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Antimicrobial peptides are small molecules, up to 10 kDa, present in all

kingdoms of life, including in plants. Several studies report that these

molecules have a broad spectrum of activity, including antibacterial,

antifungal, antiviral, and insecticidal activity. Thus, they can be employed in

agriculture as alternative tools for phytopathogen and pest control. However,

the application of peptides in agriculture can present challenges, such as loss of

activity due to degradation of these molecules, off-target effects, and others. In

this context, nanotechnology can offer versatile structures, including metallic

nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others,

which might act both in protection and in release of AMPs. Several polymers

and biomaterials can be employed for the development of nanostructures, such

as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers,

and others. This review addresses the versatility of NanoAMPs (Nanoparticles in

association with antimicrobial peptides), and their potential applications in

agribusiness, as an alternative for the control of phytopathogens in crops.
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1 Introduction

Antimicrobial peptides (AMP) are small (up to 10 kDa) cationic molecules, with

amphipathic structures composed of hydrophobic and positively charged domains (Bin

Hafeez et al., 2021; Sarkar et al., 2021). These molecules have been found in all kingdoms

of life. Contrary to what their name suggests, AMPs can present miscellaneous activities
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besides antimicrobial, including antiviral and insecticide (Huan

et al., 2020; Erdem Buyukkiraz and Kesmen, 2021; Gera et al.,

2021). AMPs can be employed to improve agriculture

production, including diseases control. The biotic stress

caused by pests and pathogens represents one of the main

challenges to food security (Savary et al., 2019). Biotic stress

can lead to up to 40% yield losses in our main crops, especially in

food-deficit regions with fast-growing populations (Oerke, 2005;

Savary et al., 2019). Additionally, this scenario can be aggravated

by current climate changes, which increase microbial infection

risks and foliar herbivory (Chaloner et al., 2021; Hamann et al.,

2021).

The development of crop varieties that are more resistant to

diseases and pest attacks represents a fundamental step toward

achieving food security worldwide (Dhankher and Foyer, 2018).

In this context, AMPs (either exogenously applied or transgene

expressed) represent two approaches for improving plant

resistance to phytopathogens (Li J. et al., 2021). Although

AMPs present potent activity and easy metabolization without

adversely affecting food quality, some restrictions limit their

application in agriculture, including high production cost,

safety concerns related to toxicity, low stability during

transport, and easy hydrolysis by proteases (Wang et al., 2016;

Huan et al., 2020).

In this context, nanobiotechnology arises as an interface

between nanotechnology and biotechnology (Amin et al.,

2011). In this interdisciplinary research field, tools on the

nanometer scale, such as nanodevices, nanoparticles, and

other nanostructured systems can be employed in the

development of biotech products and applied to solving

problems involving biological sciences and their concerns,

e.g., biocatalysis, biomedicine, and agriculture (Barabadi,

2017; Thiruvengadam et al., 2018; Worrall et al., 2018).

Nanomaterials used as these tools can be made of inorganic

metals, liposomes, polymers, nanofibers, and others (Duhan

et al., 2017). Although nanoparticles (nanospheres or

nanocapsules) are the most popular nanostructured

systems, other types are also very useful in biotechnology,

such as dendrimers, nanogels, and liposomes (Jiang et al.,

2007).

All of these nanostructures, developed by several materials,

can be employed as drug delivery systems (DDS) (Vega-Vasquez

et al., 2020) due to their properties of harboring and/or attaching

molecules of interest that will act in specific cells, tissues, or

organs in a controlled release mechanism (Allen and Cullis, 2004;

Jiang et al., 2007). This can makes nanomaterials very suitable

vehicles for the gradual release of a wide range of molecules,

including secondary metabolites, nucleic acids, proteins, and

peptides. This release can improve the delivery at the desired

target site, by addressing cells in a spatiotemporal manner

(Martínez-Ballesta et al., 2018).

