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Abstract

DNA replication stress promotes genome instability in cancer. However, the contribution of the 

replication stress response to the development of malignancies remains unresolved. The DNA 

replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents 

replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/

remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication 

stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell 

lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice 

lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not 

develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing 

thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the 

proliferation burst following IR and an impaired ability to repopulate the thymus after IR. 

Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to 

respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA 

replication stress response and specifically, Smarcal1 in hematopoietic cell survival and tumor 

development. Our results also provide important insight into the immunodeficiency observed in 

individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.
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Introduction

Genome instability is a hallmark of human cancer and contributes to tumor initiation and 

progression.1 A poorly understood contributor to genome instability is DNA replication 

stress, which refers to processes that induce replication fork stalling and/or collapse and 

impede DNA synthesis.2 DNA damage is accrued through the processing of stalled forks 

into double-stranded DNA breaks, and incomplete DNA replication can result in deletions 

and chromosomal abnormalities.2,3 Replication stress has been identified in both pre-

malignant and cancerous lesions and is associated with tumor development, progression, and 

evolution.4,5 Replication-associated DNA damage is thought to induce selective pressure to 

inactivate tumor suppressive programs in pre-malignant cells and provide a source of 

mutation within tumor cells.6 However, in response to replication-associated DNA damage, 

cells activate a DNA damage response to facilitate the completion of DNA replication and 

repair damaged DNA to minimize the threat to the genome.3,7 While replication stress has 

been linked to tumorigenesis, the contribution and function of specific replication stress 

response proteins in tumor development remain unknown.

Mammalian cells express several proteins that repair and restart stalled replication forks and 

promote genome stability during replication stress. One such protein, SMARCAL1, binds 

forked DNA structures.8 It is recruited to stalled replication forks, through an interaction 

with the single-stranded (ss) DNA-binding protein replication protein A (RPA). There, 

SMARCAL1 promotes fork stabilization and repair by catalyzing the annealing of RPA-

coated ssDNA to remodel stalled replication forks.9–16 Bi-allelic mutations in SMARCAL1 
cause the pleiotropic disorder Schimke Immuno-osseous Dysplasia (SIOD), which is 

characterized by immunodeficiency, spondyloepiphyseal dysplasia, facial dysmorphism, and 

progressive nephropathy.17 While the biochemical function of SMARCAL1 at replication 

forks has been investigated, the in vivo functions of SMARCAL1, specifically regarding its 

role in tumorigenesis and the mechanism(s) driving the clinical phenotypes of SIOD, remain 

unresolved.

Here we report that Smarcal1 is a critical effector of the replication stress response in 

hematopoietic cells in vivo. In an irradiation (IR)/replication stress-induced model of T-cell 

lymphomagenesis, a deficiency in Smarcal1 resulted in elevated DNA damage and a 

significant delay in T-cell lymphoma development. Smarcal1 was required for hematopoietic 

cell survival during forced proliferation from multiple stimuli and for repopulation of the 

thymus following IR. Thus, our data establishes Smarcal1 as a critical mediator of 

hematopoietic cell survival during acute replication stress via its genome-protecting 

functions. Moreover, these results also offer an explanation behind the immunodeficiency 

exhibited by SIOD patients.

Results

Smarcal1 knockout mice express a non-functional truncated protein

To investigate the in vivo functions of Smarcal1 during tumor development and acute 

replication stress, we evaluated Smarcal1 knockout mice (Smarcal1Δ/Δ).18 The targeting 

construct used to generate the Smarcal1Δ/Δ mice suggests an N-terminal truncated protein 
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lacking amino acids 1-293 could be expressed; this region encodes the RPA-binding domain, 

the first HARP domain, and a portion of the second HARP domain (Fig. 1A). Western 

blotting using an N-terminal specific Smarcal1 antibody showed half the levels of the 110 

kDa full-length protein in Smarcal1+/Δ MEFs and its expected loss in Smarcal1Δ/Δ MEFs 

(Fig. 1A). A C-terminal specific antibody detected a ~70 kDa Smarcal1 protein in these 

same cells (Fig. 1A), verifying the expression of truncated Smarcal1 (Smarcal1Δ).

To determine whether Smarcal1Δ retained any functions of the wild-type protein, we 

performed in vitro analyses. Previous studies demonstrated that wild-type Smarcal1 is 

localized to stalled replication forks through its interaction with RPA.9,11–14 To assess if 

Smarcal1Δ, which lacks its RPA binding domain, can localize to stalled replication forks, 

U2OS cells were transfected with vectors encoding a fusion protein of GFP and either 

SMARCAL1Δ or wild-type SMARCAL1. GFP foci corresponding to SMARCAL1 

localization to stalled replication forks induced by hydroxyurea were observed in cells 

expressing wild-type GFP-SMARCAL1 (Fig. 1B). In contrast, only diffuse GFP (no GFP 

foci) was present in cells expressing GFP-SMARCAL1Δ (Fig. 1B). These results indicate 

Smarcal1Δ is unable to localize to sites of replication stress.

