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Abstract: This study questions why existing local shape descriptors have high dimensionalities
(up to hundreds) despite simplicity of local shapes. We derived an answer from a historical context
and provided an alternative solution by proposing a new compact descriptor. Although existing
descriptors can express complicated shapes and depth sensors have been improved, complex shapes
are rarely observed in an ordinary environment and a depth sensor only captures a single side
of a surface with noise. Therefore, we designed a new descriptor based on principal curvatures,
which is compact but practically useful. For verification, the CoRBS dataset, the RGB-D Scenes
dataset and the RGB-D Object dataset were used to compare the proposed descriptor with existing
descriptors in terms of shape, instance, and category recognition rate. The proposed descriptor
showed a comparable performance with existing descriptors despite its low dimensionality of 4.
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1. Introduction

RGB-D sensors with affordable prices and decent performance have been available since 2010,
and a new era in 3D computer vision and robotics has begun. There has been tremendous progress
in research dealing with 3D data such as human pose and gesture recognition [1,2], point cloud
registration [3,4], simultaneous localization and mapping (SLAM) [5], and object recognition [6].
In these studies, a vector that encodes distinctive property of local region, called a descriptor, plays an
important role where descriptors are usually used to find correspondences [3,4,7,8] between two images
or to encode a higher level descriptor for objects or scenes.

For 2D images, a number of descriptors have been proposed. After the monumental work
of SIFT [9] and SURF [10], many researchers have competed for the best descriptor in terms of
distinctiveness, processing time, and robustness to changes in transformation, noise, and illumination.
BRISK, BRIEF, and FREAK [11–13] are currently popular because of their lower computational burden
and better matching performance.

For 3D point cloud, shape descriptors adopted the legacy of 2D descriptors to encode the local
shape of a point cloud. Popular options are Spin Image [14], fast point feature histogram (FPFH) [15],
signature of histograms of orientations (SHOT) [16], and Tri-Spin-Image (TriSI) [17]. We tested these
descriptors, but found they were not as discriminative as the 2D descriptors despite their lengthy
descriptor sizes. Another important observation was that the local shapes from RGB-D sensors had
limited complexity compared to 2D image patches. We concluded that existing shape descriptors have
many redundant dimensions, and this motivated us to design a new descriptor that was as short as
possible but as effective as existing descriptors.
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The purpose of this study is three-fold: (1) to determine why existing shape descriptors become
redundantly lengthy; (2) to analyze the cause of and to quantify the redundancy of high-dimensional
descriptors; and (3) to propose a new efficient descriptor and prove the effectiveness of the new
descriptor through experimentation. The proposed descriptor is derived from principal curvatures
and concatenated with the gradients of curvatures. We found that this 4D descriptor was as effective
as those mentioned above.

The paper is organized as follows: Section 2 reviews the existing shape descriptors in a historical
context to determine the origin of the redundancy and proposes a new approach for local shape
descriptors. A descriptor reflecting the new approach is presented in Section 3 and is compared with
existing descriptors in terms of discriminative power in Section 4, followed by conclusions.

2. Derivation of a New Shape Descriptor

To understand the popularity of lengthy shape descriptors, we reviewed the historical progress
from 2D image descriptors to 3D shape descriptors. Then we statistically evaluated the redundancy of
the shape descriptors, and presented here a new approach for local shape descriptors.

2.1. Legacy of 2D Image Descriptors

Most of the image descriptors mentioned in Section 1 typically have dimensionality of 128 or 256.
A dimensionality of 2n is preferred for processing and memory efficiency. Previous studies have proven
that correspondence matching accuracy tends to increase with dimensionality, but saturates around 128
or 256 [10,12]. From these results, we think a ‘myth’ was created that greater dimensionality resulted
in better performance. However, as we proved in Section 2.3, this is not true for shape descriptors.