Taking this into account, nanotechnology has been used in

the last few years to associate nanoscale delivery systems with

AMPs (NanoAMPs) to stabilize these molecules. When

compared to isolated AMPs, which have lower bioavailability

and are usually unstable in the environment, the NanoAMPs can

bypass this disadvantages and increase the biological effect on the

target (Biswaro et al., 2018). NanoAMPs can also promote a

controlled release of entrapped AMPs, therefore keeping a longer

time of action, improving half-life time, decreasing potential

toxicity, and promoting the biological activity in constant doses

(Tan et al., 2021). Moreover, this association may be useful for

enhancing the effectiveness of either AMPs or nanostructured

systems themselves, or even boosting their activities

synergistically through combinatorial formulations (León-

Buitimea et al., 2020).

Among the main advantages of using NanoAMPs over free

AMPs, it is possible to point out the AMP side-effects decrease, as

lower bioavailability and the environment instability in the, lower

administration frequency, a lower dose needed, constant levels of

AMPs released, bioavailability enhanced by defense against

degradation, maximization of biological activity, in addition to

applying to a wide range of molecules (Patra et al., 2018). In this

context, NanoAMPs can be an interesting alternative to bypass

plant biotic stress and improve agricultural production.

2 A tool to achieve food security: The
potential of antimicrobial peptides in
agriculture

AMPs present several beneficial characteristics, including

activity against several phytopathogens (fungi, bacteria, virus)

and insects (Mulinari et al., 2007; Pinto et al., 2012); the capacity

to generate direct and durable plant resistance; and small gene

nature that facilitates stacking the coding sequence of multiple

AMPs on single expression vectors (Islam et al., 2021). Besides,

AMPs natural or synthetic also present ease of manipulation and

optimization by computational approaches (in silico design).

These approaches can includes, search by homology modeling,

molecular dynamics and protein docking. The advantages of

computational in silico methods include their low cost, faster

procedure speed, simple process (Porto et al., 2018; Costa et al.,

2020; Hashemi et al., 2021; Delaunay and Ha-Duong, 2022).

These approaches can be employed i.e. to generation of

derivatives with improved features, and a low metabolic cost

of production (da Cunha et al., 2017; Porto et al., 2018), which

reduces potential detrimental impacts on plant growth and

productivity associated with the activation of the plant defense

responses (Keymanesh et al., 2009; Campos et al., 2018; Sarkar

et al., 2021).

Moreover, AMPs can be described as an eco-friendly and

healthier alternative for controlling pest and pathogens (Li P.

et al., 2021). By this way, several studies developed transgenic

plants expressing AMPs, including rice, wheat, potato, tomato,

banana and soybean to improve the resistance against biotic and
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abiotic stress (Supplementary Table S1). In summary these

studies highlight that AMPs expression presents high potential

to increase resilience to pests, pathogens and abiotic stress.

Additionally, plants expressing these peptides can present a

decrease in demand of chemical pesticides, that can cause

risks to the environment and consumers’ health (Keymanesh

et al., 2009).

In this context, are important highlights the limitations to

AMP gene expression in plants and the challenges faced in

development and commercialization of transgenic plant lines

(Turnbull et al., 2021; Bakare et al., 2022; Sharma et al., 2022).

Although plants are able to express antimicrobial peptides, some

pitfalls can be faced, as the production of AMP in all plant

structures, difference among expression and difficult to produce

active plant AMPs in large quantities due the differences in plant

cultivation, and the endogenous AMPs degradation by plant

proteases (Bakare et al., 2022).

Furthermore, AMPs also can be applied in order to control

plant diseases through non-transgenic methods, such as

exogenous applications (i.e. spraying with or immersion in

peptide solutions) and food coating (Wang et al., 2018a).

Exogenous application of peptides PAF56 (GHRKKWFW)

and cecropin A-melittin hybrid peptide BP21 (Ac-

FKLFKKILKVL-NH2) in citrus can control post-harvest green

mold, one of the main postharvest diseases, and blue mold and

sour rot, caused respectively by Penicillium digitatum,

Penicillium italicum, and Geotrichum candidum (Wang et al.,

2018a; Wang et al., 2018b). Additionally, peptide O3TR and its

derived lipopeptide C12O3TR were also employed to protect

freshly harvested orange fruit against P. digitatum (Li et al.,

2019).

