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a multimodal sensor dataset for 
continuous stress detection of 
nurses in a hospital
Seyedmajid Hosseini1, Raju Gottumukkala1 ✉, Satya Katragadda1, Ravi teja Bhupatiraju1, 
Ziad ashkar1, Christoph W. Borst1 & Kenneth Cochran1,2

advances in wearable technologies provide the opportunity to monitor many physiological variables 
continuously. Stress detection has gained increased attention in recent years, mainly because early 
stress detection can help individuals better manage health to minimize the negative impacts of 
long-term stress exposure. this paper provides a unique stress detection dataset created in a natural 
working environment in a hospital. this dataset is a collection of biometric data of nurses during the 
COVID-19 outbreak. Studying stress in a work environment is complex due to many social, cultural, and 
psychological factors in dealing with stressful conditions. therefore, we captured both the physiological 
data and associated context pertaining to the stress events. We monitored specific physiological 
variables such as electrodermal activity, Heart Rate, and skin temperature of the nurse subjects. a 
periodic smartphone-administered survey also captured the contributing factors for the detected stress 
events. a database containing the signals, stress events, and survey responses is publicly available on 
Dryad.

Background & Summary
Prolonged exposure to stress factors such as high workload, lack of autonomy, and long hours can negatively 
impact employee health. Many studies point out that prolonged exposure to stress leads to chronic conditions 
such as obesity1 or hypertension2, which may exacerbate conditions such as type-II diabetes3. Monitoring and 
understanding stress in workplaces is important, especially in professions with increased exposure to stress, 
often leading to burnout and increased turn over4.

This dataset provides physiological stress signals from a nursing population working in real-world hospital 
settings during the COVID-19 outbreak. The primary motivation to create a wearable biometric nursing stress 
dataset is to help advance research into understanding and improving the emotional health of nurses in a nat-
uralistic environment through the development of early detection of work-related stress detection algorithms.

Our work was inspired by several previous works on wearables to monitor physiological signals related to 
stress. The AffectiveRoad dataset5 used Empatica E4 and Zephyr Bioharness 3.0 to study the effect of driving 
conditions on the stress levels of 10 drivers. This study was conducted with drivers taking a 1 hour 26 minute 
driving test. The WESAD data-set6 used RespiBAN and Empatica E4 to study the stress of 15 students watching 
a movie and taking a TSST test7. The SWELL dataset8 used Mobi, uLog, video, and Kinect to study stress and the 
associated postures and facial expressions of 25 students. Finally, MDPSD (multi-modal dataset for psychologi-
cal stress detection)9 collected a comprehensive multimodal stress detection dataset on university students using 
electrodermal activity of skin (EDA) and photoplethysmography (PPG) signals while performing different tests 
(e.g., Trier Social Stress Test TSST10 and color-word tests11).

TILES-2018 dataset from Mundnich et al.12 is a multi-sensor dataset that uses a battery of surveys to cover 
personality traits, behavioral states, job performance, and well-being over time. Compared to TILES-2018, our 
dataset is much smaller in scope. Our dataset was generated during COVID-19, and the stress events we cap-
tured were linked to stress contributors. Tesserae13–19, is a large multi-university project that studied various 
aspects of the workplace performance of information workers using wearables. Compared to the Tesserae, our 
dataset is focused on nurses instead. Our dataset is much smaller in scope but focuses on stress bio-metrics. We 
contextualize this dataset as a unique data collection during the first year of COVID when nursing was stressed 
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like never before. We use EDA and skin temperature in addition to the more common sensors of contemporary 
wrist-worn wearables such as pulse rate and accelerometer data that were not covered by either the TILES-2018 
dataset or the Tesserae project.

Our dataset provides physiological stress signals collected using signal streams from Empatica E4 for a nurs-
ing population. Our primary motivation to create this dataset was to conduct a stress study under real-world 
work conditions. Further, this study was conducted during the COVID-19 outbreak. Nursing is a stressful pro-
fession, and prior literature identified several factors that contribute to stress. Moreover, the study was conducted 
during the second wave of the COVID-19 outbreak, and all the nurses were dealing with the influx of COVID-19 
patients, which made it an event-rich environment. The combination of wearable data and end-of-shift surveys 
offers a useful window into nursing stress.

