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Abstract

Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) 

and affect a large part of the aging population. The stemness of cells is exploited in the field 

of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often 

face delivery and survival challenges, especially in tissues with a naturally harsh microniche 

environment such as the intervertebral disc. Recent interest in the secretome of stem cells, 

especially cargo protected from microniche-related decay as frequently present in degenerating 

tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of 

extracellular vesicles with purposeful cargo gained particular interest in conveying stem cell 

related attributes of rejuvenation, which will be discussed here in the context of IVDD.
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Introduction

Tissues and organs of the aging human body originate from a fertilized oocyte. As this 

totipotent single cell zygote embarks on its journey of life, most daughter cells will succumb 

to terminal differentiation eventually followed by death (Kraus and Lufkin, 2017). A few, 

so called stem cells, retain their potential to divide along with a degree of multipotency 

(Pittenger et al., 1999; Lander, 2009; Sng and Lufkin, 2012). Harnessing or blocking 

“stemness” is an intriguing approach taken by the fields of regenerative medicine and 

oncology alike to replenish ailing tissues and organs such as a degenerating intervertebral 

disc (IVD) or to stop malignant cell growth (Sng and Lufkin, 2012; Sivakamasundari 

and Lufkin, 2013; Kraus et al., 2017; Li et al., 2019). Regenerative attempts include 

transplantation of embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and 
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transdifferentiated somatic cells (TDSC) (Jopling et al., 2011; Xia et al., 2019; Wang 

et al., 2021), all however pose risks of tumorigenesis. Furthermore, iPSC and TDSC 

might be impractical and uneconomical if derived de-novo for each patient (Kamao et 
al., 2014); ESC bear ethical concerns and TDSC are ideally based on detailed knowledge 

of interacting signaling pathways, which is still lacking for most vertebrate cell types. 

Autologous or allogeneic mesenchymal stem cells (MSC) however might take in cues from 

their environment to mold their multipotent potential into the necessary cell type, or, as 

recently demonstrated, send cues to residual stem cell populations to refurbish ailing tissue 

(Chen et al., 2010; Sun et al., 2020; Zhang et al., 2020; Luo et al., 2021).

Do MSC live up to expectations?

As of mid-July 2021, a searchable database for worldwide clinical trials lists 1292 hits for 

“mesenchymal stem cell” including a wide range of treatments such as acute organ failure, 

stroke, autoimmune disease, diabetes, arthritis, bone fracture, congenital disease, respiratory 

distress syndrome, cancer and more, with 77 studies currently listed in phase 3 clinical trials 

(https://clinicaltrials.gov).

As an example, a healthy IVD is crucial for normal spine function where it acts as a 

semi-moveable joint and provides means of shock absorption to protect adjacent vertebral 

bodies (Humzah and Soames, 1988; Christ and Wilting, 1992). IVDs are composed of 

a hydrogel-like, inner nucleus pulposus (NP) rich in extracellular matrix (ECM) that is 

encapsulated in the annulus fibrosus (AF) and sandwiched by cartilaginous endplates (CEP) 

(Bibby et al., 2001; Sivakamasundari and Lufkin, 2012; Sivakamasundari and Lufkin, 2013). 

Cells residing in the avascular, non-innervated NP are sparse in a large amount of ECM and 

depend on diffusion for survival and communication (Urban et al., 1977; Urban et al., 2004; 

Binch et al., 2015). This creates a niche low in nutrients, oxygen and pH fueled by anaerobic 

lactic acid fermentation (Urban et al., 2004; Wuertz et al., 2008; Liang et al., 2012). 

Severe and chronic low back pain (CLBP) caused by age-related IVDD presents a huge 

socio-economic burden worldwide (DePalma et al., 2011; GBD, 2018). Classic treatments 

of IVDD symptoms are surgical such as discectomy or non-surgical like physiotherapy 

combined with pain relieving medication (Raj, 2008), the latter contributing to an already 

overwhelming opiate crisis (Film, 2020). Bioengineering strategies aim for disc repair with 

injectable hydrogels or replacement with implanted synthetic or natural scaffolds such as 

polyethylene glycol or alginate, respectively, amongst many others as reviewed in (van Uden 

et al., 2017) sometimes seeded with cells or supplemented with growth factors (Kim et 
al., 2020). The IVD is a welcome target for regenerative approaches as IVDD symptoms 

typically develop over time without posing an immediate life-threatening situation. This 

permits the establishment and screening of autologous or allogeneic cell lines for disc 

refurbishment (Baksh et al., 2004; Xu et al., 2017). Delivering notochord (NC) cells, healthy 