Smarcal1 promotes genome stability through its fork regression and remodeling activities, 

which require its HARP2 domain.10,15,16 To measure this activity of Smarcal1Δ and to 

determine whether this truncated protein can exert any dominant negative effects against 

wild-type Smarcal1, fork reversal assays were performed. Substrates with a leading-strand 

gap were incubated with increasing concentrations of SMARCAL1Δ alone or in the 

presence of wild-type SMARCAL1 (Fig. 1C). Fork regression was not observed in reactions 

containing SMARCAL1Δ alone, whereas wild-type SMARCAL1 induced fork regression 

regardless of the concentration of SMARCAL1Δ (Fig. 1D). Thus, the N-terminal truncated 

Smarcal1 protein is functionally dead and appears to exert no dominant negative effects on 

wild-type Smarcal1.

Loss of Smarcal1 delays gamma irradiation (IR)-induced T-cell lymphomagenesis

Repeated whole body, low-dose IR of young mice induces T-cell lymphoma development, 

reportedly through the accumulation of DNA mutations in a hematopoietic stem or 

progenitor cell (HSPC) or an early T-cell progenitor derived from an HSPC.19,20 Following 

each round of irradiation, HSPCs rapidly proliferate to repopulate the lymphoid 

compartments depleted by IR-induced apoptosis. The presence of IR-associated DNA 

damage, coupled with the proliferative burst that occurs after IR exposure, is expected to 

generate significant levels of replication stress in both cycling HSPCs and the HSPC-derived 

thymic progenitors repopulating the depleted thymus following each radiation cycle.

To investigate the role of Smarcal1 in IR/replication stress-mediated T-cell 

lymphomagenesis, littermate-matched mice of all three Smarcal1 genotypes were subjected 

to 4 weekly cycles of low-dose IR. Smarcal1 wild-type mice developed T-cell lymphomas at 

the expected rate with a mean survival of 143 days (Fig. 2A).19 However, Smarcal1+/Δ and 

Smarcal1Δ/Δ mice had a delay in tumor onset and significantly increased overall survival 

(Fig. 2A, p=0.0399, log-rank test; mean survival 180 and 237 days respectively). Notably, 

500 days after the last dose of IR, 23% of Smarcal1+/Δ mice and 29% of Smarcal1Δ/Δ mice 
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were still alive, whereas by 450 days, all of the Smarcal1+/+ littermates had developed 

tumors and were sacrificed (Fig. 2A).

Genes that influence tumorigenesis can alter the rate of tumor development and/or the types 

of tumors that develop; therefore we also evaluated the tumor spectrum in the Smarcal1-

deficient mice. As expected, most (89%) of the Smarcal1+/+ mice developed T-cell 

lymphomas, while 11% developed benign adenomas (Fig. 2B). Surprisingly, T-cell 

lymphomas emerged in only 65% of the Smarcal1+/Δ mice, whereas 12% developed 

sarcomas (Fig. 2B). Leiomyosarcoma, hemangiosarcoma, and pleiomorphic sarcoma were 

observed in Smarcal1+/Δ mice (Fig. 2C). Two of these sarcomas occurred in relatively young 

mice (124 and 230 days old), indicating they did not emerge due to old-age. Only 59% of 

Smarcal1Δ/Δ mice developed T-cell lymphomas and an additional 12% had undetermined 

pathology (e.g., hind limb paralysis and death from unknown cause) (Fig. 2B). The 

reduction in T-cell lymphoma frequency for both Smarcal1+/Δ (24% reduction) and 

Smarcal1Δ/Δ mice (30% reduction) was significant (p=0.0400 +/+ vs. +/Δ and p=0.0216 +/+ 

vs. Δ/Δ, t-tests). The T-cell lymphomas that arose in all genotypes were Thy1.2 positive and 

also typically CD8+ or CD8+/CD4+ positive (Supplemental Fig. 1).

Remarkably, 23% of Smarcal1+/Δ and 29% of Smarcal1Δ/Δ mice never developed a tumor up 

to 500 days after the last dose of IR, whereas tumors were present in all Smarcal1+/+ mice. 

This difference in tumor incidence was significant (p=0.0194 +/+ vs. +/Δ and p=0.0089 +/+ 

vs Δ/Δ, t-tests). Taken together, these data demonstrate that loss of Smarcal1 increased 

overall survival by inhibiting IR-induced T-cell lymphomagenesis and preventing tumor 

development altogether in a significant fraction of the mice. Our data also suggest that 

Smarcal1 haploinsufficiency influences tumor cell of origin, as several Smarcal1+/Δ mice 

developed sarcomas, which are not typically associated with IR-induced tumorigenesis.