Despite several studies indicating that AMPs stand out as a

barrier to ward of phytopathogen and pest attacks, only a few

studies have demonstrated positive applications in field

conditions. This can be explained by challenges associated

with upscaling production, or with stability of the peptides.

Regarding AMP-derived plant resistance to biotic stress, few

studies have moved from the laboratory to the most applicable

field conditions, thus hampering our ability to use these peptides

directly to protect agroecosystems (Huan et al., 2020). This

situation may be explained by challenges usually

associated with the production or activity of AMPs,

including a reduction in defensive activity due to

degradation of these molecules when in contact with

microbial proteases or enzymes present in the digestive

system of herbivores or due the environmental conditions

such as sunlight, temperature and others, off-target effects

leading to cytotoxicity to the consumer (in case of the

transgenic plant) and high production costs for exogenous

applications (Keymanesh et al., 2009; Biswaro et al., 2018;

Huan et al., 2020). In this context, nanotechnology is now

arising as a revolutionary and versatile alternative by which

to optimize the biological and chemical properties of AMPs,

and this may finally bring the benefits of these peptides to

consumers.

3 Advantages of nanotechnology for
antimicrobial peptide activity

Nanotechnology can be a promising alternative for the

storage and administration of antimicrobial peptides, once

nanostructures can protect AMPs from proteolysis and

unwanted interactions and can promote a controlled, long-

lasting, and targeted release of the peptide (Sandreschi et al.,

2016). Additionally, these nanostructures have the potential to

protect the AMP against environmental conditions such as

sunlight, and variation in temperature, and others (Badea

et al., 2015; López-Vargas et al., 2018; Felippim et al., 2020).

Thus, NanoAMPs have been developed in recent years based on

the association of nanoscale delivery systems with AMPs

(Table 1).

These studies focus on human or animal health to stabilize

these molecules compared to isolated AMPs, which have lower

bioavailability and are usually unstable in the environment when

used alone, thus reducing their biological effect on the target

(Biswaro et al., 2018). Besides, NanoAMPs can promote a

controlled release of entrapped AMPs, therefore maintaining a

longer time of action, improving half-life time, decreasing

potential toxicity and promoting biological activity in constant

doses (Tan et al., 2021). Moreover, this association may be useful

for enhancing the effectiveness of either AMPs or nanostructured

systems themselves, or even boosting both their activities

synergistically through combinatorial formulations (León-

Buitimea et al., 2020).

In general, nanomaterials can be functionalized with AMPs,

promoting the generation of NanoAMPs to bypass some

challenges faced in AMP applications in agriculture including

an increase in AMP stability, target activity, release of entrapped

AMPs, biological activity and decreasing the potential toxicity of

AMPs’ effects on the environment. Thus, NanoAMPs present

great potential in agribusiness, considering their advantages and

wide range of applications (Patra et al., 2018).

4 Nanoparticles in association with
antimicrobial peptides: Promising
applications of associating
antimicrobial peptides with
nanostructured systems

The development of nanometric structures complexed with

bioactive molecules has shown a high impact in several areas,

including agriculture (Duhan et al., 2017). This approach enables

the controlled, efficient, and safe release of fertilizers, pesticides

and herbicides in several plant crops (Santana et al., 2020; Zhang
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et al., 2020). Besides, nanotechnology employment in agriculture,

has shown a role in increasing the abiotic stresses tolerance

plants, including drought, heat, salinity and ion toxicity,

oxidative stress and others. Studies that employed cerium

oxide (CeO2) nanoparticles, called nanoceria showed the

potent antioxidant properties that can decrease the drought-

induced oxidative stress, by catalytic scavenging reactive oxygen

species (ROS), in model plants well as in plants of interest

economic (Wu et al., 2017; Djanaguiraman et al., 2018).

