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Upon the working principles of the human neocortex, the Hierarchical Temporal Memory model has been developed which is a
proposed theoretical framework for sequence learning. Both categorical and numerical types of data are handled by HTM.
Semantic Folding Theory (SFT) is based on HTM to represent a data stream for processing in the form of sparse distributed
representation (SDR). For natural language perception and production, SFT delivers a solid structural background for semantic
evidence description to the fundamentals of the semantic foundation during the phase of language learning. Anomalies are the
patterns from data streams that do not follow the expected behavior. Any stream of data patterns could have a number of
anomaly types. In a data stream, a single pattern or combination of closely related patterns that diverges and deviates from
standard, normal, or expected is called a static (spatial) anomaly. A temporal anomaly is a set of unexpected changes between
patterns. When a change first appears, this is recorded as an anomaly. If this change looks a number of times, then it is set to a
“new normal” and terminated as an anomaly. An HTM system detects the anomaly, and due to continuous learning nature, it
quickly learns when they become the new normal. A robust anomalous behavior detection framework using HTM-based SFT
for improving decision-making (SDR-ABDF/P2) is a proposed framework or model in this research. The researcher claims that
the proposed model would be able to learn the order of several variables continuously in temporal sequences by using an
unsupervised learning rule.

1. Introduction

Nowadays, anomalous behavior detection in streaming
applications is a challenging task. The system must process
data and then output a decision in real time for a quick deci-
sion, rather than making many passes or batches of files.
Usually in a number of cases of real-world scenarios, the
sample of sensor streams is huge enough having a little
opportunity for a let alone expert’s intervention. Operating
in an unsupervised, automated fashion is often a necessity,
and as part, the detector should continue to learn and adapt
to changing statistics while simultaneously making predic-

tions. Most of the time, the real goal emphasis is prevention,
rather than detection, so it is vitally desired and required to
detect anomalous behavior as early as possible, giving enough
actionable information ideally well before any chance of sys-
tem failure. It is a difficult task to detect anomalous behavior
and compare it with any existing standard. Moreover, in
addition to this, real-time applications impose their own
specific requirements and challenges that must be considered
before taking decisions on results.

1.1. Need of Anomalous Behavior Detection. Anomalies are
well defined as data patterns that do not conform to expected
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behavior [1]. A data stream containing different patterns
could have several types of anomalies. Spatial (static) anom-
aly in some cases is a single pattern or can be a set of relatively
closely spaced patterns in a data stream that deviates from
standard, normal, or expected. A temporal anomaly is a set
of surprising transitions between patterns [2, 3]. It is very dif-
ficult, and in many cases, it is impossible to detect spatial and
temporal anomalies, if the patterns in a data stream are
highly random and abrupt. However, it is possible to detect
a change in the distribution of the random data, denoted as
distribution anomaly [4, 5]. These types of anomalies are
named as temporary anomalies. At first when a unique
change appears, then it is an anomaly. If it appears a number
of times, then it is called “new normal” or behavioral change
not to be an anomaly [6].

1.2. Research Study Motivation. Hierarchical Temporal
Memory (HTM) is a learning system that continuously
learns online from the environment [7-9]; it detects tempo-
rary anomalies and immediately transforms them when they
are the new normal. Input data for HTM functionality is of
both types, numerical and categorical. Both data types can
be merged in an input data stream to HTM because both
are converted to a sparse distributed representation (SDR)
using encoders. Each time, HTM calculates an anomaly score
for a new pattern as it enters [10-13]. If a received pattern is
symmetrical to predict, then the anomaly score is zero. If the
pattern is quite different, then the score is one. A partially
predicted pattern has a score between zero and one. The
SDR of the input data stream determines the similarity. The
“similarity” between the actual received pattern and the
predicted pattern is the base of HTM score. The larger the
overlap between actual and predicted input patterns results
in minimal or makes the anomaly score smaller.

HTM learning uses the bursting process at the start.
Bursting occurs if none of the cells (bits) in a column were
predicted; then, all the cells are made active. It occurs when
there is no context. At each time instance, the anomaly score
is calculated simply the fraction given by the number of
bursting columns divided by the total number of active
columns. In the beginning of the training, the anomaly score
will be high because most patterns will be new. As HTM
learns, the anomaly score will diminish until there is a change
in the pattern stream.

1.3. Problem Formulation. Keeping in view the HTM model,
the main research problem is formulated as follows:

How can we develop a robust framework that can detect
anomalous behavior from real-time data streams (micro-
blogs) and convert them into simultaneous prediction vec-
tors based on computed threshold value for comparison
using HTM based semantic folding?

1.4. Research Contributions

(i) A robust anomalous behavior detection framework
using HTM based on SFT for improving decision
making (SDR-ABDEF/P2) is proposed
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(ii) The proposed model is able to learn order of several
variables continuously in temporal sequences by
using an unsupervised learning rule

(iii) The proposed technique is also tested on Yelp
dataset, and the results were amazingly remarkable.
It worked up to showing 96% accuracy

(iv) A number of experiments on different dataset sam-
ples have been performed implementing this model
successfully

(v) NAB (Numenta Anomaly Benchmark) is another
benchmark that attempts to provide a controlled
and repeatable environment of tools to test and
measure different anomaly detection algorithms on
streaming data

The rest of the article is organized as follows: Section 2
overviews the basic concepts used in this work; in Section 3,
we present a review of literature; Section 4 describes pro-
posed methodology; in Section 5, results are analyzed and
discussed, and finally, Section 5 focuses on conclusions and
tuture work.

