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Abstract

We present a method for identifying features (time periods of interest) in data sets consisting

of time-indexed model output. The method is used as a diagnostic to quickly focus the atten-

tion on a subset of the data before further analysis methods are applied. Mathematically, the

infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for

each time output. The result is an EOF reconstruction error map which clearly identifies fea-

tures as changes in the error structure over time. The ubiquity of EOF-type methods in a

wide range of disciplines reduces barriers to comprehension and implementation of the

method. We apply the error map method to three different Computational Fluid Dynamics

(CFD) data sets as examples: the development of a spontaneous instability in a large ampli-

tude internal solitary wave, an internal wave interacting with a density profile change, and

the collision of two waves of different vertical mode. In all cases the EOF error map method

identifies relevant features which are worthy of further study.

1 Introduction

We present a data-centric diagnostic for identifying time subsets of model output which are

worthy of further study. To minimize the cost of uptake and maximize the clarity of the pre-

sentation we have built this diagnostic on Empirical Orthogonal Functions (EOFs), which are

used in an enormous variety of contexts (e.g. [1], [2], [3], [4], [5], etc.) and have implementa-

tions in every commonly used software toolbox (e.g. Matlab, R, Scipy). The method presented

here can be applied to any data set for which an EOF analysis would be appropriate. However,

we will focus on the application to CFD data sets. The method is data driven, using a novel

construction: a map of the EOF reconstruction errors as a function of time and the number of

modes in the reconstruction. The interpretation of this EOF error map yields the identification

of interesting times in each field in the data set for the cost of one Singular Value Decomposi-

tion (SVD) and one norm calculation per time output and choice of reconstruction.

The mathematical ideas behind EOFs have a long history, originating with [6], and go by

many names, including Principal Component Analysis (PCA), Singular Value Decomposition

(SVD), and Principal Orthogonal Decomposition (POD), depending on the community.

These methods produce an orthogonal basis for the state space of a data set, where the basis

vectors (EOFs) are rank-ordered by the amount of variance of the data they capture, as
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recorded in the eigenvalue for each basis vector. In particular, when the data has units of veloc-

ity, the variance has units of energy, so the basis is rank ordered by energy captured. Following

the common parlance, we will use “energy” and “variance” interchangeably. Since the use of all

basis vectors fully reconstructs the data, and the basis is rank-ordered by energy content, this

representation can then be truncated to provide a reduced order reconstruction of the data.

This reconstruction captures the most energy contained in the original data set per basis vector

added, on average [7]. Efficient reconstructions of data are often the goal in statistical analysis,

where EOF methods are referred to as PCA. For a review from this perspective see [8].

EOF methods are common in the atmospheric science, oceanography, and climate science

communities where there has been an attempt to relate individual EOFs either to physical pro-

cesses or to normal modes of the system being sampled. Such efforts have had some success,

for example in the study of the El Niño Southern Oscillation [9], North Atlantic Oscillation

[10], and the Arctic Oscillation [11]. The focus on the first, or “leading”, EOF can be viewed as

the study of a an EOF reconstruction (heavily) truncated to include only the first mode. As

mentioned, some large scale motions have been captured this way, and correspondences have

been drawn between physical processes and the leading EOF. However EOFs form an orthogo-

nal set, and thus adding subsequent EOFs to the reconstruction, while simultaneously expect-

ing those additional modes to correspond to physical processes, is to assume that the physical

processes or normal modes in question are orthogonal. This is not true in general. Instead, a

kind of contamination occurs: [12] applied an EOF analysis to a constructed flow with multi-

ple dominant structures. They found that EOFs roughly corresponding to specific fluid struc-

tures were contaminated by components of other structures (their Figures 3 and 6). Several

modifications to EOF methods have been developed to produce modes which may have a

more direct physical interpretation, but these methods often require a choice to be made, and

it is not often clear which choice is correct. We refer the reader to the review by [5] of EOFs

and their extensions for a history of these difficulties. In the error map method we simply use

the standard EOF, as it is the most widely used. Moreover, we focus on the reconstruction per-

spective in order to build the EOF error map. This avoids the difficulties of focusing on indi-

vidual EOFs outlined above. In addition, the construction of the error map includes errors

from every truncated reconstruction, so there is no need to consider the problem of choosing

a particular EOF to focus on. Because it avoids focusing on either individual EOFs, or individ-

ual EOF reconstructions, the EOF error map method is different from every previous EOF-

based method.