Besides, the combination of nanoparticles with peptides can

also be used for generating nanosensors capable of early stress

detection (Zhang et al., 2011; Giraldo et al., 2019).

The wide-ranging potential of nanobiotechnology

applications in agriculture can be related to the wide

nanomaterials range employed in the nanoparticles

development (Li J. et al., 2021). The nanomaterials differ in

size, shape, composition, and physicochemical properties, and

may vary in surface area and the reactivity of the molecule. These

characteristics should promote an improvement in the solubility

and half-life of the molecule, including AMPs, and a decrease in

toxicity due to their ability to target the specific site of action

(Reis et al., 2006; Bawa, 2009; Zhang et al., 2013). Additionally,

different materials have been used for NanoAMP preparation,

such as inorganic metals (Min et al., 2009; Goswami et al., 2010),

liposomes (Luo et al., 2015), polymers (Rafiee et al., 2014; Kleine-

Brueggeney et al., 2015) and nanofibers (Lahiani et al., 2015).

Metallic nanoparticles can be used as antimicrobial agents or

nanocarriers for active substances. Among metallic

nanoparticles, silver is known for its antimicrobial activity and

is considered the most promising nanomaterial, mainly due to its

bactericidal properties and adaptability to different substrates

(Cho et al., 2005; Sharma et al., 2009). Moreover, silver has gained

TABLE 1 NanoAMPs based on association of nanoscale delivery systems and AMPs.

Antimicrobial
peptides

Nanoparticle Potential
application
(health/
Agriculture)

Approach description Application/Effects References

polymyxin B Silver nanoparticles Health In vitro assay to evaluation of
synergism between polymyxin B
and Silver nanoparticles

Antibiotic synergy against Gram-
negative bacteria

Ruden et al.
(2009)

P13 Silver nanoparticles Health/Agriculture In vitro assay to evaluation
antibacterial activity, against both
Gram-negative and Gram-positive
bacteria, cytotoxicity against
mouse fibroblast, and evaluation
of physical chemical
characteristics

Decrease in AgNP cytotoxicity,
improvement in antimicrobial
activity and in stability in aqueous
solution

Gao et al.
(2020)

HHC-8

MM-10 Poly (ε-caprolactone)
nanoparticles (PCL-NPs)

Health In vitro assay to evaluation of the
ability to protect encapsulated
materials from proteolysis, AMP
release by photothermal triggered,
and effects in activity against
Gram-negative and Gram-positive
bacteria

AMP degradation protection and
sustained release; and
Improvement in antibiotic activity
against bacteria

Moorcroft et al.
(2020)

gramicidin A melittin
Alamethicin

Lipidic inverse
bicontinuous cubic phase
nanoparticles
(Cubosomes)

Health/Agriculture In vitro assay to validation of
systems for the delivery of AMPs

Validation of encapsulation
systems for the delivery of AMPs

Meikle et al.
(2017)

LL37 Silica nanoparticles Health In vitro assay to evaluation of roles
of membrane interactions for the
successful use of mesoporous silica
nanoparticles as delivery systems
for antimicrobial peptides (AMPs)

Delivery system and AMP
degradation protection

Braun et al.
(2016)

nisin Microemulsions Health/Agriculture In vitro assay to evaluation of
microemulsion based in different
essential oil to encapsulate nisin
enhancing the system’s overall
antimicrobial activity

Activity against bacteria, in lettuce
leafs

Chatzidaki et al.
(2018)

P5VP5 Nanoparticle self-
assemble

Agriculture In planta assay Reduction in the development of
citrus canker lesions, inhibition of
biofilm formation, damage to cell
membranes, and effects on cell
membrane permeability