2. Preliminary Concepts

The evolution of new technologies for machine intelligence is
the discovery of the working principles of neocortex.

2.1. Neocortex. The neocortex is not the75% of the brain.
Neocortex uses a very common learning algorithm in vision,
hearing, touch, behavior, and for everything that has been
discovered 35 years ago [14]. Neocortex is an organ of mem-
ory that learns through sensory organs like retina, cochlear,
and somatic. They form similar matching patterns of actions
on cortex [2, 15-17]. The neocortex learns predictive model
from continuously variating sensory data. Model generates
predictions, anomalies, and action (behavior). Most of the
sensory changes are due to movement in sensory organs.
The neocortex learns a sensory-motor-model from around
the world. The neocortex is the base of intellectual thought
in the mammalian brain. Vision, touch, hearing, language,
movement, and planning of high level are all performed by
the neocortex [18-20]. Given such a diverse collection of cog-
nitive functions, it could be expected that the neocortex to
contrivance is an equally diverse suite of specialized neural
algorithms. This is not the case. The neocortex displays a
remarkably undeviating pattern of neural circuitry [21, 22].
The biological evidence suggests that the neocortex imple-
ments a very common set of algorithms to perform many
different intelligence functions. Cortical learning algorithm
is unbelievably and enormously adoptable in a number of
fields like languages, engineering, science, and art. It provides
a set of principles. However, a cortical learning algorithm
does not provide the best solution to any problem but a
generic and flexible solution [23-25]. People like universal
solutions to the problems, and nothing is more universal
than the human cortex.
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2.2. Hierarchical Temporal Memory. HTM is an acronym for
Hierarchical Temporal Memory, a term used to describe
models of neocortex [14]. HTM is a machine learning tech-
nology that is aimed at capturing the structural and algorith-
mic properties of the neocortex [8]. HTM provides only a
theoretical framework for understanding the neocortex and
its many capabilities [26]. HTMs can be viewed as a type of
neural network. However, on its own, the term “neural net-
work” is not very useful because it has been applied to a large
variety of systems [27]. HTMs model neurons (in HTM
models, they are called cells), which are arranged in columns,
in layers, in regions, and in a hierarchy [28].

As the name implies, HTM is basically a memory-based
system. HTM networks are trained on a number of time-
varying data and depend on storing a large set of patterns
and sequences. The data is stored, and retrieved is logically
a different way from the standard model used by program-
mers today. Existing computer memory has a flat organiza-
tion and does not have an inherent notion and concept of
time. A programmer can implement any kind of data organi-
zation and structure on top of the flat computer memory.
They have control over how and where information is stored
[29]. By contrast, HTM memory is more restrictive. HTM
memory has a hierarchical organization and is inherently
time based. Information is always stored in a distributed
fashion. A user of an HTM specifies the size of the hierarchy
and what to train the system on, but the HTM controls where
and how information is stored [30].

HTM networks are much more different than classic
computing; it can be used for general purpose computers to
model these HTMs as long as they unified the key functions
of hierarchy, time, and sparse-distributed representations.
Specialized hardware will be created to generate purpose-
built HTM networks [29, 31].

More often, it is illustrated with HTM properties and
principles using examples drawn from human vision, touch,
hearing, language, and behavior. Such examples are useful
because they are intuitive and easily grasped. However, it is
important to keep in mind that HTM capabilities are general.
They can just as easily be exposed to nonhuman sensory
input streams, such as radar and infrared, or to purely
informational input streams such as financial market data,
weather data, Web traffic patterns, or text. HTMs are learn-
ing and prediction machines that can be applied to many
types of problems [14].

2.3. Semantic Folding Technique. On the basis of HTM, SDRs
or semantic folding technique for data-encoding mechanism
[32, 33] are used with the following properties:

(i) Many bits are used to represent a data item, maybe
in thousands. Each bit means a neuron (called cell).
At a certain point, active is represented by 1, while
inactive neurons are represented by 0’s

(ii) Few of them are 1’s, and most are 0’s. For example,
within 2000 bits, only 2% are active. Sparsity means
that most of the neurons are inactive thus repre-
sented by 0’s

(iii) Each bit has some meaning known as semantic
meaning. Each bit represents a specific feature

(iv) Meaning is learned in this representation. Com-
monly top forty attributes are taken to represent data

A basic difference between HTM sequence memory and
preceding biologically inspired sequence learning models is
the use of SDR models [34]. In the neocortex, information
is primarily represented by robust activation of a small set
of neurons at any time, known as sparse coding [21, 35].
Commonly, HTM sequence memory uses SDRs to represent
temporal sequences. Based on mathematical properties of
SDRs [26, 32], each neuron (called cell) in the HTM sequence
memory model can robustly learn and classify a large num-
ber of patterns under unusual and noisy conditions [13].
An ironic distributed neural representation for temporal
sequences evolves from computation in HTM sequence
memory. Although it is focused on sequence prediction, this
representation is valuable for a number of tasks, such as
anomaly detection [36] and sequence classification.

Use of a flexible coding scheme is important for online
streaming data analytics, where the number of unique sym-
bols is often not known. So more often, it is desired to be able
to change the range of the coding scheme at run time without
affecting previous learning. This requires a flexible algorithm
to use a flexible coding scheme that can represent a large
number of unique symbols or a wide range of data [13].
The SDRs used in HTM have a very large coding capacity
and allow instantaneous representations of multiple predic-
tions with minimal collisions. These properties make SDR
an ideal coding format for the next generation of neural
network models [37, 38].