2.2. Brief Review of Shape Descriptors

Although many local shape descriptors have been proposed, we review here only a selection of
notable works comparable to our descriptor. A thorough review of local shape descriptors was given
in [18].

Spin Image [14] is one of the most famous shape descriptors. It encodes neighboring points as
a radial distance from a normal line through a keypoint and a height from the tangent plane in a
cylindrical local frame. Spin Image was built by constructing a 2D histogram of the distances and
heights of the neighboring points. Several methods to improve the discriminative power of Spin Image
have been proposed [17,19,20]. Pasqualotto et al. [20] proposed to combine color and shape Spin
Images to compare two 3D models where similarities of two types of Spin Images are aggregated by
fuzzy logic. TriSI [17] is one of the latest variations. To estimate TriSI, three spin images are computed
along the three axes of the local reference frame (LRF) and concatenated into a single vector, and then
the dimensionality of the vector is reduced by the principal component analysis (PCA) approach.

The point feature histogram (PFH) [21] is another important descriptor and the basis of the more
popular descriptor, FPFH [15]. For every pair of points in the vicinity of a keypoint, a unique LRF is
estimated, and then the three angular signatures of the pair are computed. The three histograms are
made from the three signatures independently and concatenated to output the PFH descriptor vector.
Since the PFH is computationally expensive, FPFH was proposed to reduce complexity and is now one
of the most popular descriptors. The differential FPFH (dFPFH) descriptor [22] is the latest variation
that captures surface irregularities by concatenating a difference vector between the FPFHs of inner
and outer spheres.

The SHOT descriptor [16] partitions the local spherical space by the azimuth, elevation, and radial
distance in the keypoint’s LRF. A histogram of angles between the neighbor’s normal vectors and
the z-axis of the LRF is constructed for each space bin, and then the histograms are quadralinearly
interpolated and concatenated to complete the SHOT descriptor. It outperformed Spin Image and
FPFH in keypoint matching, but it is vulnerable to variations of resolution. SHOT is readily expandable
to RGB-D data by adopting a texture-based histogram called color SHOT (CSHOT) [23].
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Although the popular shape descriptors have colored versions, we do not discuss them.
Color information is easily adopted to shape descriptors simply by concatenating shape and
texture descriptors.

Other notable individual works include 3D shape context [24], intrinsic shape signature [25],
rotational projection statistics [26], normal aligned radial feature [27], and binary robust appearance
and normal descriptor (BRAND) [28]. Among them, BRAND has a similar motivation to ours and
pursues a robust, fast, and memory efficient descriptor applicable to implementation in mobile phones
and embedded systems. The descriptor consists of 256 binary relationships between 256 pairs of points
in the vicinity of a keypoint. The dimensionality is high, but it takes only 32 bytes. Despite its memory
efficiency, it outperformed CSHOT and Spin Image in keypoint matching.

Recently, data-driven approaches such as the convolutional neural network (CNN) have become
popular to automatically extract discriminative features. The CNN approaches have successfully
detected and classified objects [29–31] from images where the output of CNN usually worked as a
global descriptors of objects. Some works [32,33] tried to use CNN for local patch retrieval. Outputs of
middle layers of a network trained for object classification were used as patch descriptors. However,
to our best knowledge, CNN features as a local descriptor have been tried only for RGB images but
not for local shapes. Therefore, CNN features are still in different domain from local shape descriptors
and more suitable for global descriptors. Though there are a number of global descriptors [34–36] to
query the entire object, they are out of the scope of this study. Local descriptors have a unique role, for
instance, point-to-point matching in point cloud registration.