Shuai et al.
(2019)
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popularity due “green synthesis” production. These approaches

involves metallic nanoparticles synthesis using bioactive agents

including plants, bacteria and fungi to the bio reduction of metal

ions in their elemental form, that presents size range 1–100 nm

(Rafique et al., 2017; Rodrigues et al., 2021; Patil et al., 2022). The

green synthesis depends on the employment of water solvent for

nanoparticles yield. Bioreduction and biosorption are essential

routs for that synthesis. Bioreduction can be described as the

process in which metal ions are chemically reduced into their

stable forms; and the biosorption process involves the binding of

metal ions (generated by bioreduction) on the surface of bioactive

agent (Gobalakrishnan et al., 2021; Kaur and Sidhu, 2021). The

use of natural precursors for the biosynthesis of nanoparticles has

some advantages when compared to conventional methods of

synthesis, such as biocompatibility and low production costs,

since these synthesis routes do not use toxic solvents or chemical

precursors (El-Sherbiny and Salih, 2018; Gour and Jain, 2019).

Other metal nanoparticles include copper, titanium dioxide, and

gold, which are mostly used for the incorporation of fertilizers,

with little research into disease management (Sadeghi et al.,

2017).

NanoAMPs, developed using silver nanoparticles and AMPs,

in general aim to deliver NanoAMPs to intracellular target sites

and show lower cytotoxicity; additionally, enhanced AMP

activity was observed in some studies (Ruden et al., 2009;

Gakiya-Teruya et al., 2020; Gao et al., 2020; Zharkova et al.,

2021). Concerning functionalization, the association of five

different amphiphilic α-helical AMPs (PGLa, MSI-103, MAP,

BP100, and TP10) with gold nanoparticles by attachment of the

peptides to the gold core, exclusively via the N-terminal Cys,

aimed to increase the stability of peptides against enzymes such

as trypsin. This resulted in an improvement in the AMPs’

lifetime, antimicrobial activity against Gram-negative and

positive bacteria, and stability towards trypsin action while

AMPs maintained their conformational flexibility (Wadhwani

et al., 2017). Additionally in biomedical studies, a PEG hydrogel

was recently co-loaded with gold nanorods encapsulating the

AMP named IK8. These nanoparticles ensuring IK8 proteolysis

protection and release control. Consequently bactericidal activity

was enhanced through photothermal activation based on laser

irradiation (Moorcroft et al., 2020).

Liposomes are another nanostructure commonly applied in

the protection of molecules. These nanostructures are spherical

vesicles with an amphiphilic lipid bilayer membrane structure

with mean diameters from nanometer to micrometer. Their

properties, functionalities and stability depend on factors such

as temperature, pH, ionic strength, concentration, and

composition of phospholipids and the properties of the

encapsulated molecule (Jesorka and Orwar, 2008). Liposomes

are the most used drug delivery system and can be obtained from

natural or synthetic lipids; an example is a phosphatidylcholine,

which is one of the lipids most used in liposome formulation

(Pinilla et al., 2021).

The application of liposomes is widely reported in several

biomedical studies (Makowski et al., 2019; Wang et al., 2021).

Additionally, in biomedical studies, a PEG hydrogel was recently

co-loaded with gold nanorods encapsulating the AMP named

IK8. These nanoparticles ensuring IK8 proteolysis protection and

release control. Consequently bactericidal activity was enhanced

through photothermal activation based on laser irradiation

(Moorcroft et al., 2020). The usefulness of cubosomes (also

called lipidic inverse bicontinuous cubic phase nanoparticles) as

encapsulation systems for the delivery of AMPs has been

validated (Meikle et al., 2017; Meikle et al., 2021). On the

other hand, the role of liposomes in agriculture has been

related to cell membrane model systems (Taylor et al., 2005;

Isozumi et al., 2021), food preservation in the post-harvest

process or industrial processing, and the protection of

substances such as enzymes, vitamins, and antimicrobials, to

improve food quality (Mozafari, 2005; da Silva Malheiros et al.,

2010; Pinilla et al., 2021).

In this context, the plant application of NanoAMPs faces

some challenges, including physical structures present in leaf,

such as hair and cuticular wax which can be barriers to this

approach. Nevertheless, nanoparticles obstruction depends

on the physical characteristics such as particle size,

epidermal structure, leaf area, and plant growth stage.