3. A Review of Literature

An anomaly is defined as a point in a certain specific time
where the performance of the system is unfamiliar and
noticeably changed from previous performance. According
to this explanation, it is not necessary that an anomaly infers
a problem.

3.1. Prior Works. Though the use of HTM model using
semantic folding technique is the latest model for anomalous
behavior detection, however the anomalies in streaming data
are heavily studied through years [14]. The founder Subutai
Ahmad and Scott Prudy have worked upon the HTM model.
In time-series data, anomaly detection is a heavily studied
since 1972 [6]. Both supervised and semisupervised methods
were used for classification. Though labelled data gives
improved results, supervised methods are inappropriate for
anomalous behavior detection [11]. Continuous learning
which in our case is the requirement is impossible with
commonly studied supervised or semisupervised learning
algorithms. Other ways, like calculating threshold values,
making data clusters, and exponential smoothing, could only
be used for spatial anomaly detection [39]. Holt-Winters
forecasting as commonly implemented for commercial
applications is an example of the latter [40]. Most commonly
used are the change point detection methods capable for the



identification of temporal anomalies. Another model method
is to frame out the time series data in two independent mov-
ing windows, and the change is detected as significant devia-
tion in the time series metrics [41, 42]. The computation in
these methods is more often enormously fast and has low
memory requirements. The anomaly detection performance
of statistical methods always remained dependent on the size
of e windows and threshold values. With the change in data,
the results are turned down due to false positive values and so
require updates and changes in threshold values to minimize
false positives as to detect anomalies. With the combination
of different statistical algorithms, the Skyline project provides
an open source implementation of several statistical tech-
niques for detecting anomalies in streaming data [39]. The
anomaly detection problem has also been widely studied
in the computer security literature where machine learning
approach, creating user profiles based on command
sequences, compares current input sequences to the profile
using a similarity measure. The system learns to classify
current behavior as consistent or anomalous with past
behavior [43]. Anomalous behavior detection in crowded
scenes in the field of computer vision (data streaming)
was evaluated on benchmark datasets containing various
situations with human crowds, and the results demon-
strate that the proposed approach best state-of-the-art
methods [44]. A number of other algorithms are used in
complex scenarios for the detection of temporal anomalies.
For detecting anomalies, ARIMA is a general-purpose
method for modeling temporal data (with regular patterns)
with seasonality [45], when data occurs in regular patterns.
Many extensions have been developed to overcome the
problem of seasonality period determination [46]. An
improved technique of ARIMA application to multivariate
dataset to detect anomaly has also been deeply studied [5].
For segmentation in time series data for online anomaly
detection, an approach named Bayesian change point
detection method is used [47, 48].EGADS is an open
source framework released by Yahoo for anomaly detec-
tion that combines common anomaly detection algorithms
with time series forecasting techniques [49]. Another open
source anomaly detection algorithm for time series data
has been released by Twitter [50]. There have been several
model-based approaches applied to specific domains, for
example, in aircraft engine measurements, anomaly detec-
tion method [2], temperature variations in cloud datacen-
ter [3], and detection of frauds in ATM [51]. A few of the
other thorough reviews are [1, 52, 53]. But here, our focus
is on using HTM for anomalous behavior detection.
Derived from working principles of neocortex, a machine
learning algorithm HTM has the tendency to model spa-
tial and temporal patterns in continuous streams of data
[38, 54]. In sequence prediction, HTM compares to complex
non-Markovian sequences [34, 55]. HTMs are continuously
learning models that absorb changing statistics automati-
cally, which is a property appropriate to streaming data anal-
ysis. Another recent approach for anomalous behavior was
made on the dataset of NAB to test the LGMAD algorithm
using Long Short-Term Memory and Gaussian Mixture
Model [56] with achieving remarkable accuracy.
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3.2. Research Gap Based on the Limitations of the Previous
Studies. A robust anomalous behavior detection framework
using HTM based on SFT for improving decision-making
(SDR-ABDEF/P2) is required, which is what we address in this
study. The model should be able to learn order of several
variables continuously in temporal sequences by using an
unsupervised learning rule.

4. Proposed Methodology

The real-time data stream of domain-dependent reviews or
microblogs (from yelp dataset) was sent to encoders for con-
verting the data into SDR’s representation. These SDRs are
applied to HTM model. HTM algorithms work and detect
any anomalous behavior in the input data stream from
domain-dependent microblogs or reviews.

Proposed methodology is named as SDR-based semantic
folding technique based on HTM theory (SDR-ABD/P2) as
shown in Figure 1.

SDRs of text inputs are generated, and our proposed
method learns behavior from a given text and detects it as
an anomaly or not an anomaly. If a text is identified as anom-
aly, i.e, its behavior is different from already existing texts,
the learning process will update itself from this anomaly to
set the behavior for next coming inputs (texts). If next text
T2 behaves normally, it means the proposed system has
learned from previous detected anomaly; otherwise, given
text will be excluded from this cluster.

4.1. HTM Model Implementation. Sparse distributed repre-
sentations are the binary vectors designed for the operation
of HTM model. These vectors named as SDR provide inputs
to HTM. To convert a scalar value of natural language words
into binary vectors with a minimum of “active” bits, encoders
are used. These SDRs are combined through a pooling pro-
cess resulting in a semantic space having two percent active
bits in a vector of 2048 bits [14]. The HTM model uses a sym-
metrical model set of parameters for all the experiments.