There are, of course, a wide variety of existing data analysis methods for CFD data sets

which are not EOF-based, but none of them serve the same function as the EOF error map

method presented here. There are local, Eulerian (i.e., measurements at fixed locations) meth-

ods to identify vortices based on the decomposition or invariants of the velocity-gradient ten-

sor: the Q-, Δ-, and λ2-criterions for example [13]. There are Lagrangian methods (i.e., based

on moving particles) to identify coherent structures (e.g. transport barriers), such as those

based on Finite Time Lyapunov Exponents [14], [15], or graph theoretic methods [16], [17],

[18]. For a comparison of multiple Lagrangian methods applied to the same benchmark see

[19]. There are a host of methods based on the spectral properties of the Koopman operator

[20], and its finite dimensional approximation the Dynamic Mode Decomposition [21],

which allow identification of structures in fluid flows based on the frequency of the structure’s

motion, such as the flapping frequency of a jet [22]. There are many reduced order methods

besides EOF, including the related POD and Galerkin projection [23], [7]. For a review see

[24]. In fact, there are many more analysis methods available which can be used to study CFD

data sets. All of them make an a priori judgement on the field of interest (e.g. gradient of the

velocity field, inter-particle separation, etc) and proceed with an analysis on that particular

Feature identification in time-indexed model output

PLOS ONE | https://doi.org/10.1371/journal.pone.0225439 December 4, 2019 2 / 17

git). The data set has been made available at:

(https://doi.org/10.5683/SP2/C5K7AJ).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0225439
https://git.uwaterloo.ca/j9shaw/PLOS-one-2019.git
https://doi.org/10.5683/SP2/C5K7AJ


field in the data set. In contrast, the purpose of the EOF error map method is to identify inter-

esting time periods within every field in the model output without an assumption on which

variable is the most important. These features, in each field, then become targets for further

study using any method appropriate, including those just mentioned.

Put another way, the EOF error map method is a diagnostic tool which is applied earlier in

the analysis pipeline than the standard methods just discussed. As such it is not a competitor

with those methods, but a way to facilitate their intelligent application. This is particularly rele-

vant to large, coupled models in fields such environmental fluid mechanics involving biogeo-

chemistry and climate modeling for which the CFD component is only a small portion of the

model. Even sophisticated mathematical tools based exclusively on the fluid mechanics may

miss an important event in one of the other components of the model (e.g. an algal bloom in

the coupled model of a bay). Thus for large coupled models, we envision our method being

applied as part of the model execution, so that every field in the model output would be accom-

panied by identified features. Only the subsequent analysis would be discipline specific.

Error maps also carry a very low overhead. They are constructed directly from model out-

put immediately after the completion of a numerical experiment and the only extra computa-

tional burden is the SVD and error map construction: there is no need to take derivatives of

fields, it is not necessary to have particle data, there is no necessity to tune parameters in a

graph theoretic clustering algorithm, etc. Error maps are used as a diagnostic to quickly iden-

tify features which should be investigated further, by whatever method is deemed useful for

the particular application. This allows error maps to inform decisions on where higher over-

head methods should be applied. In summary, the EOF error map is a low overhead method

applied directly to model output as a way of focusing the application of other methods.

The remainder of the paper is organized as follows. Section 2 gives a brief background on

EOFs (2.1) and discusses truncated EOF reconstructions (2.2) before introducing EOF error

maps (2.3). Section 3 applies the method to the three data sets: the development of a spontane-

ous instability (3.1), an internal solitary-like wave encountering a sharp change in the back-

ground density profile (3.2), and the collision of two waves (3.3). The results show that the

EOF error map method is able to identify time periods of interest in CFD data sets. Section 4 is

a discussion of the main conclusions to be drawn from this work and of possible extensions of

the EOF error map method. Section 5 gives a brief summary and concludes the work.

2 Methods

2.1 Empirical orthogonal functions

We briefly review EOFs in order to set notation, and point out those facts that will be needed

when introducing the error map method. Suppose the data set has M grid points and N time

outputs at times tj, j = 1, . . ., N. This is a sequence of snapshots {x(t1), x(t2), . . ., x(tN)} where

each xðtjÞ 2 R
M. Centre by the time mean, and make the resulting snapshots columns of a sin-

gle matrix X. Then the jth column of X is

Xj ¼ xðtjÞ � hxi ð1Þ

where the angle brackets indicates the time mean. The matrix X is

ðXÞij ¼ xiðtjÞ � hxii ð2Þ

where i indexes the grid points, j indexes the time outputs, and hxii = hxii. Then X is an M by

N matrix whose entries are time mean-centred time series of measurements at the grid points.

