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Intrinsic disorder prediction is an active area that has developed over 100 predictors. We identify and
investigate a recent trend towards the development of deep neural network (DNN)-based methods.
The first DNN-based method was released in 2013 and since 2019 deep learners account for majority
of the new disorder predictors. We find that the 13 currently available DNN-based predictors are diverse
in their topologies, sizes of their networks and the inputs that they utilize. We empirically show that the
deep learners are statistically more accurate than other types of disorder predictors using the blind test
dataset from the recent community assessment of intrinsic disorder predictions (CAID). We also identify
several well-rounded DNN-based predictors that are accurate, fast and/or conveniently available. The
popularity, favorable predictive performance and architectural flexibility suggest that deep networks
are likely to fuel the development of future disordered predictors. Novel hybrid designs of deep networks
could be used to adequately accommodate for diversity of types and flavors of intrinsic disorder. We also
discuss scarcity of the DNN-based methods for the prediction of disordered binding regions and the need
to develop more accurate methods for this prediction.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Intrinsic disorder in proteins is defined by lack of stable tertiary
structure under physiological conditions [1–4]. Intrinsically disor-
dered proteins (IDPs) include one or more intrinsically disordered
regions (IDRs) in their sequences. Recent bioinformatics investiga-
tions conclude that IDPs are highly abundant in eukaryotic organ-
isms [5–7] and enriched in multiple cellular compartments [8,9].
Numerous studies of IDPs reveal that they are crucial for a wide
spectrum of cellular functions that include signaling, molecular
recognition and assembly, cell cycle regulation, transcription,
translation and phase separation [10–19]. Moreover, given their
functional importance and prevalence in the human diseasome
[12,20–22], they serve as promising and currently underutilized
leads for rational drug design efforts [23–27].

Experimentally characterized IDPs and IDRs can be collected
from several databases, such as DisProt [28], PDB [29], IDEAL
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[30], DIBS [31], and MFIB [32]. However, these resources cover only
a small fraction of IDPs, with the largest DisProt and PDB databases
currently including about 2 thousand and 25 thousand IDPs,
respectively [28,33]. Compared to over 225 million protein
sequences that are available in the newest 2021_04 release of Uni-
Prot [34], we have a long way to go to comprehensively identify
and annotate IDPs and IDRs. Computational methods that accu-
rately predict intrinsic disorder can be used to facilitate efforts to
close this huge and growing knowledge gap. Computational pre-
dictors already made large impact on the intrinsic disorder field,
by powering a rapid acceleration in the research on IDPs and IDRs
[35]. They are also used across many areas including rational drug
design [23–26], structural genomics [36–38], and medicine
[39,40].

Development of computational predictors of disorder is a long-
standing research problem. A recent survey has identified 103 dis-
order predictors that were developed over the last four decades
[41]. Current surveys point to the long history of the disorder pre-
diction area, providing invaluable insights concerning architec-
tures of these methods, their availability, trends in their
development efforts and approaches to comparatively evaluate
their predictive performance [40–48]. Moreover, users and devel-
opers benefit from empirical studies that comparatively assess pre-
dictive quality of disorder predictors [33,49–59]. These
comparative studies include several community assessments, such
as Critical Assessment of Structure Prediction (CASP) between
CASP5 to CASP10 [53–58] and Critical Assessment of Intrinsic Pro-
tein Disorder (CAID) [52]. The community assessments involve
evaluation of predictors on blind test datasets (i.e., datasets that
were not available to the authors of the predictors) by independent
assessors who do not take part in the competitions utilizing tests
and metrics that are widely accepted by the community.