Methods
In this section, we describe the experimental procedure and materials used for data collection. Fig. 1 shows the 
overall stress detection apparatus used for data collection. The Institutional Review Board of the University of 
Louisiana at Lafayette approved the protocol of the study: FA19–50 INFOR.

experimental procedure. Recruitment. The research team presented the overall study design and 
approach to measure stress to the executive of the hospital, nurse managers, and human resources. After the 
nursing department expressed interest, the research team obtained approval from hospital compliance. The con-
senting nurse subjects were enrolled in the study. The stress detection scenario was described to the nurses from 
the Emergency Room (ER) department. The research team also ran a pilot of the study for a week and adjusted 
the frequency of survey responses to minimize inconvenience to the nurse’s job duties. The overall study was done 
in three phases, where 7 nurses were included in each phase. No incentives were offered. Six nurses, however, did 
not complete the study, and these participants were dropped from the dataset. The subjects consented for the data 
to be publicly released with anonymization. Each subject was assigned a unique identifier that cannot be linked 
to the participant.

Duration and demographics. Data was gathered for approximately one week from 15 female nurses working 
regular shifts at a hospital. The age of the nurses ranged from 30 to 55 years. This amounts to 1,250 hours of data 
collected between 04/14/2020 to 12/11/2020 in two phases (Phase-I is from 4/15/2020 to 8/6/2020 and Phase-II 
from 10/08/2020 to 12/11/2020). The exclusion criteria were pregnancy, heavy smoking, mental disorders, and 
chronic or cardiovascular diseases. Table 1 presents the signals captured from individual participants that can 
be used for stress analysis.

Data collection. The subjects recruited in the study were nurses working on their usual schedules. Wearable 
devices can be worn during regular shifts and continuously monitor the physiological signals with minimum 
intrusion. In this study, we aimed to detect the stress of nurses during their daily routine using only wearables. 
An Empatica E4 was worn on the wrist of the dominant arm. We instructed our subjects to keep the phone in 
proximity and wear the device to maintain close contact with the skin to minimize data loss. We only include the 
data where the signals are collected continuously throughout the nurse’s work shift (which is typically 8 hours). 
The nurse can terminate the data collection by turning off the device. In some cases, the collected data does not 
include Inter-Beat Interval (IBI) and Heart Rate data due to noisy artifacts from the PPG sensor. We did not 
notice any missing data from the EDA sensor. If any of the data collected during the shift is missing, the data 
from that shift is removed.

Data

Stressful event

E4
Data Collection App.

Responses

Machine Learning 
Stress Detection 
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Fig. 1 Stress detection apparatus.
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During these experiments, we collected the physiological data from the nurses continuously from the start 
of their shift to the end of the shift. The overall end-to-end system was designed to perform data collection, 
processing, and stress detection in near real-time. While the proposed data collection mechanism, stress detec-
tion algorithm, and the survey apparatus were designed for real-time stress detection and feedback collection. 
The stress notifications were sent, and the survey responses were collected at the end of the shift for each of the 
nurses. This process reduces interruptions for nurses while on duty. While the delay may have produced some 
degree of recall bias, it is still an improvement over traditional surveys, which do not specify the precise time of 
stress events and are conducted at monthly or quarterly intervals. Data is transmitted from the wearable to the 
phone using Bluetooth, and the phone transmits the data to the analytics server using Wi-Fi in the background 
without the involvement of the participant. The stress detection algorithm uses a Random Forest model to 
identify epochs of potential stress. The nurses responded with a survey at the end of the day from their mobile 
phones, where they validated the detected events. 171 hours of data were detected as stressful. Table 2 shows 
the data description. The data was anonymized to remove publicly identifiable information and is available on 
Dryad.

Data collection tools. Figure 1 presents the data collection framework. A detailed explanation of each of 
the components is presented below.

Empatica wristband. An E4 wristband device (Empatica Inc., Milano, Italy) that collects physiological data 
such as EDA, Heart Rate, skin temperature, and accelerometer data from the right wrist of the subject. EDA 
is measured via E4’s silver (Ag) electrode (valid range [0.01–100] μ S), while Heart Rate is measured via E4’s 
PPG sensor. The E4 wristband is powered by a rechargeable lithium battery and transmits data to the subject’s 
smartphone, using Bluetooth, in near-real-time. All the data collected from the E4 wristband and the sampling 
frequencies are presented in Table 1. The physiological data is then transmitted to the data collection app on a 
nurse’s phone in near real-time. The nurses can also tag the data using the tag button on the e4 device to indicate 
an undetected stress experience, and this is also transmitted to the data collection app.