4.2. Encoding. With the help of online carpus, word chunks
are encoded into SDR. The encoder creates representations
that overlap for inputs that are similar in one or more of
the characteristics of the data.

4.3. Pooling. It is a temporary space which stores synonyms
(obtained from WordNet used as carpus) of all words from
all texts without duplicating words. Here, pooler updating
and synonym extraction process are both iterative due to
the nature of each text having multiple chunks and each
chunk having multiple synonyms.

4.4. SDR. It is a binary vector where the first row represents
the bucket of synonyms for the first text and the second
row represents a bucket of synonyms for the second one
and so on, and the nth row represents a bucket of synonyms
for the nth text. Each row is a list for each text. Each word
points to the index of its synonym in pooling/pooler. Learn-
ing process is based on the analogy of each coming SDR and
will be the union with the previous union-list.
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FIGURE 1: Detailed diagram for anomalous behavior detection.

4.5. Mathematical Model

(1)

()

Let the vector Y, represents the state of an input in
the form of encoded SDR from real-time microblog
system at a certain instantaneous time t. A continu-
ous data stream of inputs is exposed to our model

oo Y o Yo s Yo Yoo gy oov oee oo .

In a certain time t at each point, it is to know the
behavior of the system, either usual or unusual. This
determination must be done in real time before time
t+ 1 and without any look ahead. HTM which is a
machine learning algorithm tries to match this condi-
tion in real time. Since HTM networks are continu-
ously learning and absorb the spatiotemporal
features of the inputs

If an input Y, is given to the system, then the vector
Z(Y,) is the representation of sparse binary code of
input Y, in time t.

(2)

x(Y,) is a vector representing a prediction vector for
an input Z(Y,,,), i.e., a prediction of the next input
Yt+1

= Z(Yt+l ) : (3

~—

(4) Compute the difference and deviation between

(5

~

model’s predicted input and the actual input and
label as raw anomaly score. The intersection between
actual and predicted sparse vectors was the method
used to compute. At time t, the raw anomaly score
is labelled as S,

Se=n(Y) NZ(Yy,1)s (4)

and it could therefore be as

If the prediction of the model is correct and the
precisely predicted vector is the same as of the
input vector, then raw anomaly score will be 0, else
it will be 1 if completely opposite or different. And
if the value of S, lies in between zero and one, it
shows the similarity between the input and the
prediction vectors.

Based on the HTM model’s prediction history, the
anomaly likelihood is the only value that defines
“how anomalous the current state is”.

If #(Y,) is taken as a union of an individual prediction,

then the HTM model helps to represent multiple predictions.



Computational and Mathematical Methods in Medicine

Input Documents as doc
OutPut Clusters as preCluster

Processing for Pooling and SDR
Function PoolSDR()
for d in docs:
wtSet=(word_tokenize(d))
for t in wtSet:
ww=sentiwordnet.senti_synsets(t)
if len(ww)>0 and t not in stop_words:
for w in ww:
if w.synset[0]. in bucketArray:
bk=[i, t,bucketArray.index(w.synset.name())]
bucket.append(bk)
if len(bucket)>8:
break
else:
bucketArray.append(w.synset.name())
bk=[i, t,bucketArray.index(w.synset.name())]
bucket.append(bk)
if len(bucket)>8:
break
end if
end if
end for
end if
end for
end for
end function
Process for Clustering
Function Cluster()
i=1
Cluster=""
for b in bucket:
if (b[0]==i):
Cluster=str(Cluster) + " + str(b[2])
else:
preCluster.append(Cluster)
Cluster=""
i=i+1
Cluster=str(Cluster) + " + str(b [2])
end if
end for
end function

ArGoriTHM 1: Pseudocode/Algorithm of the Proposed System.

As the binary vectors are sparse enough with extended  4.6. Raw Anomaly Score Calculation. Raw anomaly score is
dimensionality, with exceptional error chances, a number of ~ the measure needed for calculation of deviation between
predictions can be represented simultaneously as in Bloom  actual and predicted output at a certain time. It is computed

filters [39, 57].

from the intersection between the predicted and actual sparse
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vectors. For the computation of anomaly likelihood value, a
window of the last W raw anomaly scores is maintained.
The HTM system models this distribution as a rolling normal
distribution.

W=)S wheret=1,2,3,4, - - y (6)
where sample mean and variance are continuously calcu-

lated and updated from previous anomaly scores. As shown
under [39],

1 = Z;;gl:st_i ’
i=w-1 2 (7)
5? _ Yico (S~ 1) '
k-1

The distribution is modeled as a rolling normal distribu-
tion with the continuous updation of mean and variance
from previous anomaly scores. And then an average of recent
anomaly scores is computed and applied a threshold to the
Gaussian tail probability (Q-function, [58]) to make a deci-
sion about declaration of an anomaly. We used this likeli-
hood value as the complement of the tail probability [39].

Lt=1—Q<"t6‘”t>, (®)
t

where

ptzi-.' )

Anomalous behavior will be reported if L, > =1.

W/ represents short-term moving average window, where
W'<<w.

SDR-ABDF/P2 thresholds L, and describes it as detected
anomaly if it is very close to 1.

Anomaly detected =L, > 1 —¢. (10)

If 7(Y,) is taken as a union of an individual prediction,
then the HTM model helps to represent multiple predictions.
As the binary vectors are sparse enough with extended
dimensionality, with exceptional error chances, a number of
predictions can be represented simultaneously as in Bloom
filters [39, 57].

