect structures
in the longitudinal sub-model. The key idea in their development was to discretize the time scale of the
time-to-event outcome and let separate random effects within the discrete time intervals in the longitudi-
nal sub-model (i.e., time-dependent random effects) be associated with the hazards of event occurrence
in the corresponding time intervals. For example, a stationary Gaussian process was assumed for their
random effect model. However, their specification of time-dependent random effects is somewhat lim-
ited by the fact that only a single random effect is used to characterize the evolution of the longitudinal
process within a discrete time interval and the serial correlation between random effects is assumed to be
stationary over time. Barrett et al. [14] did not investigate dynamic predictions based on their model.

1.2. Joint modeling with time-dependent random effects

In this paper, we propose a new flexible model for jointly modeling the longitudinal and time-to-event pro-
cesses. The main idea is to use time-dependent random effects with non-stationary covariance structure,
constructed by P-splines [15], to model time trends in each individual longitudinal trajectory. Specifically,
building upon the model in [14], we use P-splines with a truncated linear basis [6] to model individual lon-
gitudinal trajectories, while population-level longitudinal trajectories can be modeled by P-splines with
possibly different bases and knots. The smoothing parameters of both population-level and individual-
level P-splines are chosen from the data in order to avoid over-fitting. Knots for the individual-level
P-splines are located at the interval boundaries of the discretized time scale in order for the association
between the longitudinal and survival sub-models to be easily interpreted. In this case, the individual-level
P-spline coefficients act as shared parameters and are used to construct time-dependent random effects
that represent the deviations of the intercepts and slopes of the individual longitudinal trajectories from
the population-level trajectory within the corresponding discrete time interval, which is different from
the single random effect setup used in [14]. Moreover, the covariance structure for these time-dependent
random effects are non-stationary over time, unlike the stationary covariance structure used in [14].

1.3. Dynamic predictions

Model flexibility is even more important when performing individualized dynamic predictions. In prac-
tice, a simple linear model may fail to capture the nonlinear patterns in individual longitudinal trajectories
for some patients, even if this model applies to the population-level longitudinal trajectories and the
majority of individual longitudinal trajectories. Because dynamic predictions are individualized and need
to appropriately account for possible nonlinearity in each individual longitudinal trajectory, flexible joint
modeling approaches are certainly desirable. However, too much flexibility can also be harmful because
of the danger of extrapolation [16]. In Section 5, we will use simulations to compare the dynamic
prediction performance of our model with two other joint models with different degrees of flexibility.

A notable feature of our approach is that individualized dynamic predictions for survival probabilities
over time are straightforward because under the proposed model the posterior distribution of the random
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Figure 1. Observed (square root) longitudinal CD4 count data from the HIV Epidemiology Research Study with
profiles from five selected participants highlighted.

P-spline coefficients given the observed data is a multivariate skew-normal distribution. This facilitates
individualized predictions of survival probabilities [4] because no approximation (e.g., using Metropolis–
Hastings algorithm) is needed to sample from this posterior distribution.

1.4. Example

This work is exemplified by data from the HIV Epidemiology Research Study (HERS) [17], with the aim
of predicting HIV-related survival probabilities over time by jointly modeling longitudinal CD4 count
process that reflected HIV disease progression in the study population. The HERS was a longitudinal
study of 1310 women with, or at high risk for, HIV infection from 1993 to 2000. During the study, 12
visits were scheduled, where a variety of clinical, behavioral, and sociological outcomes were recorded
approximately every 6 months. We will focus on the 850 women who were HIV positive at enrollment,
and Figure 1 plots their observed CD4 count data over time (a square root transformation is used to reduce
the right skewness in these data). It is clear that some individual longitudinal CD4 count trajectories had
strong nonlinear patterns, which might be explained by the fact that the highly active antiretroviral therapy
(HAART) was first introduced to the HERS population around 1997 and changed the disease progression
dramatically. This phenomenon therefore motivates us to build a more flexible joint model to characterize
individual longitudinal trajectories in order to improve predictions of HIV-related survival probabilities.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed joint model.
Estimation is described in Section 3, including the procedure for dynamic predictions. In Section 4, we
apply the proposed methods to the HERS data. Simulation results are summarized in Section 5, and we
conclude with a discussion in Section 6.