2.3. Redundancy of Shape Descriptors

To analyze the amount of redundancy of shape descriptors, we estimated the number of effective
principal components (nEPC). The nEPC counts the number of eigenvalues of a descriptor covariance
matrix which are larger than λ1 ∗ 0.01, where λ1 is the largest eigenvalue. The nEPC roughly estimates
how many dimensions were actually used. Three RGB-D image sequences in the CoRBS dataset were
used to estimate the nEPC: Cabinet, Desk, and Human [37]. The description of the dataset is given
in Section 4.1. In each sequence, the five types of descriptors, FPFH, SHOT, Spin Image, TriSI and
BRAND were extracted from 10,000 randomly sampled points, and the eigenvalues were computed
from the covariance matrix of descriptors for each descriptor type in each sequence. Table 1 shows the
results, where rEPC stands for the ratio of effective principal components.

Table 1. Number of effective principal components.

FPFH SHOT Spin Image TriSI BRAND

Dimensionality 33 352 153 459 256

Cabinet
nEPC 7 60 30 54 205

rEPC (%) 21.2 17.0 19.6 11.8 44.7

Desktop nEPC 7 59 34 60 205
rEPC (%) 21.2 16.8 22.2 13.1 44.7

Human
nEPC 8 56 35 64 205

rEPC (%) 24.2 15.9 22.9 13.9 44.7

Two observations were made. For the first four descriptors from FPFH to TriSI, rEPCs were
generally low from 5.2% to 27.3% which indicates that the descriptors occupy excessive memory
with no effect. Their nEPCs grew with increment of dimensionalities, but the rEPCs decreased.
Consequently the information in each dimension shrank as descriptor length increased. Second,
BRAND had exceptionally high rEPC despite its high dimensionality because a BRAND descriptor
is comprised of 256 independent binary tests while the others have highly correlated dimensions.
However it still wasted more than half of total dimensions. Therefore, higher dimensionality provided
limited benefit considering its excessive memory burden.
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2.4. New Approach for Shape Descriptors

Here we propose a new approach for local shape descriptors specialized in recognizing shapes
captured by affordable depth sensors in an ordinary environment. First, shape descriptors do not have
to express highly complicated shapes. Object surfaces are not so complex in ordinary environments
such as houses, offices and stores. Most of them are almost flat or simply curved. In addition, although
depth resolution of depth cameras has been improved, there is still noise more than a few millimeters
depending on situation [38] and a depth camera only captures a single side of a scene. Complex objects
usually have small and peaky parts but they look relatively simple in a depth image. That is the
reason that many previous works [14,16,17,22,26] used finely reconstructed 3D models from publically
available datasets.

Second, since keypoint matching is not useful for shapes, short descriptors are preferred. In RGB
images, where pixel values are highly dynamic, key points are readily detected and tracked. On the
contrary, depths usually change smoothly over a continuous surface, so detecting and tracking
key points is relatively difficult. Local shapes are rarely unique and peaky shapes easily look
different from a different view pose. Accordingly, dense matching is more effective than key point
matching thus descriptors have to be computed at almost all points. To compare crowded descriptors
with limited processing power and memory, like in mobile phones or robots, short descriptors are
more advantageous.

Third, local descriptors should be easy to understand, implement and reproduce. Since computing
local descriptors is just beginning of an application, it should not burden users. The popular shape
descriptors [14–16] are easy to understand and require no pre-training or pre-processing more than a
smoothing filter and computing normal vectors. On the other hand, for instance, TriSI is not popularly
used despite its better performance than Spin Image or SHOT, because it requires a pre-training stage
to compress descriptor size by the PCA approach. Pre-training makes the performance of an algorithm
to be dependent on training data, which is not always reliable and requires more effort. Following the
new approach, we present in Section 3 our new descriptor design based on principal curvatures.

3. Principal Curvatures with Gradients

We propose a novel shape descriptor, principal curvatures with gradients (PCWG), which is
four dimensional but as effective as existing descriptors. The first two elements are the principal
curvatures of the surface, and the second two are the gradients of the principal curvatures along
two principal directions. The idea of utilizing principal curvatures for correspondence matching
is not completely novel, as proposed in [39] where curvatures are used for outlier rejection in ICP.
However, in our method principal curvatures work as a shape descriptor for the first time along with
curvature gradients.