The standard derivation of EOF is often motivated by diagonalizing the covariance matrix of
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1

N� 1
XXT to obtain the EOF eigenmodes and eigenvalues λk. However we will instead present

the SVD derivation, as the SVD method is generally more robust than the covariance matrix

diagonalization method [25].

When M� N, as is common in CFD data, applying the SVD to X we obtain [26]

X ¼ U
S

0

" #

VT ð3Þ

Where UM×M and VN×N are orthogonal matrices and SN×N = diag(σ1, . . ., σN). The columns of

U, fu1; . . . ;uNg � R
M

, are the orthonormal spatial EOF basis vectors (modes), where the ith
entry uik in the column vector uk corresponds to the ith grid point of mode k. This basis corre-

sponds to the singular values from S with

s1 � � � � � sN � 0: ð4Þ

Carrying out the multiplication in Eq 3, we obtain [26]

X ¼
Xr

k¼1

skukv
T
k

xðtjÞ ¼
Xr

k¼1

skvjkuk þ hxi

where r = rank(X), and the second equation is the columnwise version of the first with the

time output indexed by j. By multiplying both sides of Eq 3 by UT we find that

uk � ðxðtjÞ � hxiÞ ¼ skvjk; ð5Þ

so that the projection of the centred data onto the EOF basis yields time-dependent coefficients

defined as

akðtjÞ ¼ skvjk: ð6Þ

Therefore the columns of V, fv1; . . . ; vNg � R
N , are the unscaled coefficients correspond-

ing to each mode. The jth entry vjk in the column of vk corresponds to the coefficient at time j
for mode k. The rank ordering of the singular values (Eq 4) becomes a rank ordering of the

scaling of the ak. The data can then be written as

xðtjÞ ¼
Xr

k¼1

akðtjÞuk þ hxi ð7Þ

Note that there are methods of producing EOFs which are dependent on time as well as

space (see section 3.2 of [7]). The SVD method produces spatial EOFs and time dependent

coefficients, which makes the interpretation of the error maps presented in section 2.3 and 3

completely straightforward. As mentioned this derivation was for the case M� N. In general

the number of singular values is min{M, N}, which is N in the cases presented here. There is an

analogous decomposition for M< N.

The submatrix of zeros in Eq 3 as well as the rank limited sum in Eq 7 both make it clear

that at most the first N modes u1, . . ., uN are needed. This leads to the reduced SVD [27],

where U consists of only these columns and there is no submatrix of zeros with S. We

obtained this decomposition using MATLAB’s built in svds command with N modes recov-

ered to avoid the memory constraints of svd (see the accompanying code and the MATLAB

documentation for details). As mentioned, the SVD is a more stable algorithm for calculating
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the modes and eigenvalues of the covariance matrix of X. The connection between the two is

that the columns of U (up to sign) are the modes [7], and the nonzero eigenvalues and singular

values satisfy lk ¼ s
2
k [27]. To reduce notational clutter we have left out the scaling factor on X

of
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p � 1

in this presentation, but in practice it is included for equality with the covariance

matrix. See section 15.4 of [25] for details. See [26] for more details on the SVD, and section

3.4.2 of [7] for more on the connection between SVD and the EOF.

2.2 Truncated EOF reconstructions

Eq 7 makes clear that the data can be thought of as a time mean vector signal with layers of cor-

rections provided by the EOFs. This representation recovers the data completely, so that the

error in the representation of the data set is at or near machine precision. However, the rank

ordering of the singular values (Eq 4) implies that each successive mode added to the sum con-

tributes less variance over time than the previous mode. To make this concrete, project the

data at every time onto mode k and sum:

XN

j¼1

jðxðtjÞ � hxiÞ � ukÞukj
2

¼
XN

j¼1

jðxðtjÞ � hxiÞ � ukÞj
2
jukj

2

¼
XN

j¼1

jakðtjÞj
2

¼
XN

j¼1

; jskvjkj
2

¼ s2
k

XN

j¼1

jvjkj
2

 !