2. Joint model

Suppose that N independent patients are to be followed up over time. For the ith (i = 1,… ,N) patient,
there is a longitudinal outcome process {Yi(t)}, where t ∈ T = [0,T] is the time since enrollment and the
constant T is determined by the potential maximum follow-up time where a longitudinal measurement
can be taken in the study. Correspondingly, there is a p-dimensional covariate process {𝐱i(t)} associated
with {Yi(t)}. We assume {Yi(t)} is a continuous-time Gaussian process with a mean function 𝜇i(t) that is
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dependent on 𝐱i(t) and a variance–covariance function cov{Yi(t),Yi(t′) ∣ 𝐱i(t), 𝐱i(t′)} = Vi(t, t′) (t ⩽ t′).
Parametric forms can be used for Vi(t, t′), for example, Vi(t, t′) = 𝜎2

𝜖
I(t = t′) with I(⋅) as an indicator

function.
At the same time, a time-to-event outcome Si is being observed and the occurrence of the event ter-

minates the observation of {Yi(t)}. Instead of using the continuous time scale T from the longitudinal
process, we assume a discrete time scale S = {1, 2,… ,M} for this time-to-event outcome. However, it
is assumed that there is a surjection s(t) from T to S, for example, S might be a partition of T. Then, S is
considered to be a series of time intervals. In the HERS example presented in Section 4, we partition the
longitudinal measurement time by 6-month intervals and determine the occurrence of HIV-related deaths
in these intervals. Further, let Ci be the potential censoring time for the ith patient. The observed event
time is S∗

i = min(Si,Ci), and the indicator for event occurrence is 𝛿i = I(Si ⩽ Ci). At continuous time
points ti1,… , tini

(tini
⩽ S∗

i ), we also observe the longitudinal measurements 𝐘i = {Yi(ti1),… ,Yi(tini
)}T.

2.1. Longitudinal sub-model

We assume the following model for the mean function 𝜇i(t) of {Yi(t)}:

𝜇i(t) = 𝐱i(t)T𝜶 + mi(t), (1)

where 𝜶 is a p × 1 vector of regression coefficients associated with covariates 𝐱i(t) and mi(t) is the true
underlying time trajectory for the ith patient after adjusting for 𝐱i(t).

Following [6], mi(t) can be modeled by P-splines as follows:

mi(t) =
M∑

l= 0

(𝛽l + bil)Bl(t), (2)

where {Bl(t)} = {1, t, (t − k1)+,… , (t − kM − 1)+} is the truncated linear basis with internal knots at
k1,… , kM − 1 on [0,T] and (a)+ = a ⋅ I(a ⩾ 0). The location of the knots k1,… , kM − 1 is determined by
the boundary points of S, the time intervals defined in the survival sub-model; thus, the number of internal
knots is M−1. 𝜷 = (𝛽0, 𝛽1,… , 𝛽M)T is the vector of P-spline coefficients that characterize the population-
level longitudinal trajectory; 𝐛i = (bi0, bi1,… , biM)T is the vector of random P-spline coefficients that
determine the deviations of individual longitudinal trajectories from the population-level trajectory.

Note that we choose to use the truncated linear basis {Bl(t)} because the time-dependent random effects
constructed by P-spline coefficients and a truncated linear basis are easy to interpret when incorporated in
the survival sub-model. For instance, in the HERS example in Section 4, we obtain the random intercept
Wr0(𝐛i) at the rth interval (r = 1,… ,M) as

Wr0(𝐛i) =
⎧⎪⎨⎪⎩

bi0 r = 1
bi0 + bi1k1 r = 2
bi0 + bi1kr − 1 + · · · +

∑r − 1
l= 2 bi,l(kr − 1 − kl− 1) r = 3,… ,M

(3)

and the random slope Wr1(𝐛i) at the rth interval as

Wr1(𝐛i) = bi1 + · · · + bir; (4)

see Figure S1 in the Supporting Information for a graphical illustration. In a similar manner, we have
the population-level intercept and slope at the rth interval Wr0(𝜷) and Wr1(𝜷); therefore, the intercept
and slope of mi(t) at the rth interval are mi(kr − 1) = Wr0(𝜷) + Wr0(𝐛i) and m′

i(kr − 1) = Wr1(𝜷) +
Wr1(𝐛i), respectively. Note that k0 = 0 and k1,… , kM − 1 are the internal knots of the P-splines. In the
corresponding survival sub-model, mi(kr − 1) and m′

i(kr − 1) are included as time-varying covariates and
their regression coefficients represent the associations of the level of CD4 count at the beginning of the
time intervals and the progression rate of CD4 count within the time intervals with the corresponding
conditional survival probabilities in these intervals.

In practice, a more complex basis such as B-splines or low-rank thin-plate splines (with better numer-
ical properties) could also be used for the population-level trajectory [15]; the penalized likelihood
estimation procedure in Section 3 can easily be adapted to use any basis for fitting the population-level

1450

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1447–1460



J. BARRETT AND L. SU

trajectory. For individual trajectories, because in most applications the number of data points for each
patient is not large, the truncated linear basis is generally flexible enough to characterize the essential
patterns of each individual longitudinal trajectory.