The predictive architectures used to develop disorder predictors
are typically divided into three categories [42,43,46,47]: (1)
sequence scoring functions; (2) machine learning models; and (3)
meta-predictors. The first category uses additive and/or weighted
functions, some of which are grounded in physical principles gov-
erning protein folding, to process the input protein sequence and
sequence-derived structural and evolutionary information. Repre-
sentative disorder predictors that fall into this category include
FoldIndex [60], IUPred [61,62], and IUPred3 [63]. The machine
learning predictors apply models that are trained from data using
a variety of machine learning algorithms, such as support vector
machines [64–66], regression [67], conditional random fields
[68–70], radial basis function networks [71], and shallow neural
networks [36,72–76]. Example popular machine learning predic-
tors include DisEMBL [36], DISOPRED [75,76], PONDR [73], and
PrDOS [64]. The meta-predictors use multiple disorder predictions
as inputs to re-predict disorder. The underlying rationale was to
exploit potential complementarity among the input disorder pre-
dictions to generate a new prediction that would improve over
the inputs. These efforts were also fueled by the availability of
diverse sequence-scoring and machine learning predictors and
studies that empirically show that well-designed meta predictors
indeed produce predictions that outperform their inputs [77–79].
Representative example meta-predictors of disorder include
metaPrDOS [80], MFDp [65,81,82], Cspritz [83], disCoP [77,84],
and MobiDB-lite [78]. We observe that some meta-predictors use
machine learning algorithms (e.g., metaPrDOS [80] and MFDp
[65]), which means that they can be cross-listed in both categories.

Results of CASP10, the most recent CASP community assess-
ment that covers disorder prediction (i.e., subsequent CASP exper-
iments do not include disorder predictions), reveal that the top
three predictors belong to the machine learning (PrDOS and DIS-
OPRED) and meta-predictor (MFDp) categories [58]. However, a
recent survey notes a rapid influx of a new subfamily of machine
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learning methods that relies on deep neural networks (DNNs) after
the first DNN-based method was released in 2013 [41]. DNNs differ
from shallow neural networks, which were commonly used to
implement disorder predictors in early 2000 s [36,72–76], by use
of multiple hidden layers and more sophisticated types of neurons
and connections. The shift to the deep network models is moti-
vated by their favorable levels of predictive performance when
compared with the other types of disorder predictors. In particular,
we observe that the best performing methods from the just
completed CAID experiment [85], which include flDPnn [86],
SPOT-Disorder2 [87], RawMSA [88] and AUCpred [89], rely on
DNNs. Motivated by their growing numbers and success, we pro-
vide the first review of the DNN-based disorder predictors. We
identify and summarize 13 DNN-based disorder predictors that
were developed since 2013. We analyze trends in the development
of these predictors and empirically compare predictive quality pro-
duced by the deep learners against the other types of disorder pre-
dictors based on results produced on blind test dataset from the
CAID experiment. We also comment on future prospects in the
development of the DNN-based disorder predictors.
2. Prediction of intrinsic disorder using deep learning

Nowadays, deep learning is widely used to develop methods
that predict protein structure and function. Perhaps the most obvi-
ous example is protein structure prediction where deep learning
models, such as AlphaFold, have deservedly dominated over other
types of methods [90–93]. Moreover, deep learning is utilized to
predict other structural aspects of proteins, such as contacts [94],
secondary structure [95] and torsional angles [96]. DNNs are also
successfully applied to predict protein function [97–99], protein-
drug interactions [100,101], and functional sites [102–104].

The intrinsic disorder prediction field was not immune to the
infusion of the deep learning-based approaches. The first DNN-
based disorder predictor, DNdisorder [105], was published in
2013. Table 1 summarizes a comprehensive list of 36 disorder pre-
dictors that were published since that time. This list contextualizes
the efforts to develop deep learning predictors in a broader setting
of the entire disorder prediction field. We identify the 36 predic-
tors using a wide-ranging list of sources including databases of dis-
order predictions: MobiDB [122], D2P2 [123] and DescribePROT
[124]; community assessments and surveys that were published
on or after 2013 [33,41–43,46,47,49,50,52,58,59], and a manual
search of relevant articles from PubMed that we collect using the
‘‘(disorder[Title]) AND (prediction[Title]) AND protein” query.
Table 1 reveals that 13 out of the 36 recent disorder predictors
use deep learning models. We find that it took two more years
for the second DNN-based predictor, DeepCNF-D, to be published
in 2015 [112]. The following three years include similarly low
numbers of new deep learning tools, with two methods published
in 2016, one in 2017, and one more in 2018. Year 2019 marks a
turning point in the efforts to develop DNN-based disorder predic-
tors, with two tools published in 2019, two in 2020, and four in
2021. Fig. 1 conveniently summarizes the corresponding trends.
It highlights the gradual shift to developing predictors that rely
on deep networks and the fact that these methods constitute
majority (58%) of the predictors that were published over the last
three years (green line in Fig. 1). We also note that the consistent
levels of the release of new methods that range between 11 and
13 per every three-years long interval.