Smarcal1-deficient thymocytes do not have an altered sensitivity to radiation

To gain insight into the biological mechanism behind the delay in tumor development 

observed in Smarcal1-deficient mice and since studies have disagreed on the requirements of 

Smarcal1 for the response to IR9,11,13,21, we first evaluated T-cell populations in the thymus 

in response to IR. We first assessed thymic T cells in unirradiated mice. There were similar 

percentages of CD4/CD8 double-positive (DP) and CD4 and CD8 single-positive (SP) T 

cells in Smarcal1-deficient mice compared to wild-type littermates (Fig. 3A and 

Supplemental Fig. 2A). There appeared to be reduced thymic cellularity in Smarcal1+/Δ and 

Smarcal1Δ/Δ mice; however, the reductions in total numbers of DP and SP thymocytes were 

not statistically significant (Fig. 3B and 3C and Supplemental Fig. 2B). Thus, loss of one or 

both alleles of Smarcal1 does not significantly alter thymic T-cell numbers or the proportion 

of specific thymocyte populations under normal physiologic conditions.

Because differences in radiation sensitivity could alter the rate of tumorigenesis in mice, we 

evaluated thymocytes in littermates during the apoptosis phase induced by IR. Compared to 

unirradiated mice, all Smarcal1 genotypes showed a reduction in the percentage of DP 

thymocytes of ~30% at 24 hours and ~60% at 48 hours after a single 1.75 Gy dose of IR 

(Fig. 3A). The numbers of DP and SP thymocytes fell precipitously at each interval 

evaluated after IR (Fig. 3C and Supplemental Fig. 2A and 2B). Total DP numbers were 
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reduced by >95% in all genotypes 48 hours post-IR, indicating a similar ablation of the 

thymic compartment for all mice (Fig. 3C). Thymocyte apoptosis, as measured by cleaved 

caspase 3/7 and Annexin V, was analogous between all Smarcal1 genotypes 24 hours after 

IR (Fig. 3D). Similarly, thymocytes from littermates of all genotypes showed comparable 

amounts of phosphorylated histone H2AX (γH2AX), a marker of DNA breaks 24 hours 

post-IR (Fig. 3E). Therefore, a deficiency in Smarcal1 does not appear to alter sensitivity to 

IR.

To determine if a loss of Smarcal1 would impact the cell cycle arrest that occurs upon 

radiation exposure, BrdU incorporation was measured in DP thymocytes. All Smarcal1 
genotypes showed a similar percentage of BrdU positive DP thymocytes in the absence of IR 

(Fig. 3F). Twenty-four hours after IR, DP thymocytes in littermates of all genotypes had 

<1% BrdU incorporation (Fig. 3F and Supplemental Fig. 2C), demonstrating that Smarcal1-

deficient cells have an intact and functioning DNA-damage induced cell cycle arrest 

response. Therefore, the early response to IR-induced DNA damage that results in cell cycle 

arrest and apoptosis is not altered with loss of Smarcal1 and likely does not contribute to the 

observed delay in T-cell lymphoma development in the Smarcal1+/Δ and Smarcal1Δ/Δ mice.

Smarcal1-deficient mice have reduced numbers of T cells during the proliferative response 
to IR

Following whole-body IR, thymocytes undergo apoptosis within 48 hours (Fig. 3), requiring 

a replicative burst of HSPCs to generate precursor T cells that then proliferate and 

differentiate to repopulate the thymus, which is observed 72 hours after IR.22 To evaluate 

whether Smarcal1-deficient thymocytes are impaired during this proliferative burst, we 

evaluated thymocyte populations 72 hours following IR. Compared to wild-type littermates, 

there was a significant decrease in both the percentage and total number of DP T cells and a 

reduction in the number of SP thymocytes in Smarcal1+/Δ and Smarcal1Δ/Δ mice (Fig. 4A, 

Supplemental Fig. 3). These data indicate Smarcal1-deficient mice have an impaired ability 

to repopulate the thymus after IR.

To investigate the possible explanations for the decrease in thymocytes detected in mice 

lacking Smarcal1 during the proliferative burst, we first measured BrdU incorporation. At 72 

hours post-IR, all Smarcal1 genotypes showed an analogous percentage (~40%) of DP 

thymocytes had incorporated BrdU (Fig. 4B). This suggested there were similar numbers of 

thymocytes cycling in Smarcal1-deficient mice as in wild-type littermates. We then 

evaluated DNA damage and apoptosis, both of which are consequences of unresolved 

replications stress. As compared to wild-type thymocytes, there were significantly increased 

numbers of γH2AX foci (Fig. 4C) and DNA breaks (Fig. 4D) in Smarcal1+/Δ and 

Smarcal1Δ/Δ littermates, 72 hours after IR. Additionally, Smarcal1-deficient thymocytes had 

elevated levels of apoptosis, as measured by cleaved caspase 3/7 activity (Fig. 4E). Thus, 

thymocytes lacking one or both alleles of Smarcal1 have increased DNA damage and 

apoptosis during a time of rapid proliferation, indicating increased sensitivity to replication 

stress. These data also suggest the decreased ability to respond to replication stress caused 

from the proliferative burst following IR likely contributes to the delay in T-cell 

lymphomagenesis in Smarcal1-deficient mice.