For both population and individual-level P-splines with truncated linear basis in our model, knot loca-
tions could be chosen to lie anywhere on the continuous time scale. In this paper, we choose to fix the
knot locations at the discretization points in the survival sub-model because of the following reasons.
First, in practice, a summary of the rate of change of the longitudinal outcome across a discrete time
interval is needed to define an association of the longitudinal outcome with the survival process. The
association between the longitudinal and survival processes is therefore easier to interpret if knots lie on
discrete time interval boundaries because the time slope of an individual’s longitudinal trajectory is then
constant within the time intervals given our setup of P-splines with truncated linear basis. Second, using
the sample quantiles of the longitudinal measurement times in the observed data to define the knot loca-
tions, as is common practice in semiparametric regression literature [15], could be problematic in our
scenario because the knots would be closer together at earlier follow-up times because of selection bias
by the survival outcome. Because the longitudinal sub-model is intended to characterize the longitudi-
nal process if no truncation of the survival outcome occurs and the joint modeling approach is adopted
to correct the selection bias due to the survival outcome, we choose the knot locations and discretization
points according to the planned longitudinal measurement schedule, thereby avoiding dependence of the
longitudinal sub-model specification on the observed survival outcomes.

2.2. Survival sub-model

Following [14], we assume a probit model for the discrete hazard rate of the event 𝜆ir = P(Si = r ∣ Si ⩾
r) in the rth interval (r = 1,… ,M),

𝜆ir = 1 − Φ
(
�̃�Tir�̃� + 𝜸Tr 𝐖ir𝐛i

)
, (5)

where Φ(⋅) is the standard normal cumulative distribution function, �̃�ir is a q̃ × 1 vector of covariates
(possibly time varying) with regression coefficients �̃�. 𝐖ir𝐛i is a q × 1 vector of linear combinations of 𝐛i
(e.g., in the HERS example, we have 𝐖ir𝐛i = (mi(kr − 1),m′

i(kr − 1))T and q = 2) and 𝜸r is an association
parameter vector that relates the longitudinal and time-to-event processes.

Depending on the applications, various parameterizations for 𝐖ir𝐛i can be used; see discussions in [7]
and [10]. For example, we use mi(kr − 1) and m′

i(kr − 1) in the HERS example in Section 4, as it is believed
that the survival probabilities depend on the disease progression, but we only allow disease progression up
to the end of the rth interval to be associated with the survival probability at the rth interval. Interactions
between mi(kr − 1), m′

i(kr − 1) and baseline covariates could also be included.

2.3. Random effects

Following the shared parameter modeling framework, we assume that the longitudinal process {Yi(t)} and
the time-to-event outcome Si are independent conditional on the P-spline coefficients 𝐛i and all covariates.
Further, we assume that 𝐛i are also independent of all covariates and

⎡⎢⎢⎢⎢⎣
bi0
bi1
bi2
⋮

biM

⎤⎥⎥⎥⎥⎦
∼ N

⎛⎜⎜⎝𝟎,𝚺 =
⎡⎢⎢⎣

𝜎2
0 𝜌𝜎0𝜎1 𝟎

𝜌𝜎0𝜎1 𝜎2
1 𝟎

𝟎 𝟎 𝜎2
2𝐈M − 1

⎤⎥⎥⎦
⎞⎟⎟⎠ , (6)

where 𝐈M − 1 is the (M − 1)-dimensional identity matrix. Note that the P-spline coefficients 𝐛i are used to
construct time-dependent random effects such as Wr0(𝐛i) and Wr1(𝐛i) in (3) and (4). Therefore, assuming
(bi2,… , biM) ∼ N(𝟎, 𝜎2

2𝐈M − 1) does not mean that (W10(𝐛i),… ,WM0(𝐛i)) and (W11(𝐛i),… ,WM1(𝐛i)) are
independent. In fact, from the functional form described in (3) and (4), it is apparent that these time-
dependent random effects are correlated with each other over time. Unlike the stationary covariance
structure specified in [14], the covariance structure for time-dependent random effects in our model is
non-stationary over time; for example, it is easy to see that cov(W10(𝐛i),W20(𝐛i)) = 𝜎2

0 + k1𝜌𝜎0𝜎1 but
cov(W20(𝐛i),W30(𝐛i)) = 𝜎2

0 + k1k2𝜎
2
1 + (k1 + k2)𝜌𝜎0𝜎1. In sum, the serial correlation in the longitudinal
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process is characterized by the time-dependent random effects with a non-stationary covariance structure
over time.

Note that 𝜎2
2 is the smoothing parameter that penalizes the non-smoothness of the individual-level P-

splines (i.e., large values of bi2,… , biM)) and will be estimated by maximizing the marginal likelihood
[6]. The B-spline approach applied in existing joint models [7] used a small number of knots (say 1–
3) for each individual longitudinal trajectory but did not adapt the smoothness of the B-splines to the
data. Therefore, using high-degree polynomial terms (e.g., cubic terms) in B-splines could potentially
lead to over-fitting. In Section 5, we will conduct a simulation study to specifically compare the dynamic
prediction performance of the joint model based on our P-spline approach with a cubic spline approach.

The heterogeneity between individual longitudinal trajectories is determined by 𝜎0, 𝜎1, 𝜎2. In the HERS
example in Section 4, we parameterize 𝜎0, 𝜎1, 𝜎2 using the log transformations and 𝜌 using Fisher’s z-
transform, z(x) = 1+ x

1− x
.