Table 1 provides a few additional insights. We manually check
websites of the corresponding methods and find that 23 out of
36 predictors (over 60%) are available to the end users as either
standalone software (5 methods), webserver (10 methods) or in
both modalities (10 methods). Interestingly, all DNN-based predic-



Table 1
Summary of intrinsic disorder predictors that were developed since 2013 when the first deep learning-based method was released. The predictors are sorted in the chronological
order of their year of publications. ‘‘*” denotes predictors that are used in Fig. 3.

Predictor name Year published Reference1 Applies DNN Availability2 URL

MFDp2 2013 [81] No WS https://biomine.cs.vcu.edu/servers/MFDp2/
DNdisorder 2013 [105] Yes N/A N/A
preDNdisorder 2013 [105] No N/A N/A
Ulg-GIGA 2013 [106] No N/A N/A
DisMeta 2014 [107] No WS https://montelionelab.chem.rpi.edu/dismeta/
disCoP 2014 [77,84] No WS https://biomine.cs.vcu.edu/servers/disCoP/
DynaMine 2014 [67,108] No SP + WS https://dynamine.ibsquare.be/
PON-Diso 2014 [109] No WS https://structure.bmc.lu.se/PON-Diso
DISOPRED3* 2015 [75] No SP + WS https://bioinf.cs.ucl.ac.uk/psipred/
s2D-1 2015 [110] No No N/A
s2D-2* 2015 [110] No No N/A
DisoMCS 2015 [111] No N/A N/A
DeepCNF-D 2015 [112] Yes SP https://home.ttic.edu/~wangsheng/software.html
AUCpreD* 2016 [89] Yes N/A N/A
AUCpreD-np* 2016 [89] Yes N/A N/A
DisPredict (DisPredict2)* 2016 [66] No SP https://github.com/tamjidul/DisPredict2_PSEE
MobiDB-lite* 2017 [78] No WS https://mobidb.bio.unipd.it/
SPOT-Disorder* 2017 [113] Yes SP + WS https://sparks-lab.org/server/spot-disorder/
IUpred2A-long* 2018 [114] No SP + WS https://iupred2a.elte.hu/
IUpred2A-short* 2018 [114] No SP + WS https://iupred2a.elte.hu/
pyHCA* 2018 No No SP https://github.com/T-B-F/pyHCA
SPOT-Disorder-Single* 2018 [115] Yes SP + WS https://sparks-lab.org/server/spot-disorder-single/
Predictor by Zhao and Xue 2018 [116] No No N/A
IDP-CRF 2018 [69] No No N/A
rawMSA* 2019 [88] Yes SP https://bitbucket.org/clami66/rawmsa/src/master/
SPOT-Disorder2* 2019 [87] Yes SP + WS https://sparks-lab.org/server/spot-disorder2/
Spark-IDPP 2019 [117] No No N/A
IDP-FSP 2019 [70] No No N/A
DisoMine* 2020 No Yes WS https://www.bio2byte.be/b2btools/disomine/
ODiNPred 2020 [118] No WS https://st-protein.chem.au.dk/odinpred
IDP-Seq2Seq* 2020 [119] Yes WS https://bliulab.net/IDP-Seq2Seq/
flDPnn* 2021 [86] Yes SP + WS https://biomine.cs.vcu.edu/servers/flDPnn/
flDPlr* 2021 [86] No No N/A
IUPred3 2021 [63] No SP + WS https://iupred3.elte.hu/
RFPR-IDP* 2021 [120] Yes WS https://bliulab.net/RFPR-IDP/server
Metapredict* 2021 [121] Yes SP + WS https://github.com/idptools/metapredict