5. Results and Discussion

We had a set of texts named as t1 to t8, where t1, t2, and t3
belong to the same cluster and the text t4 was kept as a partial
anomaly. Proposed system learned from t4 and did not detect
t5 as a partial anomaly because the system has already
updated it from previous inputs. Next, t6 is a partial anomaly,
and the system will not be updated according to the new
input, i.e., t6, so it will be considered as a pure anomaly. Texts
are shown in Table 1.

7
TaBLE 1: Samples for dataset.

Texts Contexts
tl “big damaged”
t2 “damaged fire”
t3 “fire hot”
t4 “yellow truck.”
t5 “truck silver.”
t6 “too rain”
t7 “happy day”
t8 “fire yellow”

5.1. Pooling Process Application. Table 2 shows an input
vector for the pooling process using WordNet, where 1% col-
umn contains the synonyms of all chunks in t1, the second
column contains the synonyms of all chunks in t2, the third
column contains the synonyms of all chunks in t3, and so on.

Table 3 illustrates pooling format where all words from
Table 2 are indexed in a way that duplicated words are
removed. Hence, 57 words have been indexed from 0 to 56.

5.2. SDR Generation. Table 4 shows eight columns, compris-
ing analysis of eight texts. In the 1** column, value [1, ‘big,” 0]
narrates synonyms of word “big” in t1 present on “0” index in
pooler and so on. All columns are based on the same analogy.

Afterward, an SDR vector is generated from all texts, i.e.,
row one of SDR for t1 is obtained from column 1 of Table 4,
by extracting the last value from each cell showing [“0,” “1,”
“1,7 27 “17 “1,7 “1,7 0,7 “3,7 “4,7 “4,7 “5,” “6,” “5”]. Such
SDRs for all texts are shown in Table 5.

5.3. Anomalous Behavior Detection and Learning Process. It is
supposed that in the beginning, the brain of proposed work is
empty, and t1 comprises target text, to whom the proposed
system will detect similar texts and will learn from new com-
ing text (in data stream). Here, learning is done by making a
union of given text with previously detected union, keeping
in view that in start union is empty, so t1 will be considered
as part of cluster (see Table 6) and then union this text with
previous union as shown in the following table.

Now by intersecting the SDR of t2 with the previous
union, the elements for t2 are determined. As the number
of elements is 5, and in the proposed system, the threshold
value is set to 5, so t2 will be considered as similar, ie.,
normal text as shown in Table 7. Now from the SDR of t2,
the new union is updated.

By repeating the process again, the elements from the
intersection of SDR of t3 with previous union, the obtained
number of elements is 8, so t3 is considered as similar, i.e.,
normal text as shown in Table 8. Later on, the new union is
updated, from SDR of t3.

Again, by determining the elements from intersection of
SDR of t4 with previous union, as these elements are 0, so
t4 is considered as partial anomaly text as shown in Table 9
and then updated the new union from SDR of t4.

If succeeding text is not considered as partial anomaly,
then t4 will not be a pure anomaly. Now by determining
the elements from intersection of SDR of t5 with previous
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TaBLE 2: Input generated vector for pooling.
tl t2 t3 t4 t6 t7 t8
Large Damage Fire Yellow Truck Excessively Happy Fire
Big Damage Fire Yellowness Motor truck Overly Felicitous Fire
Big Damaged Firing Yellow Hand_truck To_a_fault Happy Firing
Bad Discredited Fire Yellow Truck Too Glad Fire
Big Damaged Flame Yellowish Truck Besides Happy Flame
Big Flaming Xanthous Too Happy Flaming
Big Fire Fire Chicken Silver Also Well-chosen Fire
Large Fire Fire Chickenhearted Ag Likewise Fire
Prominent Firing Lily-livered Atomic_number_ 47 As_well Day
Fire Hot White-livered Silver Twenty-four_hours Yellow
Damage Flame Hot Yellow Ash_grey Rain Twenty-four_hour_period  Yellowness
Damage Flaming Raging Yellow-bellied Ash_gray Rainfall 24-hour_interval Yellow
Damaged Fire Hot Silver Rain Solar_day Yellow
Discredited Fire Hot Truck Silver_grey Rainwater Mean_solar_day Yellowish
Damaged Blistering Motortruck Silver_gray Rain Day Xanthous
TasLE 3: Pooling format for proposed work. union, the number of obtained elements is 5, so t5 will be
Index Word Index Word considered as .similar, ie, normal text as shown in
Table 10, so t4 is not a pure anomaly and updated the new
0 Large 29 Atomic_number_47 union from SDR of 5.
1 Big 30 Ash_grey Determining the elements from intersection of SDR of t6
2 Bad 31 Ash_gray with previous union, the number of obtained elements is 0, so
3 Prominent 32 Silver_grey t6 will be considered as partial anomaly text as shown in
4 Damage 33 Silver_gray Table 11. Again, the new union is updated from SDR of t6.
5 Damaged 34 Excessively Similarly, with the elements from intersection of SDR of
. i t7 with previous union, the number of obtained elements is
6 Discredited 35 Overly 0 . . .
' , so t7 will be considered as partial anomaly text as shown
7 Fire 36 To_a_fault in Table 12, so t6 is a pure anomaly instead of partial anom-
8 Firing 37 Too aly. Hence, the new union is updated from SDR of t7.
9 Flame 38 Besides In the last step, by determining the elements from inter-
10 Flaming 39 Also section of SDR of t8 with previous union, the total number
11 Hot 40 Likewise of elements is 20, so t8 will be considered as normal text as
1 Raging 41 As. well shown in Table 13. And again, new union is updated from
13 Blistering 42 Rain SDR of t.& .
' Precisely, from the above process, it is concluded that t1,
14 Red-hot 43 Rainfall t2, t3, t5, and t8 have similar behavior, but t4 is partial anom-
15 Yellow 44 Rainwater aly because again t5 has shown normal behavior. Hence, t6
16 Yellowness 45 Pelting has been considered as pure anomaly because t7 has proved
17 Yellowish 46 Rain_down itself as a partial anomaly due to the reason that t8 again is
18 Xanthous 47 Happy a normal text as shown in Figure 2.
19 Chicken 48 Felicitous Acs1 in Zlgl cats;:, thhe tl(zltal rllumber ai)i te;ts. is 8(,8a/r21<)i wci have
. considered the threshold value equal to 5, i.e., +1.
20 Chl.ckel?hearted 49 Glad We have detected these angmalies based on different
21 Lily-livered 50 Well-chosen values but found less accurate results. At values 6 and 7, it
22 White-livered 51 Day is found that t2, t4, t5, t6, and t7 are anomalies which are
23 Yellow-bellied 52 Twenty-four_hours shown in Figure 3.
24 Truck 53 Twenty-four_hour_period Although SDR-ABDEF/P2 uses HTM as the underlying
25 Motortruck 54 24-hour interval temporal model, the likelihood technique is not specific to
2% Hand_truck 55 S olar__ day HTMs. It could be used with any other algorithm that
27 Silver 56 Mean_solar_day outputs a sparse code or .scalar anomaly score. The .oyerall
’g Ag quality of the detector will be dependent on the ability of