3. Estimation

The estimation for the joint model proposed in Section 2 is based on a maximum penalized likelihood
approach that maximizes the likelihood function corresponding to the joint distribution of the longitudinal
and time-to-event outcomes {𝐘i, S

∗
i = s, 𝛿i} times a penalty term for smoothing the population-level

P-spline coefficients (𝛽2,… , 𝛽M).

3.1. Likelihood

Specifically, the likelihood contribution from the ith patient is

Li(𝜽 ∣ 𝐘i, S
∗
i = s, 𝛿i) = ∫ f (𝐘i ∣ 𝐛i;𝜽)f (s, 𝛿i ∣ 𝐛i;𝜽)f (𝐛i;𝜽)d𝐛i, (7)

where 𝜽 denotes all unknown parameters. Let 𝐱i = (𝐱(ti1),… , 𝐱(tini
))T and 𝐁i be the ni × (M + 1)

matrix for the truncated linear basis {Bl(t)} = {1, t, (t − k1)+,… , (t − kM − 1)+} evaluated at time points
ti1,… , tini

. The likelihood from the longitudinal part is

f (𝐘i ∣ 𝐛i;𝜽) = exp
{
− log(2𝜋)ni∕2 − log(|𝐕i|)∕2 − (𝐘i − 𝝁i)T𝐕−1

i (𝐘i − 𝝁i)∕2
}
,

where 𝝁i = 𝐱i𝜶 + 𝐁i𝜷 + 𝐁i𝐛i and 𝐕i is the covariance matrix obtained by evaluating the covariance
function Vi(t, t′) at time points ti1,… , tini

. The likelihood of the survival part is

f (s, 𝛿i ∣ 𝐛i;𝜽) =

{
s− 1∏
r = 1

Φ
(
�̃�Tir�̃� + 𝜸Tr 𝐖ir𝐛i

)}{
Φ
(
�̃�Tis�̃� + 𝜸Ts 𝐖is𝐛i

)}1− 𝛿i

×
{

1 − Φ
(
�̃�Tis�̃� + 𝜸Ts 𝐖is𝐛i

)}𝛿i .

(8)

The density f (𝐛i;𝜽) is the multivariate normal N(𝟎,𝚺) defined in Section 2.3. Using the multivariate
skew-normal results [14,18], it can be shown that the likelihood in (7) can be written analytically. Details
are given in the Supporting Information.

3.2. Maximum penalized likelihood estimation

Finally, we incorporate the penalty term for smoothing the population-level P-splines coefficients �̃� =
(𝛽2,… , 𝛽M) to the likelihood function as follows:

PL =
N∏

i= 1

Li(𝜽 ∣ 𝐘i, S
∗
i = s, 𝛿i) ⋅ exp(−𝜆�̃�T

�̃�),
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where 𝜆 (𝜆 > 0) is the smoothing parameter [6].
For a fixed value of 𝜆, estimation of 𝜽 can be performed by numerical maximization of the penalized

likelihood. The variance–covariance matrix of the maximum penalized likelihood estimates �̂� can be
estimated by the inverse of the observed Fisher information matrix. To choose an optimal value of 𝜆, we
first calculate the degree of freedom of population-level P-splines for a fixed 𝜆 as df (𝜆) = tr{(�̃�T�̃� +

2𝜆�̂�2
𝜖
𝐃)−1�̃�T�̃�}, where �̃� = (𝐁T

1 ,… ,𝐁T
N)

T, 𝐃 =
[
𝟎2× 2 𝟎2× (M − 1)
𝟎(M − 1) × 2 𝐈(M − 1) × (M − 1)

]
, and �̂�2

𝜖
is the maximum

penalized likelihood estimate for the error variance 𝜎2
𝜖

assuming that Vi(t, t′) = 𝜎2
𝜖
I(t = t′) [19]. Then,

the Akaike information criterion (AIC) [19] is

AIC(𝜆) = −2 log(L̂) + 2 ⋅ df (𝜆) + 2 ⋅ dim(�̃�),

where L̂ =
∏N

i= 1 Li(�̂� ∣ 𝐘i, S
∗
i = s, 𝛿i) is the likelihood from the joint model evaluated at the maximum

penalized likelihood estimates �̂� and �̃� is a subset of 𝜽 by excluding �̃�. We minimize AIC(𝜆) to estimate
the optimal 𝜆.

3.3. Dynamic predictions of survival probabilities

In this section, we describe the procedure to perform dynamic predictions of survival probabilities based
on the joint model in Section 2. Suppose that we are interested in predicting the conditional survival
probability of surviving the sth interval given survival over the rth (r < s) interval for a new patient
i, 𝜋i(s ∣ r) = P(Si > s ∣ Si > r,𝐘i{t(r)},DN ;𝜽, 𝜆), where 𝐘i{t(r)} is the series of longitudinal
measurements provided by this patient up to t(r), the right end point of the r interval. DN = {𝐘i, S

∗
i =

s, 𝛿i; i = 1,… ,N} is the sample on which the joint model was fitted.
For a joint model with random intercept and slope, Rizopoulos [4] proposed two estimators of 𝜋i(s ∣ r):

(i) by evaluating 𝜋i(s ∣ r) at �̂� and �̂�i, the empirical Bayes estimates of 𝐛i given Si > r,𝐘i{t(r)} and
(ii) by sampling 𝜽(l) from its asymptotic distribution N(�̂�, ̂var(�̂�)) and 𝐛(l)i from the posterior distribution
f (𝐛i ∣ Si > r,𝐘i{t(r)},𝜽(l)) and then obtaining an estimate (e.g., median) from the samples of 𝜋i(s ∣ r)
evaluated at 𝜽(l), 𝐛(l)i . The simulation results of [4] showed that the two estimators both performed well
in terms of dynamic prediction accuracy.