1 ‘‘No” means that a given predictor was not published in a peer-reviewed journal but was included based on participation in the CASP and/or CAID assessment.
2 Availability: released as ‘‘SP” (standalone program), ‘‘WS” (web server). ‘‘No” not released as either SP (standalone program) or WS (web server), and ‘‘N/A” (not available)

SP and/or WS were released at the time of publication (i.e. URL was provided in the original article) but they were not available as of February 2022 when the access was
tested.

Fig. 1. Development of disorder predictors since 2013 when the first deep learning-based predictor was released. The left/right y-axis gives the number/fraction of predictors
in a given time period. The predictors are color-coded where green represents deep neural network-based methods and blue represents other types of predictors.
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tors that were published after 2016, except for flDPlr, are among
the publicly available tools. This rate of availability is substantially
better compared to related areas including prediction of protein-
binding and RNA-binding residues where the availability is at
1288
around 40% [103,125]. The webservers are a convenient option to
less programming savvy end users, such as some biochemists or
structural biologists. In this case, predictions are performed on
the webserver end and users are not required to install and run
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Table 2
Summary of intrinsic disorder predictors that use deep neural network models. The predictors are sorted in the chronological order of their year of publications. X marks inputs
that are used by a given predictor. ‘‘*” denotes predictors that are used in Fig. 3.

Predictor name Year
published

Inputs Network architecture AUC Runtime7

Sequence1 Evolutionary
features2

Predicted structural
feature3

Physicochemical
properties4

Type5 Size6

DNdisorder 2013 X X RBM Moderately deep N/A N/A
DeepCNF-D 2015 X X X CNN Moderately deep N/A N/A
AUCpreD* 2016 X X X X CNN Moderately deep 0.757 7.0
AUCpreD-np* 2016 X X X CNN Moderately deep 0.751 <0.5
SPOT-Disorder* 2017 X X X BRNN Moderately deep 0.744 5.0
SPOT-Disorder-Single* 2018 X X X BRNN + CNN Deep 0.757 0.8–1.0
rawMSA* 2019 X X BRNN + CNN Very deep 0.780 >10.0
SPOT-Disorder2* 2019 X X X BRNN + CNN Very deep 0.760 >10.0
DisoMine* 2020 X BRNN Moderately deep 0.765 <0.5
IDP-Seq2Seq* 2020 X X X BRNN Very deep 0.754 12.0
flDPnn* 2021 X X X FFNN Moderately deep 0.814 0.5–1.0
RFPR-IDP* 2021 X X BRNN + CNN Moderately deep 0.722 <0.5
Metapredict* 2021 X BRNN Moderately deep 0.746 <0.5

1 The input sequence was encoded and directly used as predictive input.
2 Evolutional features computed from the input sequence including position-specific scoring matrix (PSSM), entropy-based conservation, and multiple sequence alignment.
3 Structural features predicted from the input sequence, such as putative secondary structure, solvent accessibility, and half-sphere exposures.
4 Physicochemical properties of the amino acids in the input sequence including polarizability, hydrophobicity, and isoelectric point.
5 Type of the deep learning neural network used: ‘‘RBM” (Restricted Boltzmann Machine); ‘‘CNN” (Convolutional Neural Network); ‘‘BRNN” (Bidirectional Recurrent Neural