Furthermore, we present a novel method to accurately estimate principal curvatures by
formulating the estimation problem as quadratic programming (QP). Cheng et al. proposed a principal
curvature estimation method based on normal fitting [40]. The curvature values were optimized
to fit the normal vectors on the surface rather than the point coordinates, but it required too many
intermediate variables. Recently, Spek et al. presented a fast method to estimate curvatures by solving
a non-linear optimization problem where the curvature values and normal estimation were iteratively
refined [41]. On the contrary, our formulation is derived in an intuitive manner and solved by a
closed-form equation.
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3.1. Curvature Estimation

Provided that an arbitrary point cloud within a certain radius from a specific point is lying on
a continuous surface, the intrinsic shape of the point cloud can be modeled by a quadratic surface.
The basic form of a quadratic surface is given as follows:

z =
1
2

(
Cαx2 + Cβy2

)
(1)

where Cα and Cβ are the primary and secondary curvatures of the surface, respectively, and
|Cα| ≥ |Cβ|. By varying the only two curvatures and applying a rotation, it can express various
shapes as depicted in Figure 1. This expression is simple, descriptive, and comprehensive.
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Let us derive the curvatures from a given point cloud. When there is a center point pk and a normal
vector nk at pk, the point cloud around the center point within a radius r is denoted by P =

{
pj
}

j=1:N
where pj is a neighboring point around pk. In this subsection, let us assume that the center point
is translated to the origin for simplicity, that is, pk → 0 and pj − pk → pj . To generalize (1), it is
rewritten in the matrix form and an arbitrary rotation is applied:

pTRA0RTp− bT
0 RTp = 0 (2)

pTAp− bTp = 0 (3)

where A0 = diag
(
Cα Cβ 0

)
, b0 =

[
0 0 1

]T
, and R ⊆ SO(3) is a rotation matrix. Since

A = RA0RT , it can be seen as eigen decomposition of A where the eigen values are Cα, Cβ, and 0 and

the corresponding eigen vectors are the columns of R =
[

v1 v2 v3

]
⊆ SO(3). Thus, b = Rb0

becomes b = v3, which corresponds to the zero eigenvalue. The general equation is constrained
by Ab = Av3 = 03×1, bTb = vT

3 v3 = 1, and AT = A. The last constraint is for the orthonormal
decomposition (RTR = I). Our first goal is to estimate the optimal A and b such that:

A, b = argmin
A, b

∑
j

{
pT

j Apj − bTpj

}
subject to Ab = 03×1, bTb = 1, AT = A.

(4)

The curvatures and rotation matrix are computed by eigen decomposition of A. This problem
belongs to quadratically constrained quadratic programming (QCQP), but it is not convex because
of the non-convex constraints. General QCQP can be relaxed to be semidefinite programming, but it
needs a formulation with huge matrices and hence is burdened by a heavy computational load. Since
this method opposes our intentions, we performed a trick to ease the problem.
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From the geometrical intuition, we replaced b with the normal vector nk since the vector nk
corresponds to the z-axis for a quadratic surface. Consequently, Eq. (4) is simplified as:

A = argmin
A

∑
j

{
pT

j Apj − nT
k pj

}
subject to Ank = 03×1, AT = A

(5)

Now we have a simple QP problem that is convex and has a closed-form solution. To solve the
problem in the QP form, A is vectorized as follows:

a =
[

a1 a2 a3 a4 a5 a6

]T

where A =

 a1 a4 a6

a4 a2 a5

a6 a5 a3

 (6)

The objective function of Equation (5) is reformulated with the vector a as follows:

∑
j

{
pT

j Apj − nT
k pj

}
= ∑

j

{
f
(
pj
)
a− nT

k pj
}

= (F(p1:N)a− Pnk)
T(F(p1:N)a− Pnk)

(7)

where:

f(p) ,
[

x2 y2 z2 2xy 2yz 2zx
]
F(p1:N) ,


f(p1)

f(p2)
...

f(pN)

and P ,
[

pT
1 pT

2 . . . pT
N

]T
.