Once the lipophilicity of leaf wax can promote the

adsorption of hydrophobic or lipophilic nanoparticles, the

nanoparticle material choice can be decisive to bypass such

challenge (López-Vargas et al., 2018; Su et al., 2019; Hong

et al., 2021).

Polymers are the main nanoparticles constituents used in

drug delivery systems. Polymeric nanoparticles are formed by a

polymeric matrix and can retain the molecule internally or

adsorb to the polymeric structure (Vauthier and Bouchemal,

2009; Brandelli, 2012). They are more robust and stable

particles than liposomes because they are held together by

covalent bonds. Thus, several other polymeric nanoparticles

have been used as vehicles for diverse AMPs with different

applications, in several areas, including the health area. In this

context, the influence of porosity and surface charge of

mesoporous silica nanoparticles (MSN) on loading and

release of AMP LL-37 was investigated and results showed

that anionic mesoporous silica particles incorporated

considerable amounts of LL-37 (cationic AMP). In addition,

these particles protect LL-37 from degradation by proteases

(Braun et al., 2016).

Nanofibers are one-dimensional nanomaterials produced

with a wide range of natural, synthetic and hybrid polymers.

As the name suggests, these are fiber-shaped nanomaterials with

several unique properties such as nanoporosity, high surface

area/volume and high mass transport properties (Meraz-Dávila

et al., 2021). Factors such as temperature, viscosity, solution

surface tension and electric field strength are important to

nanostructures, but to nanofibers has larger importance, once
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define the quality and characteristics of these nanostructures

(Deitzel et al., 2001).

Due to their property of high surface area to volume ratio,

nanofibers have a great potential for carrier and release

antimicrobials peptides. In addition, different modes of

carrying molecules can be obtained; antimicrobials peptides

can be loaded onto the surface of the nanofiber by adsorption,

there may be adsorption of charged nanoparticles with the

molecule on the surface of the fibers, or a layer-by-layer

assembly on the cover allows some nanometers to deposit

polyanions such as heparin (Yoo et al., 2009). Encapsulated

synthetic AMP HHC-8 and MM-10 in poly (ε-caprolactone)
nanoparticles (PCL-NPs), which triggered minimal

degradation and sustained release of AMPs and improved

their antimicrobial activity against mycobacteria, ensured the

synergistic effect of NanoAMPs (Sharma et al., 2021). Thus,

nanofibers present a strong potential for distributing

antimicrobials in food systems.

5 Potential applications of
nanoparticles in association with
antimicrobial peptides in agriculture

The challenges faced by food production are distinct in pre-

harvest and post-harvest phases. In pre-harvest phase, food

production can be negatively affected by several

phytopathogens. These organisms can include fungi, bacteria,

FIGURE 1
NanoAMPs description in which, nanoparticles (I) were associated with antimicrobial peptides (II) showing advantages (III) and potential
applications in agriculture (IV). (A) Representation of P13@AgNPs, which presents potential to control ginger rhizome rot disease caused by Bacillus
pumilus. (B) Representation of nisin peptide combined with reverse micelles that shows potential for post-harvest food protection. (C)
Representation of self-assembled P5VP5 peptide that can be used to decrease citrus canker lesions caused by Xanthomonas axonopodis pv.
citri. Figure developed with support of the Biorender (Biorender.com).
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viruses, parasites, and insects, which can cause the development

of several diseases and promote several losses in food production.

In the post-harvest phase, one of the most challenges faced is the

losses caused by mold infections. In both scenarios, NanoAMPs

can be a promising approach and offer different strategies/

combinations to mitigate these problems. During pre-harvest,

different NanoAMPs can be employed for disease control, and in

post-harvest, the NanoAMPs can promote an increase in the

shelf life of food, well as protection against mold infections

(Brandelli, 2012; Duhan et al., 2017; Sadeghi et al., 2017;

Biswaro et al., 2018; Ristaino et al., 2021; Rizzo et al., 2021;

Singh et al., 2021).