Network); and ‘‘FFNN” (Feed Forward Neural Network).
6 The number of hidden layers: moderately deep with 2 to 3 layers; deep with 4 to 5 layers; and very deep with over 5 layers.
7 The average runtime in minutes to predict one amino acid sequence. N/A denotes that the results could not be collected since a working implementation of the

corresponding predictor is not available.
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the software on their hardware. However, the main drawbacks of
webservers are that they depend on the uninterrupted availability
of Internet, limit the size of individual jobs (i.e., number of proteins
can be predicted), and their results could be delayed when their
workload is heavy. On the other hand, the standalone software
option is best suited for skilled programmers and bioinformati-
cians. The software must be installed and executed locally. This
facilitates running larger jobs and allows embedding a given disor-
der predictor into other bioinformatics pipelines. For instance,
putative disorder generated by the popular IUPred [61,62,120]
was used to predict DNA-binding residues [126], B-cell epitopes
[127], and quality of protein structures [128].

Table 2 details the 13 deep learning-based disorder predictors.
We summarize inputs, topologies, predictive performance, and
runtime of these methods. The inputs cover a broad range of rele-
vant information including the input sequence itself and several
sequence-derived characteristics, such as evolutionary information
(e.g., position-specific scoring matrix (PSSM) and residue-level
conservation), putative structural features (e.g., secondary struc-
ture and solvent accessibility), and physiochemical characteristics
that are typically quantified at the amino acid level (e.g., polariz-
ability, hydrophobicity, and isoelectric point). We define topologies
based on two key aspects: type of the deep network and its size/
depth. The network types include classical deep feed forward neu-
ral networks (FFNNs) and more sophisticated restricted Boltzmann
machines (RBM), convolutional neural networks (CNNs) and bidi-
rectional recurrent neural networks (BRNNs). We grade the net-
work sizes by the number of hidden layers into three categories:
moderately deep with between 2 and 3 hidden layers; deep with
4 to 5 hidden layers; and very deep with over 5 hidden layers.
We observe a few interesting patterns. First, majority of the predic-
tors rely on multiple input types, with the two most popular
options being evolutionary and putative structural data. These
methods take advantages of the deep neural network’s ability to
combine diverse types of inputs including numeric data, such as
conservation and relative solvent accessibility, nominal data, such
as secondary structure, and binary data, such as one-hot encoding
of amino acid types, to produce high-quality latent feature space.
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Second, these disorder predictors rely on a diverse collection of
network types, including hybrid designs that combine convolu-
tional and bidirectional recurrent topologies. Third, they utilize
designs with widely varying network sizes including nine moder-
ately deep, one deep and three very deep networks. Altogether, this
analysis reveals that the current designs broadly explore the input
and network topology spaces.

The recently completed CAID experiment reveals that some
of the DNN-based solutions provide favorable predictive perfor-
mance when compared to other types of disorder predictors
[52]. This conclusion is perhaps best captured with the follow-
ing quote: ‘‘The SPOT-Disorder2 and flDPnn, followed by RawMSA
and AUCpreD, are consistently good. However, flDPnn is at least an
order of magnitude faster than its competitors, and it succeeded on
all sequences, whereas SPOT-Disorder2 skipped 5% of sequences as
a result of a length limitation.” [85]. While these four best pre-
dictors rely on deep learning, they implement the underlying
predictive models using very different designs. More specifically,
flDPnn relies on moderately deep FFNN architecture [86], SPOT-
Disorder2 and RawMSA are very deep hybrids of CNN and
BRNN [87,88], while AUCpreD utilizes moderately deep CNN
topology [89]. This observation suggests that accurate disorder
prediction can be accomplished using different types of deep
learners.