NP cells or stem cells to an ailing disc could address IVDD at its roots (McCann et al., 
2011). In recent years much hope was placed on the injection of MSC with many ongoing 

clinical trials nearing completion, aiming to increase ECM content of aging discs to restore 

original disc height. Of 385 ongoing studies listed for IVDD 34 apply stem cells in some 

form. Earlier clinical studies involving MSC as reviewed in Sakai and Schol (2017) reported 

pain relief and increased disc hydration but no improved disc height. A study involving 
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reactivated NP cells after MSC coculture achieved pain relief without deteriorating disc 

height (Blanco et al., 2010). More recently, a study sponsored by Bioheart, Inc. using 

adipose stem cells to assess safety and efficacy has pending results despite completion 

in 2017 (NCT02097862). Recent phase 2 data for the Mesoblast sponsored CASCADE 

phase 3 clinical trial using the mesenchymal precursor cell-based product Rexlemestrocel-l 

for CLBP suggests a potentially safe and effective treatment (Kraus and Lufkin, 2017; 

Amirdelfan et al., 2021). NOVOCART® disc, an active phase 1/2 study investigating an 

autologous disc chondrocyte transplantation system sponsored by Tetec AG is expected 

to post results soon (NCT01640457) (Tschugg et al., 2017; Li et al., 2019). However, as 

straight forward as stem cell based approaches might seem, the microenvironment in the 

aging disc is harsh and presents an obstacle for cell survival, either native or transplanted 

(Sivakamasundari and Lufkin, 2013). While data from preclinical animal models showed 

promising results in restoring a disc phenotype (Sakai et al., 2003; Crevensten et al., 2004; 

Sakai et al., 2005; Henriksson et al., 2009), whether MSC live up to their expectations in 

IVDD therapy will depend on the outcome of further clinical trials and their long term 

follow up.

Exosomes–a way of “talking” long distance?

Homeostasis of a microenvironment is naturally maintained through effective cell-cell 

communication. IVD cells are sparsely embedded in a large amount of ECM as presented in 

Figs. 1A and 1B. NP cells reside in an avascular, non-innervated environment as presented 

in Fig. 1B requiring other communication skills (Liebscher et al., 2011; Li et al., 2019; Li 

et al., 2019). Development of large scale “-omics” technologies studying proteins as cells 

release them into their environment (the secretome) increased our understanding of cell-cell 

communication, enabling the study of extracellular vesicles (EV) with purposeful cargos of 

proteins and nucleic acids (Jeppesen et al., 2019). EVs differ in size and origin: Apoptotic 

bodies (50 nm–5000 nm) and ectosomes (50 nm–1000 nm) are generated through outward 

budding of the plasma membrane, while exosomes (50 nm–150 nm) are generated through 

the endosomal generation of multivesicular bodies (MVB) (Kowal et al., 2016) as presented 

in Fig. 1C. Exosomes are generated by most cell types (Edgar, 2016; Kalluri and LeBleu, 

2020) and their release into body fluids as well as culture media, generates interest for 

cancer biomarker identification (Kalluri, 2016; Couto et al., 2018).

The NP is of NC origin (Christ and Wilting, 1992; Choi et al., 2008; Choi and Harfe, 2011; 

Choi et al., 2012; McCann et al., 2012; Lawson and Harfe, 2015; McCann and Seguin, 

2016). Progressive loss or trans-differentiation of NC cells in humans and other species like 

Bos taurus coincides with the onset of IVDD, while the adult murine NP remains composed 

of NC cells (Trout et al., 1982; Urban and Roberts, 2003; Vujovic et al., 2006; Gilson et 
al., 2010; Kraus et al., 2017). Coculture of NC cells with MSC or the use of conditioned 

NC medium could transform MSC towards a NP-like phenotype (McCann et al., 2011; 

Purmessur et al., 2011 and recently, bone marrow derived MSC could be differentiated 

towards a NC phenotype through culture with pulverized porcine NP matrix (Li et al., 
2021). Secreted signaling factors likely mediate these effects in vitro (Yang et al., 2008; 

Strassburg et al., 2010; Ferreira et al., 2021). However, the large distance these factors must 

travel in the NP-ECM puts them at risk for degradation prior to reaching a target cell. The 
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exosome phospholipid-bilayer would provide necessary protection for signaling molecules. 