In this context, some NanoAMPs examples applied in

agriculture can be highlighted (Figure 1), including a

NanoAMP called P-13@AgNPs, achieved through the rational

development of an antimicrobial peptide (P-13) and its

association with silver nanoparticle (AgNP), which results in

better activity against Gram-negative and Gram-positive bacteria

(Gao et al., 2020), including activity toward Bacillus pumilus,

which can cause ginger rhizome rot disease (Peng et al., 2013),

demonstrating the potential application of this NanoAMP in

plant disease control.

Additionally, NanoAMPs were developed using nisin (an

important peptide in the food industry) in association with

several lipid-based nanostructures, including liposomes,

nanoemulsions, solid lipid nanoparticles (SLNs), and

nanostructured lipid carriers (NLCs), have been employed in

food conservation, and present potential for use in agriculture,

specifically in post-harvest (Bahrami et al., 2019). These

NanoAMPs can be employed in food preservation, since

nisin presents activity against bacteria such as Listeria

monocytogenes and Lactobacillus plantarum (Prombutara

et al., 2012). However, a NanoAMP based on nisin

associated with a nanoemulsion (reverse micelles through

W/O microemulsions) presented antimicrobial activity,

during an in vitro assay in lettuce fresh leaves (Chatzidaki

et al., 2018), suggesting that these NanoAMPs can be

employed in post-harvest.

Another interesting example of NanoAMPs employed in

agriculture is the NanoAMP development called P5VP5. This

peptide was engineered as a unique symmetrical cationic peptide

(AC − R
+
L|R+K+∨K+R+ |LR+ −NH2), which was characterized by

simple sequences and can readily form stable nanoparticles

(self-assembled), and presents excellent thermal stability under

various environmental conditions (Shuai et al., 2019).

Additionally, the P5VP5 nanoparticle reduced the citrus

canker lesions in the leaves of citrus plants. This disease is

caused by Xanthomonas axonopodis pv. citri, and can be

considered one of the most devastating diseases of citrus

plants. This nanoparticle also presented activity against

biofilm formation (Shuai et al., 2019).

6 Challenges and perspectives

The employment of NanoAMPs is still strongly focused on

the biomedical field (Mohid and Bhunia, 2020), especially for

therapeutic applications (Teixeira et al., 2020; Gera et al., 2021),

and studies concerning applications in agribusiness are still

scarce. Although several tools are already available for the

development of this area, many applications remain

unexplored, making more studies and research necessary to

develop solid solutions for problems faced in agriculture as

well as in livestock. Some researchers (Perez-de-Luque and

Rubiales, 2009) have already proposed the use of

nanotechnology strategies for parasitic plant control,

suggesting the nanoencapsulation of herbicides to be used

against parasitic weeds, and noticing the potential of

nanoparticles as magic bullets for the delivery of herbicides,

chemicals, nucleic acids, enzymes and even AMPs targeting

specific plant tissues for the treatment of viruses and

microbial parasites. Additionally, some studies evaluate the

environmental impacts of nanomaterials and conclude that

most of nanoparticles are unlikely to have adverse effects on

human health or on environment (McClements and Xiao, 2017;

Lead et al., 2018; Sohal et al., 2018). Furthermore, the

development and deployment of nanoAMPs can be employed

in protected agriculture, i.e in glasshouses (Sarika et al., 2012).

Thus, NanoAMPs certainly have a great potential in

agribusiness, considering the wide variety of applications

described here and the various benefits, mainly in the

improvement of productivity and safety against microbial

contaminants. However, NanoAMPs remain underdeveloped for

agribusiness applications which development currently underway

and no commercial NanoAMPs products available in the sector.

Finally, we must consider that substantial work has already

been done toward using free AMPs in agriculture as discussed

above, and the use of either AMPs for antimicrobial activity or

food preservation (Keymanesh et al., 2009) also provides a

complete review of many. This paves the way for intensive

research dedicated to improving the supply of nutrients,

pesticides, herbicides and food preservatives through

nanotechnology approaches, using what has already been

tested through free AMPs.
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