We provide a wider comparison of the predictive performance
of deep learners. We cover 11 DNN-based methods that exclude
only the two oldest methods, DNdisorder and DeepCNF-D. DNdis-
order is not available to the end users (Table 1) while the stan-
dalone version of DeepCNF-D requires specific feature encoding
of the sequence that we could not reproduce. We compare predic-
tive performance of the remaining 11 deep learners using the
annotated CAID dataset from https://idpcentral.org/caid/data/1/
and https://idpcentral.org/caid/data/1/reference/disprot-disorder.
txt. This dataset includes 652 protein sequences and 337,908
amino acids, with 838 disordered regions and 54,820 disordered
residues. For the 8 of the 11 predictors that were evaluated in CAID
(i.e., AUCpred [89], AUCpred-np [89], DisoMine [129], flDPnn [86],
rawMSA [88], SPOT-Disorder [113], SPOT-Disorder-Single [115]

https://idpcentral.org/caid/data/1/
https://idpcentral.org/caid/data/1/reference/disprot-disorder.txt
https://idpcentral.org/caid/data/1/reference/disprot-disorder.txt


Fig. 2. Heatmap that compares 11 available deep learners based on three key
characteristics: predictive performance quantified with AUC, speed measured with
runtime, and mode of availability. The predictors are sorted in the chronological
order of their year of publications. The color-coded scores represent quality where 2
(dark blue) is best, 1 (blue) is intermediate, and 0 (light blue) is worst. The AUC
values are categorized into three groups using statistical test that measures
robustness of differences between predictors over different protein sets; details are
described in the text. Methods with AUCs that are not statistically different (p-
value � 0.05) from the best (worst) performing flDPnn (RFPR-IDP) are labeled with
2 (0), while the remaining predictors are labeled with 1. The runtime is divided into
three ranges: < 1 min (score of 2); between 1 and 10 min (score of 1); and � 10 min
(score of 0). The availability score counts the number of modes where 2 means that
both SP (standalone program) or WS (web server) are available and 1 that either SP
or WS are available.
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and SPOT-Disorder2 [87]), we parse their CAID predictions from
https://idpcentral.org/caid/data/1/predictions/. We collect results
for the other three methods (IDP-Seq2Seq [119], RFPR-IDP [120],
and Metapredict [121]) using the webservers and standalone pro-
grams provided by the authors. Table 2 shows that the predictive
quality of deep learners measured with the area under the ROC
curve (AUC) ranges between 0.722 for RFPR-IDP and 0.814 for
flDPnn.

We further evaluate whether differences in the AUCs of the 11
predictors are robust across different datasets by comparing
results across 20 randomly selected disjoint sets of 5% of proteins
from the CAID dataset. We assess significance of differences in
AUCs between the best-performing flDPnn and the other methods.
We use the t-test if the underlying data are normal; otherwise, we
use the Wilcoxon signed-rank test; we test normality with the
Anderson-Darling test at the 0.05 significance. We find that flDPnn
and RawMSA are not statistically different (p-value � 0.05) but
flDPnn is statistically better than the other 9 methods (p-
value < 0.05). We similarly quantify significance of differences
between RFPR-IDP that has the lowest AUC and the other 10 pre-
dictors. This analysis reveals that SPOT-Disorder, Metapredict,
AUCpreD-np and IDP-Seq2Seq produce predictions that are not
statistically better than RFPR-IDP (p-value � 0.05). The remaining
4 predictors that include AUCpreD, SPOT-Disorder-Single,
SPOT-Disorder2, and DisoMine are significantly better than
RFPR-IDP (p-value < 0.05) and significantly worse than flDPnn
(p-value < 0.05). Correspondingly, we identify 3 groups of the
DNN-based predictors: 1) flDPnn and RawMSA that secure
the best results (AUC > 0.78); AUCpreD, SPOT-Disorder-Single,
SPOT-Disorder2, and DisoMine that obtain the second-best perfor-
mance (0.755 < AUC < 0.78); and RFPR-IDP, SPOT-Disorder,
Metapredict, AUCpreD-np and IDP-Seq2Seq that provide more
modest levels of predictive quality (0.720 < AUC < 0.755).

We also analyze an average per-protein runtime for the predic-
tors from Table 2. Similar to the analysis of the predictive perfor-
mance, we could not perform this analysis for DNdisorder and
DeepCNF-D that do not provide working implementations. We
extract the runtime data from the CAID results for the eight meth-
ods that participated in this experiment [52], and we estimate it for
the other three methods (IDP-Seq2Seq, RFPR-IDP and Metapredict)
based on the implementations provided by the authors. We find
that the runtime of the 11 predictors varies widely (Table 2), with
the fastest predictors that produce results in several seconds and
the slowest that require over 10 min for the same task.