¼ s2
k

ð8Þ

where we’ve used the fact that U and V are orthogonal, along with Eqs 5 and 6. We see that

the sum over time of the contributions of uk is exactly the variance lk ¼ s
2
k . Note that this

equation shows that the contribution λk from uk may be large either because of moderate con-

tributions over most of the simulation, or large contributions over a short time, or some com-

bination. The EOFs have been rank ordered by their total contribution to the reconstruction

summed over time, but not by their contribution at any given time tj. This time information

has been summed out. This is related to the rank ordering of the singular values (Eq 4) provid-

ing a rank ordering in the scaling, but not a rank ordering of the values a1(tj), . . ., ar(tj) at any

specific time tj.
If σi are small for some i> D we can write

xðtjÞ �
XD

k¼1

akðtjÞuk þ hxi ð9Þ

so that truncated EOF reconstructions can be thought of as an energy or variance filter,

because the D EOF reconstruction captures E ¼
PD

k¼1
lk of the energy. We consider only
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these rank-ordered reconstructions of all modes up to and including D, for a total of N recon-

struction for a given data set.

2.3 EOF error maps

With the background material clearly stated, we present the following novel construction. We

are interested in finding features within model output fields which are worthy of further study.

We will employ the SVD reconstructions just outlined to do so. As discussed in the introduc-

tion, individual EOFs do not generally relate to individual physical processes. However, every

process contributes some amount to the total variance of the model output.

Consider the following thought experiment: rank order the (unknown) processes in the

dataset by variance contributed. Just as Eq 8 shows that the contribution of an EOF to the

reconstruction may be large either as a result of moderate contributions over a long duration

or large contributions over shorter durations, so too the rank ordering of processes is the result

of some combination of the size and duration of each process. We expect large variance pro-

cesses to include those with large scales and long duration. We expect small variance processes

to include those with short scales and short duration. In between are medium variance pro-

cesses with large scales and short duration, small scales and long duration, or medium scales

and duration. See Fig 1 for examples.

We wish to identify time periods of interest. This means short or medium duration, and for

the phenomenon to be of interest, probably medium to large scale. This means we are looking

for medium variance processes in the data set. However, as discussed, the EOF does not gener-

ally find processes individually. Instead, the contamination phenomenon described in [12]

implies that as D increases the approximations of multiple processes are simultaneously

Fig 1. Large, medium, and small variance processes. Examples of large, medium, and small variance processes over

time. The upper plot shows a large variance process which has a large scale and long duration, along with a medium

variance process with less variance, but equal duration. The bottom plot shows a small variance process with a small

scale and short duration, along with a medium variance process with larger scale and duration.

https://doi.org/10.1371/journal.pone.0225439.g001
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improved, and the higher the variance of a process, the greater its priority. Every mode added

increases the variance represented rather than adding a process, but as variance represented

increases more processes are approximated well. By convergence, some D approximates all

processes of interest. At the extreme end, if everything is of interest, D = N. Moreover the

speed of convergence, as indicated in the scree (a plot of the eigenvalues), shows that higher

modes essentially represent “noise” (here the quotations are included to indicate that we do

not mean noise in the sense of stochastic processes). This means that some low choice of D
will tend to capture the large scales (as in the “elbow test”, see [8]), while different choices of

D near N are basically the same because the last modes in the decomposition have very small

coefficients. Intermediate choices of D will include those that poorly approximate a variety of

medium variance processes. These are exactly the processes we seek, so the error of the recon-

structions can be used to find them. In particular, changes in the structure of the error over

time serves as an indicator of their presence.

To better understand why reconstruction error can be used to find features, consider Fig 2,

which reconstructions for several choices of D during the breakdown of the leading wave in

the dual pycnocline data set. As D increases it is clear that large variance processes are approxi-

mated first, followed by smaller and smaller processes. As expected the EOF reconstruction

effects multiple processes simultaneously. A choice of D near 1 corresponds to capturing

processes with large variance such as the wave guide. Intermediate choices for D capture the

large variance structures and some, but not all of the medium variance structures. Short to

medium duration processes of interest such as the breakdown of the leading wave are poorly

Fig 2. Error of reconstructions. Continually increasing choices of D at time output 80 in the density field (first 3 choices are the obvious elbow test choices). This time was

chosen to look at the breakdown of the wave, which is a medium variance event with a variety of scales of structures. The top panel is the data, while reconstruction and

reconstruction error are in pairs below it for comparison, with D = 1, 4, 6, 25, 50 increasing downward. As D increases the wave guide is approximated first, followed by

lower variance structures like the breakdown, and finally the fine details of of the breakdown. By D = 25 the large variance wave guide is well approximated, but more

modes are required to capture the fine details of the breakdown. By D = 85 (not shown) there is almost no error anywhere.

https://doi.org/10.1371/journal.pone.0225439.g002
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approximated for some intermediate D values, but as D increases the breakdown is also well

approximated. Finally, a choice of D near N corresponds to an approximation which misses

only noise.