In our model, the smoothing parameter 𝜆 is estimated separately from the other model parameters.
Therefore, it seems problematic to sample from the asymptotic distribution N(�̂�, ̂var(�̂�)) because the
population-level P-spline coefficients �̃� (as a subset of 𝜽) are also implicitly determined by 𝜆. On the
other hand, conditioning on �̂� and 𝜆, we can draw from 𝐛(l)i ∼ f (𝐛i ∣ Si > r,𝐘i{t(r)}, �̂�, 𝜆) and calculate

�̂�i(s ∣ r) =
∏s

r∗= r + 1 Φ
(
�̃�Tir∗ ̂̃𝜶 + 𝜸Tr∗𝐖ir∗ �̂�i

)
, where �̂�i could be the sample mean, median, or mode of

𝐛(l)i (l = 1,… ,L) and L is the number of Monte Carlo samples. This is the dynamic prediction procedure
we will use in the analysis of the HERS data and in the simulations.

Note that f (𝐛i ∣ Si > r,𝐘i{t(r)}, �̂�, 𝜆) can be shown to be the density of a multivariate skew-normal
distribution (see details in the Supporting Information). This simplifies the prediction procedure as no
approximation, for example, using a Metropolis–Hastings algorithm, is needed for sampling from this
distribution [4].

4. Application to the HIV Epidemiology Research Study data

In this section, we apply the proposed methods to the HERS data introduced in Section 1. During the
follow-up of the HERS, there were 106 HIV-related deaths, which censored the longitudinal CD4 pro-
cesses for these patients. Censoring by dropout also occurred, which was possibly related to disease
progression. Previous analyses of the HERS CD4 count data [20] did not distinguish censoring by death
and dropout. In our analysis, we will assume that given the random effects that characterize the individual
longitudinal CD4 count process, the dropout time and the HIV-related survival time were independent.
In other words, we will focus on modeling HIV-related survival time and treat dropout as independent
censoring conditional on random effects. For those women who actually finished 12 scheduled visits, the
HIV-related survival times are treated as administratively censored.

The maximum follow-up time was 2093 days in the HERS data, and we partition the follow-up
period into 12 intervals. Except for the first interval that is 3 months from enrollment, the remaining 11
intervals are equally spaced every 6 months, which ensures that each interval approximately contains

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 1447–1460

1453



J. BARRETT AND L. SU

one scheduled CD4 count measurement. We also standardize the square root of CD4 count by taking
(
√

CD4 − 18)∕7 to facilitate computation.

4.1. Models

We fit two joint models to these data. In both joint models, we assume that the covariance function of the
longitudinal process is Vi(t, t′) = 𝜎2

𝜖
I(t = t′). We use Vi(t, t′) = 𝜎2

𝜖
I(t = t′) to account for measurement

errors only because the specified random effects structure in (6) is used to capture the non-stationary serial
correlation over time for longitudinal data. In practice, other parametric models can be used for Vi(t, t′),
for instance, Vi(t, t′) = 𝜎2 exp(−𝜙|t′ − t|), in order to characterize the remaining serial correlations.

In the first joint model (‘Model 1’), we assume that the mean function in the longitudinal CD4 count
process is

𝜇i(t) =
12∑

l= 0

(𝛽l + bil)Bl(t),

where t is the follow-up time in days (scaled by 2093 such that t ∈ [0, 1]), {Bl(t)} = {1, t, (t −
k1)+,… , (t − k11)+} is the truncated linear basis with knots corresponding to 3, 9,… , 63 months before
scaling, and 𝐛i = (bi0,… , bi,12) are the corresponding random P-spline coefficients that follow the
distribution specified in (6). Knot locations were chosen based on the planned visit schedule.

For comparison purposes, in the second joint model (‘Model 2’), we assume that the mean function of
the longitudinal process is

𝜇i(t) = 𝛽0 + 𝛽1t + bi0 + bi1t,

and [
bi0
bi1

]
∼ N

(
𝟎,
[

𝜎2
0 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎2
1

])
are the random intercept and time slope for the ith patient.