Using the above analysis, Fig. 2 compares the 11 available pre-
dictors based on three key characteristics: predictive performance
quantified with AUC, speed measured with runtime, and mode of
availability. We score each characteristic in the 0 to 2 range where
higher number is associated with darker shade and indicates better
quality, i.e., higher AUC, lower runtime and more ways to access a
given predictor. The most well-rounded predictors include flDPnn
(total score of 6), SPOT-Disorder-Single (score of 5), DisoMine
(score of 4) and Metapredict (score of 4). When analyzing individ-
ual dimensions, the fastest methods (i.e., per-protein
runtime < 1 min) include AUCpreD-np, SPOT-Disorder-Single, Dis-
oMine, flDPnn, RFPR-IDP and Metapredict. The most accurate
methods are flDPnn and rawMSA and methods that are available
in two modes (webserver and standalone) include SPOT-Disorder,
SPOT-Disorder-Single, SPOT-Disorder2, flDPnn and Metapredict.
3. Deep learning methods outperform other predictors of
intrinsic disorder

Motivated by the finding that the top performing predictors in
CAID are deep learners [52,85], we investigate whether this result
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can be extended more broadly to other DNN-based methods. More
specifically, we compare the results for the 11 available deep
learning-based disorder predictors from Table 2 against the results
of other types of methods that we collect using the same CAID
data. This analysis covers a comprehensive set of 29 disorder pre-
dictors including 11 deep learners that are annotated with * in
Table 2 and 18 methods that use the other types of models. The lat-
ter group includes 12 machine learning predictors (DisEMBL-465
[36], DisEMBL-HL [36], DISOPRED3 [75], DisPredict2 [66], Espritz-
D [130], Espritz-N [130], Espritz-X [130], flDPlr [86], PONDR VSL2B
[131], PreDisorder [74], RONN [132], and s2D-2 [110]); 5 sequence
scoring function-based methods (FoldUnfold [133], IsUnstruct
[134], IUpred2A-long [114], IUpred2A-short [114], and pyHCA
[135]) and one meta-predictor (MobiDB-lite [78]). We mark these
methods with * in Table 1, except for DisEMBL-465, DisEMBL-HL,
JRONN, FoldUnfold, PONDR VSL2B, PreDisorder, IsUnstruct,
Espritz-D, Espritz-N, and Espritz-X that were published before
2013. We quantify the predictive performance using four popular
metrics that are consistent with the measures used in the most
recent community assessments [52,58], including AUC, area under
the precision-recall curve (AUPR), F1 and Matthews correlation
coefficient (MCC). Finally, we quantify statistical significance of dif-
ferences in the predictive performance between the results of the
11 deep learners and the 18 other methods. We test normality of
the measured scores with the Anderson-Darling test and we apply
the student t-test for normal data and the Wilcoxon test otherwise.

Fig. 3 summarizes the corresponding empirical results. The
median AUC of the deep learners is 0.76 vs. 0.73 for the other tools.
We observe similarly substantial magnitude of differences for the
other metrics, with median AUPR of 0.35 vs. 0.31, median F1 of
0.42 vs. 0.39 and median MCC of 0.29 vs. 0.26. The statistical anal-
ysis reveals that the DNN-based methods outperform the other
disorder predictors by a statistically significant margin across the
four metrics (p-value < 0.05). This consistent and statistically sig-
nificant trend suggests that the deep neural networks are the best
choice to develop accurate disorder predictors.

https://idpcentral.org/caid/data/1/predictions/


Fig. 3. Comparison of predictive performance between disorder predictors that utilize deep neural networks (in red) and the other disorder predictors (in blue). The
predictive performance is quantified with AUC, AUPR, F1 and MCC. Results of individual predictors are denoted by dots. Distributions of these values are summarized with the
box plots. *** means that the predictive performance of the deep learners is significantly higher than the performance of the other methods (p-value < 0.05).
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4. Summary and outlook