the underlying model to represent the domain.



Computational and Mathematical Methods in Medicine

TaBLE 4: Generated input from pooling for SDR.

“fire,” 7] [3, “fire,” 10]

2, “fire,” 7] [3, “fire,” 7] [4, “yellow,” 19

5, “silver,” 27] [6, “too,” 37

[6, “too,” 39

7, “silver,” 31]

7, “silver,” 27

[8, “fire,” 10]
[8, “fire,” 7]

tl t2 t3 t4 t5 t6 t7 t8

[1, “big,” [2, “damaged,” 4] [3, “fire,” 7] [4, “yellow,” 15] [5, “truck,” 24] [6, “too, 7, “silver,” 27] [8, “fire,” 7]
[1, “big,” 1 [2, “damaged,” 4] [3, “fire,” 7] [4, “yellow,” 16] [5, “truck,” 25] [6, “too,” 35 7, “silver,” 28] [8, “fire,” 7]
[1, “big,” 1 [2, “damaged,” 5] [3, “fire,” 8] [4, “yellow,” 15] [5, “truck,” 26] [6, “too,” 36 7, “silver,” 29] [8, “fire,” 8]
[1, “big,” 2 [2, “damaged,” 6] [3, “fire,” 7] [4, “yellow,” 15] [5, “truck,” 24] [6, “too,” 37 7, “silver,” 27] (8, ‘ﬁre,” 7]
[1 [2, “damaged,” 5] [3, “fire,” 9] [4, “yellow,” 17] [5, “truck,” 24 ] [8, “fire,” 9]
[

[

[

[1, “damaged,” 4]
[1, “damaged,” 4]
[1, “damaged,” 5]
[1, “damaged,” 6]
[1, “damaged,” 5]

[4, “yellow,” 20
“fire,” 7] [3, “hot,” 11]

2, “fire,” 9] [3, “hot,” 11]
[2, “fire,” 10]  [3, “hot,” 12]
(2, “fire,” 7] [3, “hot,” 11]
(2, “fire,” 7] [3, “hot,” 11]
[3, “hot,” 11]

(2,

(2,

[2, “fire,” 8] [3, “fire,” 7]
(2, [4, “yellow,” 21
[ [4, “yellow,” 22
[4, “yellow,” 15
[4, “yellow,” 23
[4, “truck,” 24]

[4, “truck,” 25]

]
]
]
]
]
[4, “yellow,” 18]
]
]
]
]
]
]

5, “silver,” 29] [6, “too,” 40

[6, “too,” 41

[6, “rain,” 42]
[6, “rain,” 43]
[6, “rain,” 42]
[6, “rain,” 44]
[6, “rain,” 42]

34]
]
]
]
[6, “too,” 38]
]
]
]
]

5, “silver,” 27
5, “silver,” 30
5, “silver,” 31
5, “silver,” 27
5, “silver,” 32

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[5, “silver,” 28]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
(5, ]

“silver,” 33

[
[
[
[
[7, “silver,” 30
[
[
[7
[7

]
, “silver,” 32]
, “silver,” 33]
[7, “damaged,” 4]
[7, “damaged,” 4]
[7, “damaged,” 5]
[7, “damaged,” 6]
[7, “damaged,” 5]

[8, “fire,” 7]
[8, “yellow,” 15
[8, “yellow,” 16

[8, “yellow,” 15
[8, “yellow,” 17

]
]
[8, “yellow,” 15]
]
]
[8, “yellow,” 18]

[3, “hot,” 11]
[3, “hot,” 13]
[3, “hot,” 11]
[3, “hot,” 14]

[4, “truck,” 26]
[4, “truck,” 24]
[4, “truck,” 24]

[6, “rain,” 45]
[6, “rain,” 42]
[6, “rain,” 46]

(8, “yellow,” 19]
[8, “yellow,” 20]
[8, “yellow,” 21]
[8, “yellow,” 22]
[8, “yellow,” 15]
[8, “yellow,” 23]

TaBLE 5: SDR for all texts.