Puccetti et al. Page 5

Oncogene. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Loss of Smarcal1 results in decreased HSPCs following IR

Because Smarcal1-deficient mice showed defects in repopulating the thymus after IR and 

thymic progenitor cells are derived from HSPCs that have been driven out of 

quiescence22,23, we assessed HSPC populations. We identified the HSPC-enriched LSK 

population (lineage-, cKit+, Sca1+), which we further refined into multi-potent progenitors 

(MPPs; lineage-, cKit+, Sca1+, CD48+, CD150-) and long-term hematopoietic stem cells 

(LT-HSCs; lineage-, cKit+, Sca1+, CD48-, CD150+) (Supplemental Fig. 4A).24,25 To 

determine whether there were differences in HSPCs in unstressed Smarcal1-deficient mice, 

we evaluated unirradiated mice. There were similar numbers of LSKs, MPPs, and LT-HSCs 

in Smarcal1-deficient mice compared to wild-type littermates (Fig. 5A and 5B). The 

percentages of these HSPC populations were also analogous between genotypes 

(Supplemental Fig. 4B).

To determine whether loss of Smarcal1 affected rapidly cycling HSPCs, we evaluated HSPC 

populations at intervals following IR when HSPCs are induced to proliferate. Compared to 

wild-type littermates, there was a significant decrease (~30%) in each of the LSK, MPP, and 

LT-HSC populations in Smarcal1+/Δ and Smarcal1Δ/Δ mice 24 hours after IR (Fig. 5A, 5B 

and Supplemental Fig. 4C). At 72 hours after IR, there was a ~40%, ~55%, and ~30% 

reduction in the LSK, MPP, and LT-HSC populations, respectively, in the Smarcal1+/Δ mice 

compared to wild-type littermates (Fig. 5A and 5B). Similarly, the Smarcal1Δ/Δ mice showed 

a ~60%, ~65% and ~40% decrease, respectively, in these same populations compared to 

wild-type mice (Fig. 5A and 5B). Therefore, the decreased numbers of HSPCs likely 

contributes to the delay in repopulation of the thymus and the inhibition of 

lymphomagenesis observed in Smarcal1-deficient mice as there are fewer HSPCs with the 

potential to undergo transformation.

To determine if the HSPC reduction observed in Smarcal1-deficient mice was due to 

differences in proliferation rates and/or increased sensitivity to replication stress, we 

measured BrdU incorporation in the LSK compartment at intervals following whole-body 

IR. At 24 hours post-IR, we observed an analogous significant increase in BrdU positive 

LSKs, MPPs and LT-HSCs in all Smarcal1 genotypes compared to unirradiated mice, and 

the percentage of BrdU positive cells remained elevated above steady-state in all genotypes 

72 hours post IR (Fig. 6A). Since Smarcal1+/Δ and Smarcal1Δ/Δ LSKs appeared to be 

proliferating at equal rates to wild-type Smarcal1 LSKs in response to IR, we measured 

DNA damage and apoptosis in bone marrow cells during this forced proliferative stress. 

Both Smarcal1+/Δ and Smarcal1Δ/Δ bone marrow cells had significantly increased numbers 

of cells with γH2AX foci (Fig 6B) and elevated amounts of broken DNA (Fig. 6C) 24 hours 

after IR. Subsequently, Smarcal1-deficient bone marrow showed increased numbers of 

apoptotic cells as detected by cleaved caspase 3/7 activity 72 hours following IR (Fig. 6D). 

These data indicate Smarcal1 is required to respond to proliferative stress in HSPCs, and 

loss of one or both alleles of Smarcal1 increases HSPC susceptibility to DNA breakage 

caused by replication stress, which results in HSPC apoptosis.
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Smarcal1 deficient HSPCs are more sensitive to replication stress

To further examine HSPC function and sensitivity to replication stress in Smarcal1-deficient 

mice, we utilized stimuli other than IR to induce in vivo replication stress. We subjected a 

cohort of Smarcal1+/+, Smarcal1+/Δ and Smarcal1Δ/Δ littermates to repeated injections of 5-

fluorouracil (5-FU), a pyrimidine analogue that kills cycling hematopoietic cells, and 

thereby drives a burst of HSPC proliferation.26 Compared to wild-type littermates, 

Smarcal1-deficient mice showed significantly reduced survival when challenged with 

repeated replication stress from 5-FU (Fig. 7A; p=0.0194, log-rank test). Thirty-five days 

after the first 5-FU injection, 52% of wild-type mice were still alive, whereas only 5% of 

Smarcal1+/Δ and 16% of Smarcal1Δ/Δ mice were alive. These data show bone marrow cells 

lacking one or both alleles of Smarcal1 have increased sensitivity to a form of repeated, 

acute replication stress distinct from IR, demonstrating a requirement of Smarcal1 to 

respond to multiple forms of replication stress.