Nurses accessed the survey instrument through their mobile phone to validate the stress response. The sur-
vey instrument has the list of events detected (by the model) along with the time these events occurred. The sur-
vey instrument allows them to provide context for the event. Because some events may not have been detected, 
the nurses were asked to report any stress events undetected by the model through the survey instrument. The 

Signal Abbreviation Frequency

electrodermal activity EDA 4.0 Hz

Heart Rate HR 1.0 Hz

skin temperature ST 1.0 Hz

accelerometer ACC 32 Hz

inter-beat interval IBI 64 Hz

blood volume pulse BVP 64 Hz

Table 1. Signals and frequency of Empatica E4.

ID
Total Data 
Collected

Duration of 
Stress Detected

Number of Stress 
Events Detected

Feedback (Agreement) Feedback Not 
ReceivedYes No

15 72:50 9:28 30 16 2 12

83 149:47 15 30 16 5 9

94 80:30 14:06 43 9 11 23

5C 99:19 11:48 15 10 2 3

6B 58:06 14:42 23 11 2 10

6D 23:57 4:08 4 3 1 0

7A 79:18 16:52 47 32 3 12

7E 50:42 2:12 7 3 4 0

8B 27:14 4:41 17 13 3 1

BG 76:02 8:28 25 14 4 7

CE 111:01 16:12 20 7 0 13

DF 127.41 17:27 21 6 2 13

E4 116.12 17:56 40 29 6 5

EG 107.52 8:07 11 5 0 6

F5 69:38 4:39 26 25 1 0

Table 2. Stress events and feedback.
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nurses also had an additional mechanism to report the events from the wristwatch by pushing the E4 button to 
tag stress events. Although, no one used the watch to report additional stress events.

Data collection application. The data collection application is a mobile application that runs on iOS and 
Android. It connects to the E4 wristband through Bluetooth. The physiological signals are collected in near 
real-time. These signals and any tags input by the nurses are transmitted to the machine learning based stress 
detection model. Fig. 2 shows screenshots of the data collection app.

The survey instrument was designed for collecting survey responses. We offered nurses two ways of com-
pleting the surveys after stress detection: a custom mobile application and a web application (both offered the 
same functionality). The installation of the mobile application on the phone proved to be inconvenient as the 
application was not available on the App store and needed to be sideloaded onto the subject’s phone. So, the 
nurses opted to fill out the survey through the web application. The source code of the custom applications is 
made available on GitHub20.

The data collected on the watch is transmitted to the Empatica application on the subject’s phone through 
Bluetooth. These signals are then transmitted to the Empatica server through the mobile phone’s Wi-Fi con-
nection. In the event of a loss of network connectivity, data is buffered (stored temporarily) on the phone and 
uploaded when the connection is restored. The researcher downloads data from the Empatica server to inspect 
the data for any losses to run the machine learning model.

Machine learning and stress detection model. At the end of the working day, the machine learning based stress 
detection model consumes the physiological and accelerometer data gathered from the E4 wristbands. Stress 
signals are detected from these physiological signals over time using a stress detection algorithm. The skin 
temperature and lag-based features were used in the stress detection model. In cases where the model detects 

Fig. 2 Mobile and Web application screenshots.
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several stress incidents, the nurses were asked to label the six longest durations per shift. The nurses had two 
ways to enter the labels. Nurses can select and edit the stress events detected by the stress detection system at 
various time slots and fill out a survey to indicate if they experienced stress, and if they did, the stress level, and 
the contributors of stress. They also had the option to report additional time slots where they experienced stress, 
along with the stress level and contributors of stress.

The machine learning based stress detection model was run on the physiological data (collected from the E4 
wristbands at the end of each shift). The events detected by the model were transmitted back to the participant as 
part of the survey instrument. More details about the survey instrument are provided in the Survey sub-section 
below.

Stress detection algorithm. We trained, tested, and validated the Random Forest based machine learning model 
on the Affective Road dataset. Three signals were used, namely EDA, Skin temperature, and Heart Rate. This 
trained model was used for stress detection in nurses.