While Fig 2 shows multiple choices for D at a single time, Fig 3 gives an example for two dif-

ferent times and two different choices for D, in order to give some sense of the change in error

over time for a fixed D value. We see that for a low number of modes the error increases during

the medium variance breakdown event. This is because the larger variance background state

and propagation processes have taken precedence in the reconstruction. We also see that for a

high number of modes the error goes down at the time of the breakdown event. This is because

there are so many modes in the reconstruction that medium variance events like the break-

down have been well approximated, and the processes that are left are virtually noise.

Together, Figs 2 and 3 show that the medium variance processes of interest are poorly

approximated for some intermediate values of D. Since these are the processes we are inter-

ested in, we can look at the error of the reconstructions to identify when they occur. When

error is high for a short time, it can indicate the presence of dynamics worthy of further study.

Rather than attempt to determine a single intermediate choice for D which will help identify

times of interest, we simply calculate the error of the reconstruction for every choice of D, and

for all times. In order to collapse the error information to a more manageable and interpretable

size, we use a norm of the time slice error, rather than a full error plot like those in Figs 2 and

3. Moreover if we use the L2 norm at every time slice the error’s distribution is unknown, and

Fig 3. Error of reconstructions over time. Two examples of changes in error of reconstructions over time: the left panel is at time 20 and the right is at time 80. Similar to

Fig 2, top panels are the data, while in pairs underneath we have D = 25, 85 reconstructions and reconstruction errors. For a 25 mode reconstruction the infinity norm

error is greater during the shedding (right) than at time 20 (left). This is because for this lower number of modes, the medium variance shedding event has not yet been

fully captured. For an 85 mode reconstruction the reverse is true: the error is higher during the early time. This is because for this higher number of modes, the medium

variance event has been almost fully captured, and now the very small variance structures in the early times are left (note the change in error scale between the 25 mode

and 85 mode reconstructions).

https://doi.org/10.1371/journal.pone.0225439.g003
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may be spread thin over the whole domain or concentrated in some way. To avoid this ambi-

guity we use the infinity norm to make interpretation more straightforward. The error map

�D(tj) of an EOF reconstruction with D modes at time tj is given by

�DðtjÞ ¼ xðtjÞ �
XD

k¼1

akðtjÞ�k þ hxi

 !�
�
�
�
�

�
�
�
�
�
1

¼
XminfM;Ng

k¼1

akðtjÞ�k þ hxi �
XD

k¼1

akðtjÞ�k þ hxi

 !�
�
�
�
�

�
�
�
�
�
1

¼
XminfM;Ng

k¼1

akðtjÞ�k �
XD

k¼1

akðtjÞ�k

�
�
�
�
�

�
�
�
�
�
1

¼
XminfM;Ng

k¼Dþ1

akðtjÞ�k

�
�
�
�
�

�
�
�
�
�
1

ð10Þ

for each tj. This is simply the infinity norm of the modes excluded from a reconstruction with

D modes at every time step. By construction �D(tj) is a function of both time and the number

of modes used in the reconstruction D. We call this function the error map for the EOF recon-

structions of the data set, or simply “the error map.” The number of modes produced by an

EOF analysis is min{M,N}. The error map is therefore of size min{M,N} × N. In the case of

CFD data sets M> N, and so the error map has size N × N. In practice, forming the error map

is computationally inexpensive, as N tends to be small. The computations are simply an SVD

decomposition, and one norm calculation for every time output and for every choice of D. In

many contexts it is standard practice to perform an EOF analysis anyway, in which case the

EOF error map is easily derived from the existing reconstructions.