Texts SDR

tl [€0,” “1,” “1,” “2,” “1,” “1,” “1,”> “0,” “3,” “4,” “4,” “5,”> “6,” “57]

t2 [“4,> “4,” “5,7 “6,” “5,” “7,7 “7,” “8,” “7,” “9,” “10,” “7,” “7”]

t3 [“7,7 “7,2 8,7 “7,7 “9,” “10,” “7,” “7,” “11,” “11,” “12,” “11,” “11,” “11,” “11,” “13,” “11,” “14”]

t4 [€15,” “16,” “15,” “15,” “17,”, “18” “19,” “20,” “21,” “22,” “15,” “23,” “24,” “25,” “26,” “24,” “24”]

t5 [€24,” “25,” “26,” “24,” “24,”> “27,” “28,” “29,” “27,” “30,” “31,” “27,” “32,” “33”]

t6 [€34,” “35,” “36,” “37,” “38,” “37,” “39,” “40,” “41,” “42,” “43,” “42,” “44,” “42,” “45,” “42,” “46”]

t7 [€47,> <48, “47,> “49,” “47,” “47”, “50”, “517, “52”, “53”, “54”, “55”, “56”, “51”, “51”]

t8 (7,7 “7,7 %8, “7,7 “9,” “10,” “7,> “7,” “15,” “16,” “15,” “15,” “17,” “18,” “19,” “20,” “21,” “22,” “15,” “23”]

TABLE 6: Becoming t1 as part of cluster.

Previous union Empty

Set of t1 [«0’» «1)» «1)» «2’» «1’» «1)» «1’» «0,» «3,» «4,» (‘4,» uS,» “6,” «5»]

TABLE 7: Inserting t2 as part of cluster.

0123456
(<47 “47 “57 “6,” “5,7 <77 <77 Q7«77 “Q? <] “7 7 “77]

t2: with previous union: common words 5

(Updated learning process) union with t1
Set of t2

5.4. Statistical Analysis mately one hundred and fifty thousand reviews were thought
enough for testing and validating our anomalous behavior
detection framework named as SDR_ABDEF/P2. The col-

lected reviews are converted to SDRs. A sample listing

5.4.1. Data Source. Data has been collected from Yelp dataset
(publically available set or reviews) for research. Approxi-
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TaBLE 8: Inserting t3 as part of cluster.

Union with t2 012345678910

Set of t3 [<7,” 7,7 “8,” “7,” “9,” “10,” “7,” “7,” “11,” “11,” “12,” “11,” “11,” “11,” “11,” “13,” “11,” “14”]

t3: with previous union: common words 8

TABLE 9: Partial anomaly t4.

Union with t3 01234567891011121314

Set of t4 [“15,” “16,” “15,” “15,” “17,” “18,” “19,” “20,” “21,” “22,” “15,” 23, “24,” “25,” 26, “24,” “24”]

t4: with previous union: common words 0

TaBLE 10: Inserting t5 as part of cluster.

Union with t4 01234567891011121314151617 1819 2021 22 23 2425 26

Set of t5 [“24,” “25,” “26,” “24,” “24,” “27. “28,” “29,” 27, “30,” “31,” 27, “32,” “33”]

t5: with previous union: common words 5

TaBLE 11: Partial anomaly t6.

Union with t5 01234567891011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Set of t6 [“34,” “35,” “36,” “37,” “38,” “37,” “39,” “40,” “41,” “42,” “43,” “42,” “44,” “42,” “45, “42,” “46”]

t6: with previous union: common words 0

TABLE 12: Partial anomaly t7 and pure anomaly t6.

33;10?6 01234567891011121314151617 18192021 2223 242526272829 3031 3233 34 3536 37 38 39 40 41 42 43 44 45 46
Set of t7 [“47,7 “48, “47,” “49,” “47,” “47,” “50,” “51,” “52,” “53,” “54,” “55” “56,” “51,” “51”]

t7: with previous union: common words 0

TABLE 13: Becoming t8 as part of cluster.

0123456789101112131415161718192021222324252627 2829 30313233343536373839404142434445

Union with 7 46 47 48 49 50 51 52 53 54 55 56

Set of t8 [<7,” 7.7 “8,” 7,7 “9,” “10,” “7,” “7,” “15,” “16,” “15,” “15,” “17,” “18,” “19,” “20,” “21,” “22,” “15,” “23”]

t8: with previous union: common words 20

1.2 4

0.8 4
0.6 4
0.4 4

0.2 4

FiGUre 2: Detected anomalies at threshold value 5.
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Chart title

1.2 4

0.8 ~

0.6 -

0.4 4

0.2 4

t5 t6 t7 t8

F1GURE 3: Detected anomalies at confidence values 6 and 7.

TaBLE 14: A sample from Yelp dataset as processed.