The stress detection algorithm has three parts. First, a sliding window of 10 seconds and a step-size of 5 sec-
onds were used to extract signal features. The features used by the model include statistical features (mean, min, 
max, skewness, kurtosis, number of peaks) of EDA, skin temperature, and Heart Rate for the current window. 
We include three features (mean of skin temperature, Heart Rate, and EDA) from the previous 10 windows to 
provide an antecedent context of signals before stress. This resulted in 48 features. In the second stage, these 48 
features are fed into the pre-trained machine learning algorithm to generate labels that represent stress catego-
ries (represented 0, 1, and 2 where 0 = no stress; 1 = low stress; 2 = high stress). Random Forest model was 
trained on the AffectiveRoad dataset, hyper-parameters were optimized using a grid search across a range of 
valid parameters: number of estimators (300, 400, 500, 700, and 1000), minimum samples per leaf (3, 4, 5, 6, and 
7), maximum depth (10, 12, 15, 18, 20), and maximum number of features (auto, sqrt, and log2), and 10-fold 
cross-validation is used to ensure that the model is not overfitting. Finally, a sliding window-based change point 
detection algorithm from Ruptures package21 was used to identify discrete sessions from continuous stress sig-
nals. A sliding window based segmentation is used to determine a set of change points22. Each session is rep-
resented by a start time, end time, and stress label, where the label is determined by the average stress value ‘S’ 
between the start time and end time. The labels for each session are calculated based on the average stress values 
during the session: ‘no stress’ if S<=0.65, ‘medium stress’ if 0.65<=S<=1.3, and ‘high stress’ if S = ‘high stress’ 
S>=1.3. These thresholds were adopted based on the AffectiveRoad datasets5 and were further validated using 
the survey feedback during the initial phase of the study. The source code for the stress detection algorithm com-
prises of feature extraction, stress detection, and change-point detection is provided in the GitHub repository20.

Survey. The nurses were requested to complete a questionnaire about their experience during the detected 
stress events to identify the cause of the stress. The survey itself was not administered during the event in order 
to not add to the stress. Instead, the survey was administered at the end of the shift. Our approach to conduct 
surveys after a relatively short duration after the stress event (i.e., immediately after the shift) helps minimize the 
recall bias23 associated with traditional surveys, which are administered after much longer durations such as a 
month24 or a quarter. Our original research design before the pandemic had alerts sent to nurses an hour after 
the stress event had subsided. However, with the increased workload during the pandemic, it was suggested that 
we limit surveys to minimize disruptions. Conventional surveys also do not target specific stress events and are 
instead based on general recall of events across the epoch.

The questions in the questionnaire were selected based on a review of literature studying stress on nurses 
in a hospital environment, as well as from our discussions with nurses25–36. A list of questions in the survey is 
presented in Table 3.

Category Stress inducer

COVID
COVID related [CR]

Treating a COVID patient [TCP]

Medical Patient in crisis [PiC]

Interaction related 
stress

Patient or patient’s family [PoPF]

Doctors or colleagues [DoC]

Administration, lab, pharmacy, radiology, or other ancillary services [Ad]

Office-related stress

Increased Workload [IWL]

Technology related stress [TR]

Lack of supplies [LoS]

Documentation [Doc]

Competency related stress [CRS]

Environment and safety
Safety (physical or physiological threats) [Saf]

Work Environment - Physical or others: work processes or procedures [WE]

Table 3. Survey questions and their categories.
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Data Records
The complete dataset is available on Dryad37. The dataset contains 15 folders of physiological signals extracted 
from Empatica E4 wristbands for each participant. The corresponding stress survey responses from 15 nurses 
who wore the wristband is provided in SurveyResults.xlsx file. Both these files are linked by the Nurse identifier 
and the date-time field.