To directly compare the functionality of Smarcal1-deficient HSPCs in response to forced 

proliferation, we performed competitive bone marrow transplants. Littermate donor CD45.2 

Smarcal1+/+, Smarcal1+/Δ, and Smarcal1Δ/Δ bone marrow cells were injected with CD45.1 

wild-type bone marrow cells (1:1 ratio) into lethally irradiated CD45.1 recipients. Four 

weeks post-transplant, and at each of the subsequent analyses, we detected a significant 

decrease in the percentage of CD45.2 peripheral leukocytes in recipient mice that received 

Smarcal1+/Δ or Smarcal1Δ/Δ bone marrow compared to mice that received wild-type bone 

marrow (Fig. 7B). By week 16, mice that received wild-type bone marrow had ~43% of 

circulating CD45.2 expressing leukocytes, whereas only ~32% of circulating leukocytes 

expressed CD45.2 in mice that received Smarcal1+/Δ or Smarcal1Δ/Δ bone marrow (Fig. 7B).

We also evaluated CD45.2 expression in thymocytes and bone marrow cells in recipient 

mice at sacrifice (16 weeks post-transplant). Compared to mice that received wild-type bone 

marrow, we observed a decrease in the percentage of CD45.2 positive cells in the DP and SP 

T-cell compartments within the thymus of mice that received Smarcal1+/Δ or Smarcal1Δ/Δ 

bone marrow (Fig. 7C). Moreover, analysis of bone marrow revealed a significant reduction 

in the number of CD45.2 positive total bone marrow cells in mice that received Smarcal1-

deficient cells with decreases in the numbers of LSKs and MPPs (Fig. 7D). There was not a 

significant reduction in the less proliferative LT-HSCs in mice that received Smarcal1-

deficient bone marrow (Fig. 7D). Therefore, these data demonstrate Smarcal1-deficient 

HSPCs are less functionally fit relative to wild-type HSPCs when challenged to repopulate 

the hematopoietic system, providing further evidence that Smarcal1 is required by HSPCs to 

mediate a normal response to replication stress.

Discussion

Biochemical and cellular analysis of Smarcal1 has shown it is activated by DNA replication 

stress and recruited to stalled replication forks. There Smarcal1 facilitates the completion of 

DNA synthesis by catalyzing fork remodeling, which is thought to promote genome 

stability.9–16 However, the in vivo significance of these findings, particularly in relationship 

to the development of malignancies and SIOD, the disease associated with mutant Smarcal1, 

remained unresolved. Our data show that functional Smarcal1 is necessary for cellular 
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viability during acute replication stress in hematopoietic cells. A lack of even one allele of 

Smarcal1 was sufficient to confer sensitivity to multiple forms of replication stress in 

hematopoietic cells, leading to increased DNA damage and apoptosis. However, our data 

also unexpectedly revealed that being able to respond properly to replication stress 

contributes to tumorigenesis. Loss of one or both alleles of Smarcal1 significantly delayed 

DNA-damage induced T-cell lymphomagenesis and prevented lymphoma development 

altogether in a quarter of the mice. Thus, a Smarcal1 deficiency protected mice from IR-

induced lymphomagenesis, indicating that a disabled replication stress response could shield 

against DNA replication stress-induced tumorigenesis.

IR-induced T-cell lymphomagenesis is reportedly due to the combined effects of acquired 

mutations in an HSPC, resulting in its cellular transformation, and the induced proliferation 

of this cell from signals that indicate lymphoid compartments need to be repopulated.20 

Reducing HSPC proliferation by blocking lymphocyte apoptosis after IR inhibited 

lymphoma development, demonstrating the critical role of the apoptotic response during IR-

mediated lymphomagenesis.22,23 Our data show that more DNA breaks and apoptosis occur 

in lymphocytes and bone marrow cells that have lost Smarcal1 during the proliferative, 

repopulation phase of the IR response, but that Smarcal1-deficient hematopoietic cells are as 

equally sensitive to the immediate apoptotic effects of IR as wild-type hematopoietic cells. 

These results are in contrast to data with other cell systems (shRNA and knockout chicken 

cell lines) that indicate a reduction or loss of Smarcal1 increases radiosensitivity.11,21 Our 

results indicate Smarcal1 does not contribute to gamma radiation sensitivity, but it is 

necessary for the proliferation that ensues as a consequence of the IR. Our data show the 

replication stress response that occurs due to HSPCs being forced out of quiescence 

necessitates Smarcal1 be functional to aid in the repair and restart of replication forks. 

Similarly, as they attempt to repopulate the thymus, HSPC-derived precursor T cells also 

experience proliferative stress that needs functional Smarcal1 to survive. With a 

haploinsufficiency or loss of both alleles of Smarcal1, both mature and precursor 

hematopoietic cells default to apoptosis from the replication stress due to the increased 

amount of unrepaired DNA damage. This leads to reduced pools of hematopoietic cells in 

the thymus and the bone marrow with mutated DNA. In support of this concept, we 

observed a significant reduction in the number of Smarcal1-deficient DP thymocytes and 

HSPCs 72 hours after IR compared to wild-type littermates. Additionally, Smarcal1 binding 

to RPA is reported necessary to facilitate the repair of double-strand DNA breaks.21 

Therefore, although the initial apoptotic response of lymphocytes is required for IR-induced 

T-cell lymphomagenesis22,23, the clearance of proliferating progenitors with damaged DNA 

also conferred protection against lymphoma development.