3 Results

Although the method developed in this manuscript may be applied to any time-indexed model

output for which an EOF analysis would be appropriate, we will consider concrete examples

from three qualitatively different simulations in stratified flow dynamics. It is not necessary

that the reader have training in fluid dynamics to understand the method presented, but we

provide background for each of the data sets for those who are interested. In order to keep a

consistent focus, and because the varying density is the essential component of stratified flows,

we will focus on the dynamics of density. As discussed in the introduction, in practice the

error map method would be used to identify features in all variables within the data set. For

expository purposes, we have elected to present our method on one variable in multiple flows,

rather than on multiple variables in one flow.

All three data sets are simulated using a spectral collocation method (SPINS [28]). Grid

doubling/halving experiments were performed to ensure that the numerical results were

robust. The details of the physics of the dual pycnocline and collision cases will be discussed in

future publications, while the details of the spontaneous instability case may be found in [29].

As the focus here is on the data analysis method presented, all data sets throughout this manu-

script are presented in terms of grid points, time output number, and numeric field values. All

MATLAB codes for production of these figures, along with all data sets, are included in the

supplementary information.

For reference, the normalized scree of the first thirty modes for all three data sets are plotted

in Fig 4. Note that these three scree are plotted together, but that the total number of modes
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differs by case. The spontaneous instability data set has 131 total modes, the dual pycnocline

data set has 100, and the collision data set has has 150. The fast convergence of the eigenvalues

is clear in each case. Clearly the spontaneous instability has the most variance in the first few

modes, while the dual pycnocline and collision cases have more variance in higher modes.

We now discuss the error maps �D(tj) for each of the data sets under consideration.

3.1 Spontaneous instability

The first data set is the spontaneous shear instability of a very large amplitude internal solitary

wave, studied in detail in [29], following previous related work [30], [31]. Here the flow is ini-

tialized from a solution to the Dubreil–Jacotin–Long (DJL) equation, which is formally equiva-

lent to the stratified Euler equations. The initial wave develops a spontaneous instability at

the rear of the wave. The instability grows and eventually exits the wave. Detailed discussion,

including the effects of three-dimensionalization can be found in [29]. See the top four panels

of Fig 5 for a visual representation of the density field’s evolution in this case. The internal soli-

tary wave serves as a “base” flow with the spontaneous shear instability playing the part of a

temporary perturbation. This data set is thus close to classical hydrodynamic instability theory,

for which a base flow and a perturbation are specified analytically, but still requires a full inte-

gration of the stratified Navier-Stokes equations for a full description since a purely analytical

treatment is not possible in this case. In what follows this case will be referred to as the “spon-

taneous instability” case.

The bottom panel of Fig 5 shows the results of applying the error map method to the spon-

taneous instability data set. For times less than t = 50 there is very little error due to the stable

background profile’s large variance. This means even a reconstruction with D = 1 has small

error over this time period. This is consistent with the large first eigenvalue (Fig 4). As the

Fig 4. Scree plots. Each scree is a plot of the normalized eigenvalues as a function of mode k = 1, . . ., 30, the k being the mode index

from Eq 7. The sum in the normalization is over all eigenvalues of the given dataset. See text for details.

https://doi.org/10.1371/journal.pone.0225439.g004
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instability develops, we see error in the reconstructions for small to intermediate values of D.

This is due to the instability’s low variance (and therefore priority) relative to the background

profile, as discussed in section 2.3. This error continues to the end of the simulation as the

instability evolves. The error map clearly indicates the presence of the instability as a time

period of interest in the data set, as indicated in the obvious change in the structure of the

error over time.

3.2 Dual pycnocline

The second data set we examine is a simulation of an internal wave train in a spatially varying

wave guide, generated by what experimentalists refer to as a lock release: fluid of a set density

is suddenly released from behind a barrier and is allowed to freely form waves in the stratified

tank. The particular situation is set up so that a wave train of internal solitary waves with a

trapped core forms, propagates some distance and then encounters a sharp change in the back-

ground density (a pycnocline). This change removes the near bottom stratification, while the

main wave guide remains unchanged. To the best of our knowledge, there is no a priori theory

for the wave evolution in this cases and we find that the change in the near bottom wave guide

leads to the destruction of the trapped core in the leading wave. This in turn leads to a signifi-

cant increase in short length scale activity and a loss of material from the leading wave, and a

significant perturbation to the second wave in the wave train. Unlike the spontaneous instabil-

ity data set, in this case there is no readily apparent way to define a “base” flow in this case

since even prior to the collapse of the core, the disappearance of the near boundary wave guide

implies a core cannot persist [32]. See the top four panels of Fig 6 for a visual representation of

Fig 5. Spontaneous instability error map. A spontaneous shear instability forms and evolves, with time increasing from the top to the bottom of the first four panels. The

bottom panel is the error map with time increasing left to right, and vertical axis of increasing D, with pairs of vertical green lines indicating the times of the upper panels

as time increases from left to right. See text for details.

https://doi.org/10.1371/journal.pone.0225439.g005
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the density field’s evolution in this case. The dynamics are considerably more complex than

the spontaneous instability dataset, and there is no obvious tie in with classical stability theory.