preprocessing. The four signals: Heart Rate, skin temperature, EDA, and BVP, have different sampling rates. 
The frequency of these signals ranges from 1 Hz for the Heart Rate to 64Hz for the BVP. The frequency of EDA 
and skin temperature range from 4 Hz and 10 Hz each. For our stress detection, we use a frequency of 4 Hz to 
minimize information loss; this provided higher accuracy with a reasonable computation time on the pre-trained 
data that was used to predict the stress level. We evaluated various frequencies to detect stressful events using 
physiological stress. Our analysis shows that the computation time increases as the sampling frequency of the 
signals increase. In addition, certain signals like Heart Rate with lower sampling frequency are ignored due to low 
variability in the signal. Given the differences in the frequency of the signals from E4, we need to select a single 
frequency rate to process the signals. We evaluated different scenarios with various window sizes and frequencies 
for stress detection using the AffectiveRoad dataset. We observed that as the window size increases, the accuracy 
of stress detection decreases. Similarly, the accuracy is higher for higher frequencies. However, higher frequencies 
also result in an increase in computation time. Therefore a frequency of 4Hz is selected to maintain a balance 
between higher accuracy and reasonably near real-time stress detection. The data points for the three signals 
are interpolated to 4 Hz linearly. The code associated with the signal interpolation, cleaning, and pre-processing 
is provided along with the code repository. In addition, the raw signals with their original frequencies from 
Empatica E4 are also provided.

Filename Columns Measure Description Unit

ACC.csv

Column I Accelerometer x-axis Acceleration of the device along the x-axis m/s2

Column II Accelerometer y-axis Acceleration of the device along the y-axis m/s2

Column III Accelerometer z-axis Acceleration of the device along the z-axis m/s2

BVP.csv Column I BVP The volume of blood that passes through the tissues in the wrist and is 
used to measure IBI and Heart Rate N/A

HR.csv Column I Heart Rate A derived metric that measures the number of beats per minute based 
on Blood Volume Pulse bpm

EDA.csv Column I EDA Measurement of the skin conductivity levels μS

IBI.csv
Column I Time Time interval Second

Column II IBI Beat-to-beat interval Second

TEMP.csv Column I Skin Temperature The external temperature of the skin Celsius

Table 4. Empatica E4 Signal Description.

Feature Entropy Information Gain

EDA

EDA_Mean 0.126 0.102

EDA_Min 0.112 0.219

EDA_Max 0.122 0.218

EDA_Std 0.053 0.018

EDA_Kurtosis 0.014 0

EDA_Skew 0.017 0.002

EDA_Num_Peaks 0.003 0

EDA_Amphitude 0.016 0.035

EDA_Duration 0.009 0.015

Heart Rate

HR_Mean 0.041 0.005

HR_Min 0.042 0.009

HR_Max 0.043 0.01

HR_Std 0.019 0.002

HR_RMS 0.023 0.002

Skin Temperature

temp_Mean 0.111 0.056

temp_Min 0.096 0.036

temp_Max 0.105 0.04

temp_Std 0.041 0.012

Table 5. Entropy and Information gain of different features.
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Data description. The following is a description of various directories and files in the dataset.
Stress_dataset.zip: The zip file holds the data of 15 participants in different folders. Each folder contains raw 

data signals in CSV format in a sub-folder. A raw data folder consists of 6 different CSV files, including (1) EDA.
csv (EDA), (2) HR.csv (Heart Rate), (3) TEMP.csv (skin temperature), (4) IBI.csv (IBI), (5) BVP.csv (BVP), and 
(6) ACC.csv (accelerometer data). Each biometric signal data has the following information:

•	 Start time (epoch): The DateTime floating point value that contains the time that signal was generated using 
the internal clock of the wristband. The DateTime is stored in the first row of every data column.

•	 Frequency: The second cell of each column shows the data collection frequency (32)

Table 4 shows the csv files, column descriptions and units.
Each file name is identical to the participant’s ID in both data and survey files. All of the signals were syn-

chronized to bring them to a common frequency. The accelerometer data is not used in the stress detection 
model. Some of the basic physical activities can be estimated from the accelerometer sensor, which could be 
further used to potentially include the activity context in stress detection38.

SurveyResults.xlsx: The Excel file holds all participant survey results and their annotated stress level in 11 
Excel sheets (a sheet for each participant). Sheet names are the participant’s IDs. However, the IDs are generated 
in an ID column for all files for more convenience. The following are the excel sheet columns:

Group 1: General information of the stress event.

•	 Column A: ID Anonymized Id of the user.
•	 Column B: Start time: Event start time.
•	 Column C: End time: Event start time.
•	 Column D: Duration Duration of the event.
•	 Column E: Date Date of data collection.

Group 2: Stress Level.