S.no Text Predicted Actual category Actual
1 “Wow loved this place” 1 BC 1
2 “Crust is not good” 0 A 0
3 “It is not tasty and the texture was just nasty” 1 BC 1
4 “Stopped by during the late may bank holiday off Rick Steve recommendation and loved it” 1 A 0
5 “The selection on the menu was great and so were the prices” 1 BC 1
6 “Now I am getting angry and I want my damn pho” 1 BC 1
7 “Honestly, it did not taste that fresh” 1 BC 1
3 “The potatoes were not fresh anq like r_ubber and you could tell they had been made up ahead of 1 BC 1
time being kept under a warmer”
9 “The fries were great too” 1 BC 1
10 “A good great touch” 1 BC 1
11 “Service was very prompt” 1 BC 1
12 “Would not go back” 1 BC 1
13 “The cashier had no care whatsoever on what I had to say it still ended up being way overpriced” 1 A 0
14 “I tried the cape cod ravoli” 1 BC 1
15 “I was disgusted because I was pretty sure that was human hair” 1 BC 1
16 “I was shocked because no signs indicate cash only” 1 A 0
17 “Highly demanded” 0 A 0
18 “Waitress was a little slow in service” 1 BC 1
19 “This place is not worth your time” 1 BC 1
20 “Did not like at all” 1 BC 1

of the said datasets is presented in Table 14 showing
three columns of predicted and actual values with the
assumptions.

Actual Category: “BC” represents behavioral change
while “A” represents anomaly, and the numerical value
assigned to BC is “1” and to A is “0,”

True Behavior Change (FBC): If our proposed system
determines the value of a review as “1” and the actual value
is also “1,” this means it is TBC.

False Behavior Change (TBC): If our proposed system
determines the value of a review as “1” and the actual value
is “0,” this means it is FBC.

True Anomaly (TA): If our proposed system determines
the value of a review as “0” and the actual value is also “0,”
this means it is TA.

TaBLE 15: Showing precision and recall for both categories.

Category Precision Recall f1-score
0 1.00 0.60 0.75
1 0.96 1.00 0.98
Average 0.96 0.96 0.96

False Anomaly (FA): If our proposed system determines
the value of a review as “0” and the actual value is “1,” this
means it is FA.

5.4.2. Confusion Matrix Measures. In machine learning and
specifically in statistical classification, a confusion matrix,
also called as an error matrix, is a specific table that allows
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1.2 4
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0.8 4

0.6

0.4 4

0.2 4

o+

1 4 7 101316 19 22 25 2831 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97100

Predicted
—— Actual

FIGURE 4: Represents the difference between actual and predicted dataset sample.

visualization of the performance of an algorithm in super-
vised learning, while in unsupervised learning, it is called
matching matrix. Each row of the matrix represents the
instances in a predicted class while each column represents
the instances in an actual class or vice versa [59]. It is clear
from the name of matrix that confusion matrix makes it easy
to see if the system is confusing two classes (i.e., commonly
mislabeling one as another). It is also defined as special kind
of likelihood table, with two dimensions, one is the “actual”
and the other is “predicted,” and identical sets of “classes”
in both dimensions [60]. If in any experiment we have “P”
positive and “N” negative instances for any condition, the
formulated four outcomes 2 x 2 confusion matrix could be
as follows [61, 62].

. TBC
Precision= —— |
TBC + FBC,
TBC
=" 11
Recall = Tpc+ A (1)

2 * precision = recall
F — measure =

precision + recall

After analysis from the confusion matrix, proposed
methodology achieved 96% accuracy and remaining mea-
sures are shown in Table 15.

The graphical representation of the results of the sample
from yelp dataset is shown in Figure 4:

6. Conclusion and Future Work

6.1. Conclusion. Upon the working principles of the human
neocortex, the HTM model has been developed by Jeff Haw-
kins, which is a proposed theoretical framework for sequence
learning. Both types of data numerical and categorical are
best suited input types for HTM model working. SFT is based
on HTM to represent a data stream for processing in the
form of sparse distributed representation (SDR). SFT offers
a framework for unfolding how semantic information is
manipulated for natural language observation and creation,

towards the details of semantic foundations during the initial
language learning phase.

All data patterns that differ from expectation based on
previous inputs are called. These anomalies can be of differ-
ent types. A single data pattern or set of closely spaced pat-
terns when deviated from its normal behavior is called
spatial (static) anomaly. When some surprising change
occurs between patterns then it is a temporal anomaly.
Whenever a sudden change is recorded, it is an anomaly,
but when this change appears a number of times, then it is
called new normal. Due to continuous learning nature, an
HTM primarily detects an anomaly and then quickly trans-
forms into a new normal if the change persists continuously.

A robust anomalous behavior detection framework using
HTM based on SFT for improving decision-making (SDR-
ABDEF/P2) is a proposed framework or model in this
research. The researcher claims that the proposed model is
able to learn order of several variables continuously in tem-
poral sequences by using an unsupervised learning rule.
The proposed technique is also tested on Yelp dataset, and
the results were amazingly remarkable. It worked up to show-
ing 96% accuracy. A number of experiments on different
dataset samples have been performed implementing this
model successfully. NAB (Numenta Anomaly Benchmark)
is another benchmark that attempts to provide a controlled
and repeatable environment of tools to test and measure
different anomaly detection algorithms on streaming data.

6.2. Future Suggestions

(1) Whenever language models are used in traditional
natural language processing with semantic context,
proposed system SDR_ABDF/P2 can be used

(2) Numeric measurement interpretation as semantic
entities is the other area of active research like words.
Such research would use log files of historic measure-
ments instead of semantic grounding by reference
texts. Measurements of correlation will follow system
specific dependencies

(3) The next and best area of research is development of
hardware architecture. This will uplift the speed of
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the similarity computation process. In very large
semantic search systems holding billions of docu-
ments, the bottleneck is the similarity computation.
With the use of content addressable memory (CAM)
similarity-

mechanism, the search-by-semantics
process will accelerate at very high velocities
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