Although sarcomas arise from mesenchymal cells, the actual cell of origin of sarcomas is 

controversial. It is hypothesized that a sarcoma arises from a mesenchymal stem or 

progenitor cell that has the potential to differentiate into osteoblasts, chondroblasts, and 

adipocytes.27 Sarcoma development is extremely rare in the IR model we used; yet, 12% of 

the Smarcal1 heterozygous mice developed sarcomas rather than T-cell lymphomas in 

response to IR. This was not because these 12% lived longer than the rest of the cohort and 

developed sarcoma due to age. Instead, these data suggest that a Smarcal1 

haploinsufficiency conferred an increased susceptibility to the development of sarcoma from 

Puccetti et al. Page 8

Oncogene. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IR. If a mesenchymal stem or progenitor cell is the cell of origin of sarcomas, a reduced 

ability of these cells to respond to replication stress during a time of increased mesenchymal 

cell development (weeks 4–8 of mouse life) occurred preferentially in the heterozygous mice 

and resulted in the acquisition of mutations that allowed it to transform and not die. It is 

unclear why the Smarcal1Δ/Δ mice also did not develop sarcomas, but suggests that complete 

loss of functional Smarcal1 conferred protection against sarcoma development. Future 

investigations are needed to determine the reasons for the development of sarcomas in 

Smarcal1 heterozygous mice.

While our results have demonstrated a critical function for Smarcal1 during tumor 

development, our findings also have significant implications for other fields of research and 

particularly, SIOD patients. For example, hematopoietic cell proliferation and replication 

stress occurs in response to multiple stimuli, including infection, injury, and aging.28–30 

Physiological stimuli that drive hematopoietic stem cells out of quiescence lead to the 

accrual of DNA damage, apoptosis, and stem cell attrition.28,31–33 Over time, proliferative 

stress results in DNA damage and stem cell loss or dysfunction. Our data reveal that 

Smarcal1 is critical for normal HSPC function in response to multiple forms of proliferative 

stimuli (IR, 5-FU, and competitive transplantation). With each of these stimuli, Smarcal1-

deficient HSPCs were unable to respond as well as wild-type HSPCs and this resulted in 

reduced numbers of HSPCs, leading to reduced tumorigenesis, diminished cell expansion, 

and cell death.

Our data also provide a significant increase in understanding of the pathophysiology of 

SIOD. SIOD patients with homozygous mutations in SMARCAL1 are characterized by a 

severe, progressive immunodeficiency and increased rates of infection.17,34 Our data 

demonstrate a lack of Smarcal1 in rapidly cycling hematopoietic cells results in elevated 

DNA damage and loss of hematopoietic cells. When responding to infection, lymphocytes 

rapidly proliferate, which likely leads to increased replication stress and elevated 

lymphocyte apoptosis in SIOD patients. HSPCs would then need to proliferate to repopulate 

the lymphocyte compartments, resulting in elevated HSPC replication stress and apoptosis, 

which leads to a further decrease in lymphocytes and increased susceptibility to infection. 

Therefore, a reduced ability to repopulate lymphocyte compartments following normal 

childhood infections may explain the progressive lymphopenia observed in SIOD 

patients.17,34 Additionally, a recent report suggests that T cells in SIOD patients may have 

decreased ability to proliferate due to reduced expression of the IL-7α receptor.35 We 

determined that neither circulating nor pre-cursor thymic T cells in Smarcal1-deficient mice 

had a decrease in IL-7α receptor (data not shown). However, they did have defects in their 

ability to respond to replication stress and repopulate the thymus.

Therefore, our data significantly increase our understanding of the function of Smarcal1 in 

replication stress in vivo by revealing its requirement for mediating replication stress to 

protect from hematopoietic cell loss. Our results also indicate that inhibiting DNA 

replication can provide a protective function against tumorigenesis caused from replication 

stress. Finally, our data likely reveal the biological mechanism behind the lymphoid 

deficiencies of SIOD patients as being an HSPC defect.
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Materials and Methods

Mice

C57Bl/6 Smarcal1+/Δ mice were from Dr. Cornelius Boerkoel (University of British 

Columbia). Littermates (male and female) were used for all experiments. For IR-induced T-

cell lymphomagenesis, littermates were irradiated (1.75 gray, 137Cs) once weekly for four 

weeks at 28 days of age (+/−2 days). Mice were monitored and sacrificed upon tumor 

development and/or signs of illness. At 500 days, any mouse that was still alive was 

sacrificed. Tissues from all mice in the study were harvested for histological/pathological 

analysis (see Supplemental Material). For 5-fluorouracil (5-FU) experiments, 6–8 week-old 

littermates were intraperitoneally injected with 5-FU (150 mg) once weekly for 5 weeks and 

sacrificed at humane endpoints. Competitive (1:1 ratio) bone marrow transplants were 

performed following standard procedures (details in Supplemental Material). Mouse studies 

were approved by the Vanderbilt University and Thomas Jefferson University Institutional 

Animal Care and Use Committees and adhered to all state and federal guidelines.