In the survival sub-model of Model 1, based on some preliminary investigations and the findings in
[17], we assume that

𝜆ir = 1 − Φ{𝛼0 + 𝛼1r̃ + 𝛼2r̃2 + 𝛼3agei + 𝛼4V2i + 𝛼5V3i + 𝛼6V4i + 𝛾0mi(kr − 1) + 𝛾1m′
i(kr − 1)},

where r̃ is the time at the start of the rth time interval, agei is the age at enrollment (standardized by
taking (agei − 35)∕7) and V2i,V3i,V4i are the indicator variables for HIV viral load groups (500, 5000],
(5000, 30 000], (30 000,∞) at enrollment, respectively. The intercept mi(kr − 1) and slope m′

i(kr − 1) of
the current time interval are incorporated as time-varying covariates. For Model 2, we assume the same
survival sub-model except that m(kr − 1) = 𝛽0 + bi0 + (𝛽1 + bi1)kr − 1 and m′(kr − 1) = 𝛽1 + bi1 because
the time slope is assumed constant.

We use the estimation methods in Section 3 to fit the two joint models and perform dynamic predictions
based on these fitted models following the procedure described in Section 3.3.

4.2. Summary of fitted models

Figure 2 presents the estimated population-level longitudinal CD4 count trajectories from the two joint
models. Table I summarizes the results of survival sub-models and variance components from Models 1
and 2. Overall, the values of AIC indicate that Model 1 provides much better fit to the observed data. The
optimal value for the smoothing parameter 𝜆 is 0.4, which means that the effective number of parameters
in the population-level P-splines is 9.4 (note that the number of population-level P-spline coefficients for
penalization is 11).

The estimated population-level longitudinal CD4 count trajectory from Model 1 suggests that the dis-
ease progression in the HERS cohort (decline of CD4 count) was slowing down in the middle of follow-up
when the HAART was introduced. In both models, after adjusting for enrollment age, viral load group,
and the time at the start of the interval, the conditional probability of surviving each time interval was
positively associated with the current intercept and time slope of the CD4 count. However, the estimates
for 𝛾0 and 𝛾1 from Model 1 are both larger than those from Model 2, especially for 𝛾1 (0.277 vs. 0.172)
with a difference of almost two standard errors. This suggests that estimates from Model 2 are possibly
attenuated because of its less flexible modeling of individual longitudinal trajectories.
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Figure 2. Estimated population-level CD4 count longitudinal trajectories from the two-stage approach and the
two joint models fitted to the HIV Epidemiology Research Study data.

Table I. Parameter estimates, standard errors, and
model comparison results from the two joint mod-
els fitted to the HERS data.

Parameter Model 1 Model 2

Survival 𝛼0 4.006 (0.342) 3.573 (0.272)
𝛼1 −2.328 (0.932) −1.643 (0.660)
𝛼2 2.701 (1.028) 1.995 (0.750)
𝛼3 −0.211 (0.062) −0.194 (0.056)
𝛼4 −0.345 (0.242) −0.349 (0.240)
𝛼5 −0.606 (0.248) −0.603 (0.247)
𝛼6 −0.536 (0.250) −0.569 (0.259)
𝛾0 0.775 (0.090) 0.751 (0.079)
𝛾1 0.277 (0.055) 0.172 (0.058)

Others 𝜎𝜖 0.353 (0.004) 0.386 (0.004)
𝜎0 0.916 (0.024) 0.931 (0.025)
𝜎1 0.778 (0.081) 1.146 (0.043)
𝜎2 0.658 (0.038) —
𝜌 0.123 (0.059) −0.121 (0.046)

log likelihood −5543.876 −5761.138
AIC 11 138.54 11 552.28
𝜆 0.4 —

df(𝜆) 9.4 —

HERS, HIV Epidemiology Research Study; AIC,
Akaike information criterion.
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In summary, the HIV-related survival in the HERS cohort was associated with younger age and lower
viral load at enrollment as well as current higher level and increasing rate of CD4 count, which is
consistent with the findings in [17].

4.3. Dynamic predictions

In this section, we demonstrate dynamic prediction based on our flexible joint model. In particular, we
exemplify it by making predictions on the conditional probabilities of surviving the next one, two, and
three intervals given all baseline information and available CD4 count measurements up to the cutoff
time for predictions as well as the fact that a patient was still under follow-up at this cutoff time.

For comparison purpose, we also perform dynamic predictions using a survival model with the longi-
tudinal outcome as a time-varying covariate as well as a two-stage approach. The survival model with the
time-varying covariate will follow the same structure as in the joint models, but Yir, instead of estimates
of mi(kr − 1) and m′

i(kr − 1), is incorporated as a time-varying covariate. The dynamic prediction procedure
for this approach is similar to those used for the joint models, except that the last observed outcome Yir
(instead of random effect estimates) is used in the fitted survival model for prediction.