•	 Column F: Stress level Reported stress level by the nurse.

Group 3: Nurses’ responses regarding the nature of the stress.

•	 Column G: COVID Related
•	 Column H: Treating a COVID patient
•	 Column I: Patient in Crisis
•	 Column J: Patient or patient’s family
•	 Column K: Doctors or colleagues
•	 Column L: Administration, lab, pharmacy, radiology, or other ancillary services
•	 Column M: Increased Workload
•	 Column N: Technology related stress
•	 Column O: Lack of supplies
•	 Column P: Documentation
•	 Column Q: Safety (physical or physiological threats)
•	 Column R: Lack of supplies
•	 Column S: Work Environment - Physical or others: work processes or procedures
•	 Column T: Description

We consulted with the nurses ahead of the study to ensure that the stress labels were meaningful to them. The 
description field was used in place of “None of the Above”. If the nurses agreed that there was stress and it was 
not covered by any stress label, it would be used to describe the stress event. It should be noted that it was also 
used to elaborate on the stress event even when one of the stress classes was selected.

technical Validation
Methods for evaluating psychological stress detection include self-report questionnaires and interviews. 
While stress surveys are considered sufficiently reliable and widely adopted39, they offer insights mainly on the 
moments of their administration. The responses are coarse designations of stress and are unable to detect subtler 
shifts in stress over time40. In this paper, we used near-real-time stress evaluation surveys at the end of the shift 
in conjunction with our bio-metric stress detection to minimize the biases of recall.

Label description. The dataset provides more than 1,250 hours of accelerometer and physiological sig-
nals collected from 15 nurses during their daily routine responsibilities. 83 hours of data are labeled with stress 
descriptors based on the validated stressful events by nurses. We included the unlabeled signals since we expect 
the unlabeled signals to have predictive value in anticipating future stress events. Table 2 shows the stress detec-
tion results of participants based on their answers. Fig. 3 shows the distribution of stress events in the nurses. 
Table 2 shows the data durations we collected from each participant.

While the nurses were instructed to use the E4 buttons to indicate the situations where they were stressed, 
none of the nurses actually used them. The false positives are identified based on the surveys of stress events 
where the nurses suggested that they were not stressed during the stress event detected by the stress detection 
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model. The nurses were also provided the opportunity to provide additional times when they were stressed but 
were not detected by the model. But no additional data points were provided by the nurses beyond what was 
detected by the stress detection model.

The “na” events are labelled using the stress detection model but are not validated by the subject, unlike the 
stress events, which are validated. We requested the subjects to add undetected stress events at the end of the 
survey. This would validate the No Stress epochs, but we did not receive responses. So, only the labels 0, 1, and 2, 
corresponding to no-stress, medium-stress, and high-stress, respectively, are validated.

physiological signals versus reported stress events. The box plots (Figs. 5–8) show four individual 
physiological signals recorded by the wearable device, namely the Heart Rate, EDA, skin temperature, BVP, and 
the reported stress levels from the survey. Pekka et al.41, have shown that the stress detection models are person-
alized signals and features, and their importance in the machine learning models has to be computed at the user 
level. Given the same signals, feature selection from within the signal streams at the user level improves perfor-
mance, as demonstrated by Pekka’s 5-fold cross-validations. Figs. 4, 5, 6 illustrate that the biometric signals like 
EDA, Heart Rate, and skin temperature vary between subjects.

The relationship between these signals and stress is not necessarily linear. In addition, there is also an inter-
play between these signals. Machine learning techniques can model stress behavior with respect to each of these 
features derived from the signals. In Table 5, we provide the entropy and information gain for the random forest 

Fig. 3 Distribution of stress levels for each subject.

Fig. 4 Overall skin temperatures of participants.
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model to identify the stress level of the subjects. The entropy is higher for EDA-based signals compared to skin 
temperature and Heart Rate. The EDA-based features (mean, min, and max) for each of the subjects within a 
given window is a better predictor of an individual under stress. While earlier studies indicated that Heart Rate 
and Heart Rate variability are good features to use for stress detection42,43, this is not evident in our analysis. This 
could be due to various reasons. Earlier studies relied on simulated data in laboratory settings where the subjects 
were in stationary/sedentary positions. However, in our real-world analysis, there is a lot of physical activity 
performed by nurses, leading to their Heart Rates being elevated.