Exosomes isolated from NC conditioned medium showed similar transforming properties 

(Sun et al., 2020) and the described bidirectional exchange of membrane components via 
multisize vesicles during NP cell and MSC coculture (Strassburg et al., 2012) supports such 

mechanisms. While the key-proteome of exosomes was recently identified (Kugeratski et al., 
2021), exosome cargo can be specific to the cell line of origin and trigger diverse outcomes 

in target cells (Edgar, 2016; Kalluri and LeBleu, 2020). But can exosomes travel through 

the dense ECM meshwork in vivo? It seems theoretically possible (Lenzini et al., 2020). 

An ongoing clinical trial sponsored by the Dr Himanshu Bansal Foundation using platelet 

derived exosomes to treat IVDD might provide in vivo practical evidence by Spring 2022 

(NCT04849429).

Future outlook

Many cells receive critical cues from the ECM. Mimicking these conditions in vitro requires 

elaborate hydrogels or scaffolds and even mechanical cues on top of media supplements. 

Hence maintaining a cell’s phenotype in culture can be more challenging than isolating 

it. Achieving critical cell numbers for therapy through expansion creates a dilemma 

between practical 2D and 3D culture, the latter being required for phenotypical identity. 

Recently, many of the attributes of MSC in tissue regeneration are projected on cell-cell 

communication or “talking” of MSC to endogenous stem cells through means such as 

exosome cargo instead of “action” in the form of homing and replication of MSC in the 

target tissue (Richardson et al., 2016; Croft et al., 2021). If exosome application can replace 

cell-transplantation, conditioned medium could be harvested from cells maintained in 3D 

culture, minimizing therapeutic cell loss in non-permissive endogenous environments or 

through immunogenic rejection.

Cells in the IVD find themselves in the unique situation of being very distant from their 

neighbors without the usual lifelines of communication (Vadala et al., 2019). In that context 

it seems plausible that peptides, proteins, and nucleic acids get deposited into vesicles like 

exosomes for a protected journey. The exosome concept might be further exploited in IVD 

therapies (Piazza et al., 2020) with natural or synthetic exosomes loaded with therapeutic 

cargo for safely delivering anti-inflammatory cytokines, transcription factors, growth factors 

and means to regulate metalloproteases. Such exosome focused therapies could circumvent 

some of the problems associated with stem cell transplantation such as rejection or tumor 

formation and reduce stem cell tourism due to national laws currently restricting many stem 

cell therapies in the US, Canada and Europe for ethical or safety concerns (Master and 

Resnik, 2011; Brown, 2012). As an example, the use of embryonic stem cells is seen as 

unethical by many, while harvesting exosomes from conditioned medium might receive less 

criticism. Lastly, a long ongoing quest for biomarkers defining IVD cell populations (Gilson 

et al., 2010; Minogue et al., 2010; Minogue et al., 2010; Risbud et al., 2015; Thorpe et 
al., 2016; Richardson et al., 2017; van den Akker et al., 2017; Kraus et al., 2019; Li et al., 
2019; Li et al., 2019; van den Akker et al., 2020) might be addressed through the analysis 

of exosome cargo, just as it has been done in the field of cancer diagnostics (Makler and 

Asghar, 2020).
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Abbreviations

AF Annulus fibrosus

CEP Cartilaginous endplates

CLBP Chronic low back pain

ECM Extracellular matrix

ESC Embryonic stem cells

EV Extracellular vesicles

iPSC Induced pluripotent stem cells

IVD Intervertebral disc

IVDD IVD degeneration

MSC Mesenchymal stem cells

MVB Multivesicular bodies

NC Notochord

NP Nucleus pulposus

TDSC Transdifferentiated somatic cells
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FIGURE 1. 
Mallory’s tetrachrome stain visualizes that cell nuclei (magenta) of the annulus fibrosus 

(A) and nucleus pulposus (B) of a mature bovine IVD are sparse in a vast amount 

of extracellular matrix (blue) requiring long-distance communication of some kind. Bar 

= 50 μM. (C) Extracellular vesicles (EV) are generated by apoptosis (apoptotic bodies) 

through membrane budding (ectosomes) or the endosome pathway (exosomes). Exosomes 

are released into the extracellular environment when multivesicular bodies (MVB) fuse with 

the plasma membrane.

KRAUS et al. Page 11

Biocell. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Do MSC live up to expectations?
	Exosomes–a way of “talking” long distance?
	Future outlook

	References
	FIGURE 1.