This case thus acts as a stress test for our analysis method. In what follows this case will be

referred to as the “dual pycnocline” case.

The bottom panel of Fig 6 shows the results of applying the error map method to the dual

pycnocline data set. The clearest error structure is during the shedding event of the leading

wave beginning around t = 65, up until the leading wave leaves the domain around t = 90. The

change in structure of the error map with increasing D during this time period corresponds to

the rank ordering of processes by variance illustrated in Fig 2 at t = 80. Once again the error

map clearly indicates a time period of interest through the changes in the structure of the error

over time.

The observant reader may have noticed the persistent error for low values of D in Fig 6

which was not present in Fig 5. The EOF modes are functions of space but not time, so propa-

gating structures require multiple modes. This is analogous to the way a sequence of hand

drawn stills can be used to create an animation, despite each picture being a functions of space

only. The propagation of the basic internal waves/gravity current structure is an example of a

medium scale process that lasts the duration of the simulation, requiring a minimum amount

of modes to even roughly approximate. This is consistent with the scree in Fig 4, which shows

that more variance is found in higher modes than in the spontaneous instability case. As a

result there is persistent error for low choices of D even before the wave train encounters

the density change around t = 35. This is in sharp contrast to the spontaneous instability case

there was almost no propagation of the steady background state, and so even a one mode

Fig 6. Dual pycnocline error map. An internal wave train propagates from left to right and encounters a sharp change in the background density profile. The bottom

panel is the error map with time increasing left to right, and vertical axis of increasing D, with pairs of vertical green lines indicating the times of the upper panels as time

increases from left to right. See text for details.

https://doi.org/10.1371/journal.pone.0225439.g006
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reconstruction had low error. Similarly, the slight increase in error from t = 40 to t = 65 is due

to the instability in the lead wave induced by interaction with the density change. There are

more small scale processes present during this time, requiring more modes to approximate

those processes well.

3.3 Collision

The third data set we examine involves the repeated collision of mode-1 (i.e. all lines of con-

stant density rise and fall together) and mode-2 (i.e. lines of constant density above a given

height rise, while those below fall, forming a lump-like wave) internal solitary waves in a two

pycnocline stratification. This simulation is constructed based on the observations in [33] that

suggest mode-mode collisions can irreversibly deform the higher mode. By choosing a double

pycnocline we ensure that the interaction takes place without significant instability and three-

dimensionalization. This allows us to confirm that our analysis method is capable of capturing

nonlinear phenomena loosely linked to the concept of solitons, as opposed to turbulent transi-

tion. See the top four panels of Fig 7 for a visual representation of the density field’s evolution

in this case. The dynamics are complex, but compared to the spontaneous instability and dual

pycnocline cases, there are no instances of short scale instabilities, and no turbulence develops.

In fact, the complex pattern of constructive and destructive interference between the waves

would make an analysis method based on kinetic energy or vorticity very difficult to interpret.

This case thus acts as a different test for our analysis method, since the nonlinear effects in this

Fig 7. Collision error map. The repeated collision of a mode-1 wave with a mode-2 wave. Initially (top panel), the mode-2 wave propagates slowly from left to right, and

the mode-1 wave propagates quickly from right to left. At t = 55 the mode-1 reflects from the left wall, as the mode-2 continues propagation to the right. At t = 75 the

mode-1 wave has almost overtaken the mode-2 wave as both propagate to the right. At t = 93 the two waves nearly coincide. The bottom panel is the error map with time

increasing left to right, and vertical axis of increasing D, with pairs of vertical green lines indicating the times of the upper panels as time increases from left to right. See

text for details.

https://doi.org/10.1371/journal.pone.0225439.g007
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case involve soliton–like behaviour that becomes evident during collisions (both wave–wave

and wave–wall). In what follows this case will be referred to as the “collision” case.