The skin temperature of a healthy individual is about 33°C or 91°F. Skin temperature varies during various 
activities due to skin blood temperature and its flow and is normally within the range of 33.5°C to 36.9°C44. 
However, this can vary quite widely based on the type and length of activity and room temperature. Given the 
open-ended nature of the experiment, there are some anomalies in the data. The subjects were twice as likely 
to have a higher skin temperature with high stress than during no stress. The general trend agrees with reports 
from prior literature. However, the trend was not statistically significant in our dataset. We analyzed the data 
with a paired sample t-test. With the test statistic of 1.3 and the p-value at 0.22, we cannot reject the null hypoth-
esis that there is no difference in temperature with respect to stress45. The relationship between skin temperature 
and stress has been discussed by several authors45,46 and observed skin warming in stressful events.

The Heart Rate of a healthy individual, irrespective of gender, ranges from 60 to 100, when in a resting state. 
However, the Heart Rate varies greatly with activity. Given that the subjects are typically performing different 
activities, one can observe high variations in Heart Rate. Fig. 5 shows the distribution of Heart Rate and asso-
ciated stress level for all the subjects. Based on the visual inspection of the plot, stress does not appear to have 
a strong correlation with the Heart Rate. Heart rate is generally associated with high stress situations, but high 
Heart Rate should not imply high stress since it is more commonly influenced by non-stressful physical activity. 

Fig. 5 Overall HR of participants.

Fig. 6 Overall EDA of participants.
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Heart rate is best interpreted with accelerometer data, which can signify physical activity. We do not currently 
provide activity recognition labels and models from wrist-based accelerometer data.

Figure 6 shows the distribution of EDA and associated stress levels for all the subjects. Based on visual 
inspection of the plot, stress has a positive correlation with the EDA. The average EDA is higher in stressful sit-
uations for some participants. However, for some participants, the EDA is not a good indicator of stress because 
EDA does not vary or it is not positively correlated. There is high variability in EDA signals for various subjects 
in stressful events. The normal range for humans is from 1 to 20 μS. We observe that the average skin EDA for 
all the participants when there is no stress reported is below 5, and the range for medium stress is the same as 
stress-free situations. The EDA contains two main components, skin conductance response (SCR) and skin con-
ductance level (SCL). The skin conductance response is a phasic response to external stimuli, whereas SCL is a 
gradual change in skin conductance over time. In our analysis, the SCL plays a major role, as the stress detection 
is performed in windows and compared to a normal baseline. For example, the EDA was observed to reach a 
maximum of 60 μS compared to 10 μS during non-stress time-periods on average.

The Heart Rate and Heart Rate variability signals can be derived from the BVP signal by computing the 
inverse of the time between two successive peaks. Fig. 7 shows the overall distribution of the BVP signal of dif-
ferent participants. We analyzed the BVP signals using a paired sample t-test with the test statistic of 2.3 and the 
p-value at 0.0501. We cannot reject the null hypothesis that there is no difference in BVP with respect to stress.

Figure 8 shows the distribution of stress intensity within each of the contributors to stress, as well as the 
cumulative number of hours under each stress level per contributor. Table 3 provides additional details about 
the factors. The survey results indicate that treating a COVID-19 patient was the most significant contributor 
to detected high-stress events. Not all COVID-related stress classes ranked high, however. There was no event 
where the nurses are worried about contracting COVID. In addition to COVID, the nurses indicate that they 
were impacted by the lack of supplies; however, it was not mentioned as a contributor of acute stress for any of 
our detected events. This could mean that while COVID-19 and supplies could have been significant contribu-
tors to stress in the background, they themselves did not cause acute stress events detectable by our apparatus. 
These results are also verified by other researchers studying the impact of COVID on nurses47. This should 
be seen as a limitation of biometric stress detection; it cannot detect general concerns, and in a holistic stress 
evaluation, biometric data collection must always be paired with qualitative interviews. It is a complementary 
modality, rather than a replacement, to traditional stress monitoring.