Cell culture and vectors

Mouse embryonic fibroblasts (MEFs) were isolated and cultured as previously described.36 

U2OS cells (ATCC) were cultured in DMEM plus 7.5% FBS. To induce fork stalling, U2OS 

cells were transfected with vectors encoding wild-type GFP-SMARCAL1 or GFP-

SMARCAL1Δ and treated with 2 mM hydroxyurea (HU) for 4 hours as previously 

described.9

Flow cytometry

HSPCs were harvested from femurs and identified with a biotinylated hematopoietic lineage 

kit (B220, CD3, Gr-1, CD11b and Ter119; eBioscience) and a panel of antibodies against 

specific HSPC surface markers (details in Supplemental Material). BrdU incorporation in 

thymi and bone marrow from 6–8 week old mice 1–3 days after a single 1.75 Gy dose of IR 

was performed according to manufacturer’s instructions (BD Biosciences) four hours after 

intraperitoneal injection (1mg). Cells were incubated with FITC-Annexin-V and 7-AAD or 

Caspase 3/7 detection reagent according to the manufacturer (BD Biosciences or 

ThermoFisher, respectively). All samples were evaluated (blinded) on a FACScalibur (BD 

Biosciences) and analyzed using FlowJo.

Western blotting

Western blotting of whole cell lysates from MEFs isolated from Smarcal1+/+, Smarcal1+/Δ, 

and Smarcal1Δ/Δ embryos was performed as previously described.37 Antibodies directed 

against the N- and C-terminus of Smarcal1 were used as previously described.9

Fork reversal assay

Fork reversal assays were completed using gel-purified, radio-labeled DNA substrates 

containing a leading strand gap and 0.5–2nM SMARCAL1Δ with or without 2nM wild-type 

SMARCAL1 in fork reversal reaction buffer as previously described.16
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Immunofluorescence

Immunofluorescence for γH2AX was performed using a standard protocol (details in 

Supplemental Material); a minimum of 40 cells per mouse were evaluated (blinded) for each 

experiment. Activated Caspase 3/7 was measured with the CellEvent Caspase 3/7 detection 

reagent (ThermoFisher) according to the manufacturer’s instructions. Nuclei were 

counterstained with DAPI (Sigma-Aldrich) or ToPro3-iodide (Invitrogen) and images 

captured using microscopy (Zeiss LSM 510, Nikon A1R, or Nikon Eclipse 80i); a minimum 

of 110 cells per mouse were evaluated (blinded) for each experiment.

Neutral Comet Assays

Neutral comet assays with thymocytes and total bone marrow cells were performed as 

previously described.38,39 A minimum of 50 cells per mouse were evaluated (blinded) per 

experiment.

Statistics

Log-rank tests (Figures 2A and 7A), t-tests (Figures 2B, 7C, and 7D), one-way ANOVA 

followed by a Bonferroni correction (Figures 4A, 4C, 4D, 4E, 5A, 5B, 6B, 6C, and 6D), and 

two-way ANOVA (Figure 7B) were used to determine statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. N-terminal truncated Smarcal1 is non-functional
A) Schematic of wild-type (WT) and N-terminal truncated Smarcal1 (Smarcal1Δ) with 

functional domains indicated. Whole cell lysates from mouse embryonic fibroblasts (MEFs) 

of the indicated genotypes were Western blotted with antibodies against the N- or C-

terminus of Smarcal1. Asterisks denotes location of a non-specific band. B) Representative 

images of U2OS cells with wild-type (WT) GFP-SMARCAL1 or GFP-SMARCAL1Δ 

following HU treatment. C) Schematic of the in vitro fork reversal assay with the in vivo 
physiological reaction shown in brackets. 32P labeled strands are indicated with an asterisk. 

D) Fork reversal activity of increasing concentrations of SMARCAL1Δ was measured alone 

and in the presence of wild-type (WT) SMARCAL1. Native gel electrophoresis performed 

(left). Mean of fork regression quantification using phosphorimaging of three separate 

experiments is graphed (right); error bars are SEM.
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Figure 2. Loss of Smarcal1 inhibits radiation-induced T-cell lymphomagenesis
A) Kaplan-Meier survival curves of the indicated genotypes; overall p value denoted on 

graph; p=0.0307, +/+ vs. +/Δ and p=0.0217, +/+ vs. Δ/Δ; log-rank tests. Number of mice 

denoted by n. B) Tumor spectrum in the mice in A. C) Representative H&E images of the 

sarcomas that arose in Smarcal1+/Δ mice.
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Figure 3. Deficiency in Smarcal1 does not alter thymocyte sensitivity to radiation
A) Representative dot plots of littermate matched thymic T cells without or at the indicated 

times following a single dose of 1.75 Gy of IR (left). Mean of data from seven independent 

experiments (right). B) Total thymic cellularity in unirradiated littermates. C) CD4/CD8 DP 

thymocytes not subjected to IR or at the indicated times after IR. D-F) Thymi harvested 24 

hours after littermates were subjected to a single dose of 1.75 Gy of IR. D) Cleaved caspase 