The bottom panel of Fig 7 shows the results of applying the error map method to the colli-

sion data set. The waves are initialized so that the mode-2 wave is travelling rightward and the

mode-1 wave is travelling leftward. As discussed for the dual pycnocline case, multiple modes

are required for propagation, but in this case there is propagation of two different waves at two

different speeds. This double propagation requires many modes, and again Fig 4 shows the

variance in higher modes. The smaller error anomalies correspond to reflections from the

boundary: the mode-1 wave at t = 55 and t = 111, and the mode-2 wave at t = 141. The large

error anomaly from t = 60 to t = 100 corresponds to the overtaking of the mode one wave by

the mode two wave. The clear error structure around t = 90 to t = 95 corresponds to the super-

position of the two waves. As in the other two cases, we again see that the error map clearly

indicates features in the data set.

4 Discussion

The EOF error map identified time periods of interest in each of the three cases presented in

section 3. The method was successful even though only one of the three data sets had a classical

“background–perturbation” split. And while the collision data set featured a complex patterns

of constructive and destructive interference, making the kinetic energy and vorticity evolution

very difficult to interpret, the error map method was still successful. Note that these two

dimensional data sets were chosen so that the error map could be easily visualized alongside

time outputs for expository purposes. The error map method still identifies features even if the

data set is so large that it is otherwise difficult to visualize. Moreover, because the error map

method collapses all non-time dimensions for a given reconstruction and time output, the

method can be applied to any time-indexed model output, provided an EOF decomposition is

appropriate and computationally feasible.

For very large data sets, there are alternatives to reduce the computational burden. In par-

ticular it is clear that in many cases the full error map is unnecessary. For completeness we

included reconstruction of all possible D values in the Figures of section 3. However the error

structures would have been clear with fewer modes than the maximum. In particular, for half

as many modes as the maximum we could have drawn all of the same conclusions. This is

unsurprising given the convergence of the eigenvalues in all cases (Fig 4). Of course, given the

steady increase in computational power, some data sets will be too large to fit into memory.

However even here, a rapidly developing literature offers a way to compute the error map,

albeit with an added burden of increased computational time [34], [35].

In the examples given here, error maps were calculated only for model output of consistent

physical units. Our code [28] outputs multiple physical fields, and we chose to focus on only

the density fields. As a result the EOF was carried out on a physical field with only one type of

physical unit. Care must be taken if the model output includes data with different units. While

multiple data types may be included together in an EOF reconstruction, the non-uniform

units cause differing weights of importance on the different data types. Scalings may be chosen

to attempt to correct this, but the more types of units in a data set, the more relative scalings

must be considered. Moreover these scalings can have a profound effect on the resulting EOF

reconstructions. All of this is a general principle when carrying out an EOF analysis. In partic-

ular, for the error map method, the relative scalings effect the reconstructions, and therefore

the error maps as well. This scaling problem is most easily solved by avoiding it altogether:

simply carry out a separate EOF analysis on each data type in the model output, as was done

here.
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The error map method has several possible extensions. For example, reconstructions from

using one of the many modifications of EOF (see [5]) could be employed or a different norm

chosen to measure the error. Although the focus here was on time-indexed model output, a

spatial dimension could also be used as the index. In that case the method identifies spatial

extents of interest, and the error map would be a function of the spatial dimension and D. In

general, any dimension of a data set may be used as an index for the method, provided contin-

uous subsets of that dimension have a useful interpretation. Such extensions are possibilities

for future work.

The error map method also serves as a replacement for rough heuristics such as “the elbow

test” [8] for deciding how many modes to keep. Modes with low energy, which may easily be

removed by a standard elbow test, may still represent important dynamics [24]. In particular

unstable modes start small but grow to be very important to the dynamics. In order to avoid

missing dynamically relevant modes, simply pick a value of D large enough to avoid significant

error structures in the map. This corresponds to picking the lowest row in the error map

which has no significant error at any time.

5 Conclusion

EOF error maps identify time periods of interest in time-indexed model output which are wor-

thy of further study. The method is easily implemented and computationally inexpensive. EOF

error maps are appropriate for any data set for which an EOF analysis is appropriate. In the

case of CFD data sets, this typically means many domain snapshots of a single physical field.

We also recently published the γmethod [36], which was designed primarily to find features in

data sets consisting of time series sampling multiple physical fields. Together these two meth-

ods allow the quick identification of interesting features in a wide variety of data sets.

Supporting information

S1 File. MATLAB code for Fig 4.
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