Usage Notes
potential applications. Human well-being is an important consideration both for individuals and organiza-
tions. As such, organizations need mechanisms to carefully monitor and manage high-stress environments such 
as hospitals in order to improve both employee wellbeing as well as patient satisfaction. We believe this study can 
be useful for researchers from many domains. First, researchers in signal processing and machine learning might 
be able to use the dataset to develop new machine learning models that improve stress detection performance. 
Second, the accelerometer signals can be used to contextualize stress in order to understand the relationship 
between movement patterns and stress.

The data collected here can be useful for nursing, machine learning, and hospital management communities. 
The physiological signals, along with the activity data, can be used to better contextualize signal streams that 
are impacted by the intensity of physical activity, such as Heart Rate. The interpretation context of our dataset is 
significantly different given that our subjects were engaged in real-world tasks that have varied physical compo-
nents to them. Thus, further analyses can benefit from augmentation with inferred metrics of mobility.
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Finally, researchers in human resources / human factors / organizational psychology would find the survey 
dataset, along with biometric signals useful because it is a unique dataset that makes the association between 
biometric signals and stress-related factors during the COVID-19 outbreak.

Additionally, the dataset illustrates the relative frequency of various work-related stressors during the 
pandemic.

Limitations. We conceptualized the study before the pandemic. The original design had an onsite observer 
making independent assessments of tasks and apparent stress behaviors alongside the system stress assessments. 
The outbreak prevented us from placing an investigator onsite but provided a dataset under critically unique 
clinical circumstances. The nurses were busier than usual, and we had to ensure that we were not interrupting 
them too often.

Not all of the dataset is covered by stress labels. Unlabelled data does not necessarily imply a lack of stress; 
it just means that we did not detect stress using our signal streams and that the subjects did not independently 
report it as a stressful period. We did not insist on complete coverage of labels, as the most important priority of 
nurses was taking care of the patients.

We also provide the unlabelled data because we suspect that it may contain predictive markers of stress that 
future analyses may reveal.

Our study is distinguished by the following features and limitations that must be taken into account while 
interpreting the data. These are simply inherent to the naturalistic setting and due to the mitigating effects of the 
pandemic scenario.

•	 Compared to the laboratory scenarios where the undivided attention of the subject is available, in high-im-
pact real-world scenarios, the subjects may not be distracted or interrupted frequently from their professional 
tasks for labeling.

•	 We only validated stressful events because of our focus on acute stress detection. Because nursing was stress-
ful during the peaks of the COVID-19 pandemic, we provided no more than 6 events a day for the nurses. 
When there are more than 6 stress events, we prioritized stress events of longer duration since we expected 
the subjects to recall these events better at the end of the day. We also chose to spread the events across the 
nurses’ work shifts since this is more likely to reduce recall conflicts.

•	 In prior literature, researchers have claimed that chronic stress can be mitigated by early detection of acute 
stress40,48. The literature does not, however, validate this claim. There is not sufficient research on chronic 
stress detection using biometric signals49. This dataset is also focused on acute stress detection and is unable 
to detect chronic stress.

•	 Social distancing requirements upended a prior experimental design that included onsite investigator data 
collection describing nurse tasks in conjunction with stress signals.

•	 While we had methods for immediate stress detection, we opted to delay the surveys to the end of the day in 
order to not interrupt the work of the nurses. While the latency may have produced some degree of recall bias, 
it is still an improvement over traditional surveys, which do not specify the precise time of stress events and 
are conducted at monthly or quarterly intervals24.

•	 The nurses agreed with the stress detection algorithm far more than they disagreed. Given the stress of the 
pandemic, and because the stress reports of nurses were not corroborated by onsite investigator observations 
of stressful behavior, the data can only be interpreted as subject reports of stress.

Finally, unlike laboratory studies that are typically conducted in a controlled environment, stress detection in 
a natural environment is more complex due to the influence of many social, cultural, and psychological factors. 

Fig. 8 Distribution of stress levels within detected events across stress contributors.
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While we have attempted to provide some context to stress by conducting a survey based on the available lit-
erature, there are several social, cultural, and individual variables we did not consider in our survey. Given the 
stress of the pandemic, and because the stress reports of nurses were not corroborated by onsite investigator 
observations of stressful behavior. The data should specifically be interpreted as subject reports of stress, which 
may be mitigated by other factors such as a desire to quickly complete the survey questions after a stressful day.

Code availability
The code is available on GitHub20. The data collection was performed in Central Standard Time of the United 
States which is 6 hours behind GMT.
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