3/7 activity and Annexin V positivity in thymocytes measured by flow cytometry. E) 

Immunofluorescence for γH2AX was quantified; thymocytes with >5 γH2AX foci graphed. 
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F) Mean BrdU incorporation of three independent litters. Error bars represent SEM; n 

denotes the number of mice.
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Figure 4. Loss of Smarcal1 increases thymocyte sensitivity to replication stress
Thymi from littermates were harvested 72 hours after a single dose of 1.75 Gy IR. A) 

Representative dot plots of thymocytes (top), and mean percentage of DP thymocytes from 

three independent experiments (bottom left). Mean total DP thymocytes from each genotype 

from three independent experiments (bottom right). B) Representative dot plots of BrdU 

incorporation and DNA content (7AAD) of thymocytes (top). Mean of three independent 

experiments (bottom). C) Quantification of thymocytes with >5 γH2AX foci 72 hours after 

IR from 4 +/+, 3 +/Δ, and 4 Δ/Δ mice from two litters; n denotes the number of cells 

analyzed. D) Box-and-whisker plots of tail moments from neutral comet assays of 

thymocytes isolated from mice of the indicated genotypes. 3 +/+, 5 +/Δ and 4 Δ/Δ mice from 

two separate litters were evaluated. Boxes are the 25th and 75th percentiles, whiskers are 

10th and 90th percentiles, and the lines are the medians. The number of cells evaluated is 

indicated by n. E) Mean percentage of cleaved caspase 3/7-positive thymocytes from a 
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representative litter (3 +/+, 2 +/Δ, and 2 Δ/Δ) of 2 independent experiments; the number of 

cells analyzed is indicated by n. Error bars are SEM; A, *p<0.01, **p<0.001; C, *p<0.05, 

**p<0.0001; D, *p<0.001; E, *p<0.01, **p<0.0001; one-way ANOVA.
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Figure 5. Reduced HSPCs in mice lacking one or both alleles of Smarcal1 following forced 
proliferation
Bone marrow harvested from littermates unirradiated or at the indicated interval after IR. A) 

Representative dot plots of LSKs (left). Mean total LSKs per femur (right). B) Mean total 

MPPs (left) and LT-HSCs (right) at the indicated intervals following IR. Data are from six 

independent experiments. Error bars are SEM; A, *p<0.05, **p<0.01; B, *p<0.05, 

**p<0.01, ***p<0.001; one-way ANOVA.
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Figure 6. Smarcal1-deficient HSPCs have increased sensitivity to replication stress
A) Bone marrow harvested from littermates unirradiated or at the indicated interval after IR. 

Mean percentage of BrdU positive LSKs (left) or LT-HSCs (right). B) Representative images 

of γH2AX immunofluorescence of bone marrow cells from littermates of the indicated 

genotypes (left) Quantification of bone marrow cells with >5 γH2AX foci 24 hours after IR 

from 3 +/+, 4 +/Δ, and 3 Δ/Δ littermates from two litters; n denotes the number of individual 

cells analyzed. C) Box-and-whisker plots of tail moments from neutral comet assays of bone 

marrow cells isolated from littermates of the indicated genotypes 24 hours after IR. Boxes 

are the 25th and 75th percentiles, whiskers are 10th and 90th percentiles, and the lines are 

the medians. The number of individual cells analyzed is indicated by n from 3 +/+, 5 +/Δ, 

and 3 Δ/Δ littermates from two litters. D) Mean percentage of cleaved caspase 3/7-positive 
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bone marrow cells from a representative litter (3 +/+, 2 +/Δ, and 2 Δ/Δ); 2 independent 

experiments; the number of cells analyzed is indicated by n.. Error bars are SEM; B, 

*p<0.05, **p<0.001; C, *p<0.001; D, *p<0.0001, one-way ANOVA.
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Figure 7. Loss of Smarcal1 impairs HSPC function
A) Kaplan-Meier survival curves of the indicated genotypes following 5-FU injections every 

week for 5 weeks beginning at time 0; number of mice denoted by n; overall p value denoted 

on graph; p=0.0031 +/+ vs. +/Δ and p=0.0203 +/+ vs. Δ/Δ, log-rank tests. B) Mean 

percentage of CD45.2+ peripheral leukocytes in mice of the indicated genotype were 

determined at intervals following competitive bone marrow transplantation; n denotes the 

number of mice; error bars are SEM; p value determined by a two way ANOVA. C) 

Quantification of the percentage of CD45.2+ DP and SP thymocytes 16 weeks post-

transplant. D) Quantification of the total numbers of CD45.2+ BMCs, LSKs, MPPs and LT-
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HSCs 16 weeks post-transplant. Error bars are SEM from n=7 Smarcal1+/+, n=8 

Smarcal1+/Δ, and n=7 Smarcal1Δ/Δ mice for C and D; p values for C and D indicated.
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