In the two-stage approach, first we fit a linear mixed model with P-splines to the observed longitudinal
data using the same specification as for Model 1. The computation is carried out by the lme function in
the R packagenlme. Figure 2 also gives the estimated population-level longitudinal CD4 count trajectory
from the two-stage approach, which overestimates the CD4 count level at later follow-up time because it
ignores the selection through survival. Using the empirical Bayes estimates of the random effects from
the fitted linear mixed model, we then fit a survival model with the same specification as in Models 1 and
2. Based on the parameter point estimates from the linear mixed model, we obtain the empirical Bayes
estimates of the random effects for the patients we would like to make predictions for. Finally, using
these random effect estimates and the fitted survival model, we produce predicted survival probabilities
over time for these patients. Note that, unlike in the joint models, the posterior distribution of the random
effects used to generate empirical Bayes estimates in the two-stage approach will not involve the observed
survival data.

As an example, we consider patient 26 who was 37 years old with viral load (5000, 30 000] at enroll-
ment. The left sides of the panels of Figure 3 present the observed (standardized) square root CD4 counts
and estimated individual longitudinal trajectories for patient 26 up to the prediction time r = 3, 5, 7, 9,
respectively. The right sides provide predicted conditional probabilities of HIV survival after the next
one, two, and three time intervals at the prediction time r = 3, 5, 7, 9, respectively. For the joint models,
we use medians of 200 samples from the posterior of 𝐛i. The same figure presented on the probit scale is
given in Figure S2. At r = 3, the predicted conditional survival probabilities are similar for all models,
while at r = 5, 7, Model 1 predicts higher survival probability than Model 2 and the two-stage approach.
These differences could be due to different estimates of 𝛼0,… , 𝛼6 and 𝛾0, 𝛾1 in the survival sub-models of
Models 1 and 2. At r = 9, Model 1 picked up the change in CD4 counts driven by the HAART initiation
and the estimated CD4 trajectory started to increase, while the estimated trajectory from Model 2 still
indicated a decreasing pattern. Thus, this leads to the higher predicted survival probabilities from model
1 compared with those from Model 2 at r = 9, which is easier to be seen at the probit scale in Figure S2.
The number of longitudinal data points required to make reliable predictions will therefore depend on
the true individual trajectory, because to make predictions, we linearly extrapolate from the last observed
data point before the prediction time. The survival model with the time-varying covariate and the two-
stage approaches give similar predictions as for Model 2 for r = 3, 5. For r = 9, the survival model
with the time-varying covariate gives slightly higher predicted survival probabilities, possibly because of
the large value of the last observed CD4 count by the cutoff time. Overall, our joint model can capture
the nonlinear change in the individual longitudinal trajectory, which is helpful to provide more accurate
predictions of conditional survival probabilities.

5. Simulation study

In this section, we perform a simulation study to evaluate the dynamic prediction performance of the
proposed flexible joint model by comparisons with (i) a survival model using the longitudinal outcome
as a time-varying covariate; (ii) a two-stage approach that uses empirical Bayes estimates of random
effects, based on a linear mixed model with P-splines fitted to observed longitudinal data, in a subsequent
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Figure 3. Left side of each panel: observed (standardized) square root CD4 counts and estimated individual lon-
gitudinal trajectory for patient 26 up to the prediction time r = 3, 5, 7, 9. The dotted lines are the cutoff time for
the prediction. The solid and dashed dark lines are estimated individual longitudinal trajectories (using medians
of 200 samples from the posterior of 𝐛i) based on Models 1 and 2, respectively. Right side of each panel: predicted
conditional probabilities of HIV survival after the next one, two, and three time intervals. Squares represent pre-
dictions from Model 1 and triangles represent predictions from Model 2 (using medians of 200 samples from the

posterior of 𝐛i).

survival model; (iii) a joint model with random intercept and slope only; and (iv) a joint model with cubic
splines and three internal knots.

Except for the survival model with CD4 counts as time-varying covariate, the same survival sub-model
is specified for the three joint models as well as in the two-stage approach. We will use the ‘gold standard’
estimator of 𝜋i(s ∣ r) with the true (i.e., simulated) values for random effects and true values for the
parameters and evaluate the dynamic prediction performance as a function of the prediction time r and
also the prediction window Δt = s − r. The setup for the simulation is motivated by the HERS data,
and details are given in Section S3.

The main conclusions drawn from the simulation study are as follows. First, the proposed joint model
with P-splines outperforms the other two joint models overall (aggregated over all prediction times).
Second, the two-stage approach performs only slightly worse than the joint model based on P-splines in
dynamic predictions, although their performances in parameter estimation are very different. The sur-
vival model using the longitudinal outcome as a time-varying covariate performs the worst among all
approaches. Third, depending on the shape of the true longitudinal trajectories and the prediction time r,
the joint model with random intercept and slope and the joint model with cubic splines can perform sim-
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ilarly to the proposed joint model. Finally, the joint model with cubic splines performs the worst among
the three joint models, especially at later prediction times r. More detailed results can be found in the
Supporting Information.

Overall, our simulation results show that our flexible joint model had better dynamic prediction
performance than all other approaches in comparison.