Disorder prediction is an active and well-establish research area
with over 40 years of history. The first DNN-based disorder predic-
tor was published in 2013 and 12 more deep learners were pub-
lished since. We find that majority of the disorder predictors that
were developed in the last three years utilize deep neural net-
works. The popularity of this design is motivated by several factors.
First, these models can be molded into many different architec-
tures that are flexible to use diverse types of inputs. Our analysis
of the 13 DNN-based disorder predictors reveals that they rely
on very diverse designs that explore different inputs, topologies
and sizes. Second, our empirical results reveal that the DNN-
based predictors are in general statistically better when directly
compared against a representative collection of the other types
of predictive models. This conclusion is in line with the results of
the recent CAID experiment where the top four predictors are deep
learners [52,85]. Third, our multifaceted comparison of the deep
learners provides useful clues for the end users by identifying
methods that are accurate, fast and widely available. We identify
several well-rounded predictors that include flDPnn (very accurate,
very fast, and available in multiple ways), SPOT-Disorder-Single
(accurate, very fast, and available in multiple ways), DisoMine (ac-
curate and very fast) and Metapredict (very fast and available in
multiple ways). These results and accolades support conclusions
of the a recent article that say ‘‘deep-learning-based methods will
likely continue to show the greatest potential for future improvement”
[85].

Our analysis finds that the architectures of the current deep
learners are considerably diverse. This suggests that the optimal
architecture is yet to be identified. We reason that this should be
a hybrid design to accommodate for the underlying variety of dif-
ferent types/flavors of disorder [136–138]. For instance, IDRs cover
a wide spectrum of sizes, from short regions that are frequently
localized at the sequence termini to very long regions that span
the entire protein sequence [139,140]. IDRs also vary in their con-
formational space, which is signified by their classification into the
native coils, native pre-molten globules and native molten globules
[4,141]. Moreover, IDRs carry out many different functions, and
some of them are multifunctional (moonlighting) [142,143], which
results in many different biases in their sequences [4,137]. Inter-
estingly, design of the recently published and well-rounded flDPnn
suggests that predictive quality can be improved by innovating
inputs that are fed into the deep networks [86]. The authors point
to multiple options including development of extended sequences
profiles that cover relevant sequence-derived protein characteris-
tics beyond the commonly-used inputs listed in Table 2, and con-
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struction of aggregate features that quantify sequence bias at the
region or whole sequence level. These two future directions go
hand in hand given the fact that the hybrid deep learners are inher-
ently capable of handling diverse and large inputs.

While most of recently released predictors of intrinsic disorder
utilize DNNs, this is not necessarily the case for the methods that
predict binding IDRs. There are close to 20 predictors of disordered
protein-binding regions [144] and several methods that predict
IDRs that interact with nucleic acids and lipids [42,145]. Examples
of the recently published tools include FLIPPER [146], SPOT-MoRF
[147], OPAL+ [148], DisoLipPred [149] and DeepDISObind [150].
The CAID experiment evaluated close to a dozen of these predictors
and concluded that ‘‘disordered binding regions remain hard to pre-
dict” [52], motivating further efforts in this area. One of the poten-
tial reasons for the low predictive performance of these tools is a
relatively low utilization of the deep learning architectures. We
identify only a handful of DNN-based predictors of binding IDRs
including SPOT-MoRF [147], MoRFPred_en [151], en_DCNNMoRF
[152], DeepDISObind [150], and DisoLipPred [149]. A similar situa-
tion is true in the context of prediction of disordered linker regions
where neither of the two currently available methods, DFLpred
[153] and APOD [154], applies deep learning and their predictive
performance is relatively limited. Given the success of DNNs in
the disorder prediction, we believe that this technology could be
successfully applied to strengthen the quality of the predictors of
binding IDRs and disordered linkers.
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