6. Discussion

In this paper, we developed a flexible joint model for longitudinal and time-to-event data with time-
dependent random effects, aiming to improve dynamic predictions by allowing for more flexible modeling
of the longitudinal process. Our simulation results demonstrate that our flexible joint model with P-splines
and truncated linear basis outperformed other existing approaches in terms of parameter estimation and
dynamic predictions. Moreover, in practice, it is straightforward to implement dynamic predictions based
on our model because the posterior distribution of the random P-spline coefficients is a multivariate
skew-normal distribution.

The poor performance of the joint model with cubic splines in the simulations might be explained by
the fact that splines with polynomial bases tend to perform erratically beyond the boundary knot and
extrapolation can be dangerous [16, Chapter 5]. For this reason, natural cubic splines are often used to
add a linear constraint beyond the boundary knot. When making dynamic predictions, however, at the
time of prediction, we must extrapolate an individual’s trajectory beyond the current observed data for
that individual. Thus, using natural cubic splines in a joint model is not very helpful if the linear constraint
is only applied to the last boundary knot in the whole follow-up. Adding further flexibility to the cubic
spline model in our simulation study would be very likely to exacerbate the extrapolation problem. Our
joint model with P-splines and truncated linear basis not only offers model flexibility (compared with
a joint model with random intercept and slope) but also alleviates the extrapolation problem beyond
the prediction time (compared with a joint model with cubic splines). Note that this discussion is only
applied to modeling individual longitudinal trajectories. For population-level longitudinal trajectories,
other spline bases with better numerical properties could be used in our model. Overall, based on the
findings from our simulation study, for dynamic prediction purpose only, we do not recommend using
splines with polynomial bases for modeling individual longitudinal trajectories.

Interestingly, the two-stage approach using P-splines and truncated linear basis also performed very
well in terms of dynamic predictions, although it produced biased parameter estimates in both longi-
tudinal and survival sub-models. The bias–variance trade-off is well known for prediction problems
[16, Chapter 7]. The two-stage approach and the joint model with cubic splines had similar biases in terms
of parameter estimation. However, the complexity in the joint model with cubic splines also introduced
more variance into the estimation, which was demonstrated by the larger variability in prediction errors
for the joint model with cubic splines at later prediction times. Therefore, overall the joint model with
cubic splines performed worse than the two-stage approach for dynamic predictions in our simulations.
In practice, if dynamic predictions are of main interest, two-stage approaches can be applied without the
complexity of fitting joint models. Note that the extrapolation problem for polynomial bases discussed
earlier applied to the two-stage approach as well.

Barrett et al. investigated the impact of discretization of the time scale on the inferences of the lon-
gitudinal and survival sub-models [14]. Their simulation studies and analysis of special cases suggested
that the parameter estimates were not greatly influenced by the discretization, in particular, the covari-
ate effects in the longitudinal and survival sub-models. Moreover, Barrett et al. theoretically proved that
there is no loss of information when the survival functions are linear between discrete time points [14].
In practice, often there exists a natural discrete time scale, for example, dropout at pre-specified measure-
ment time points. For continuous-time dropout or other continuous time to event, a discretization that
ensures approximate linearity is recommended.

Using a probit model for the discretized event time, our model benefits from the straightforward imple-
mentation of dynamic prediction of survival probabilities. The probit link used in the survival sub-model
not only facilitates estimation but also naturally reflects the assumption that the discrete hazard of event
occurrence depends on the normally distributed random effects that characterize underlying individual
longitudinal trajectories. In other words, because we assume that the linear predictor in the survival sub-
model is normally distributed, it seems natural to use the probit link to transform back to the discrete
hazard (probability) scale. To interpret the covariate effects in the survival sub-model, we can present the
results at the marginal survival probability scale to the subject matter experts.
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Barrett et al. discussed the computational issues related to their joint model with time-dependent
random effect [14], which are similar in our case as the computing time is also driven primarily by cal-
culating the multivariate normal probabilities. The R package mnormt we used applies a non-Monte
Carlo method to calculate multivariate normal probabilities up to 20 dimensions. Another R package
mvtnorm uses faster quasi-Monte Carlo methods and can accommodate dimensions up to 1000 but with
less accuracy. The development in this field will certainly help improve our estimation procedure.

A limitation of our proposed model is that due to discretization of the time scale, dynamic predictions
can only be made in discrete time intervals as well. But given that prediction on patient prognosis is
often made in discrete time in practice, for example, 6-year survival given that the patient is still alive at
5 years, this limitation should not be a major concern.

In our simulation study, we compared the dynamic prediction performance of three joint models,
assuming that the main structure of the survival sub-model is correctly specified. However, in practice, it
is important to realize that model specification or different parameterizations in the survival sub-model
can lead to different prediction estimates for conditional survival probabilities. Rizopoulos [7, Chap-
ter 7] compared dynamic prediction results from six joint models with different parameterizations in
the survival sub-model and found that the predicted conditional survival probabilities showed consider-
able variability between the six parameterizations. In practice, the choice for parameterizations in the
survival sub-model should be mainly driven by substantive knowledge. When it is not available, stan-
dard likelihood information criteria can be used to decide upon which joint model we should base the
predictions [7].
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