Similarly, the constraint equation is rewritten as Ank = G(nk)a = 03×1 where:

G(nk) ,

 nk,x 0 0 nk,y 0 nk,z
0 nk,y 0 nk,x nk,z 0
0 0 nk,z 0 nk,y nk,x

.

The final optimization formula is rearranged as the following equation:

a = argmin
a

(F(p1:N)a− Pnk)
T(F(p1:N)a− Pnk)

subject to G(nk)a = 03×1

(8)

The QP problem in this form is solved by the closed-form formula:[
F(p1:N)

TF(p1:N) G(nk)
T

G(nk) 03×3

][
a
λ

]

=

[
F(p1:N)

TPnk
03×1

]
.

(9)

The matrix A is reconstructed from the solution a as in Equation (6) and decomposed to obtain
Cα, Cβ, and R, which are the principal curvatures at pk, and the rotation matrix of which columns are
principal axes, respectively.
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3.2. Curvatures with Gradients

Since real-world surfaces are not always symmetric like quadratic surfaces, two curvature values
are not sufficient to describe skewed shapes. To cover the remaining degree of freedom of local surfaces,
we estimated the gradients of curvatures. The gradients were estimated by linear regression of the
curvatures along the two principal axes, v1 and v2. The primary curvature around the keypoint can be
modeled as:

Cα = Dαv1 · (p1 − pk) + c + ε (10)

where Dα, c, and ε are the gradients of the primary curvature, offset, and fitting error, respectively.
The gradient that minimizes the sum of the fitting errors is computed by solving:

v1 · (p1 − pk) 1
v1 · (p2 − pk) 1

...
...

v1 · (pN − pk) 1


[
Dα,k

c

]
=


Cα,1

Cα,2
...
Cα,N

 (11)

where Cα,j is the primary curvature at the jth neighbor point. Similarly, the gradient of the secondary
curvature, Dβ, is estimated by the linear regression over Cβ along v2. While both curvature values
are symmetric over positive or negative directions of principal axes, the signs of gradients differ with
the directions of the principal axes. For consistency of gradient values, the direction of v1 was always
selected to make Dα positive. Then v2 was determined by v2 = nk × v1. Therefore, our descriptor,
PCWG, is presented as dk =

[
Cα Cβ Dα Dβ

]
. This descriptor expresses the sharpness of a

shape by curvatures and the skewness by gradients. Generally, there are three types of shapes: (1) high
gradient (the point is between flat and curvy regions); (2) low gradient and high curvature (the point
is at the peak of the curve); and (3) low gradient and low curvature (the point is on the plane). We
prove in Section 3.3 that these four parameters are sufficient to accurately describe local point clouds.

3.3. Gradient Weight

Although the gradient terms are auxiliary compared with the curvature terms of our PCWG
descriptor, their values readily become larger than the curvatures and are even sensitive to noise,
which makes the distance between descriptors to be distorted. As the two terms represent different
properties, they do not have to be equally treated. Thus, the gradients should be weighted to suppress
their effect on descriptor distances. Ideally, the distance between descriptors should be linearly related
to the shape distance. The shape distance is defined as:

Sik = D(Pi,Pk) + ηA(Ni,Nk) (12)

where Pi and Ni are the point cloud and normal vectors at the frame i, respectively, and D(Pi,Pk) is
the mean point-to-plane distance between two point clouds, A(Ni,Nk) is the mean angular difference
between the normal vector pairs of the point clouds, and η is the angular difference weight for a
balance with the point-to-plane distance, which is set to 0.01. To convince the effectiveness of the
distance metric, four different shapes (red) are compared with the reference shape (blue) in Figure 2
with the corresponding shape distances. From left to right, the compared shapes differs more with
the reference shape with increasing shape distances. The effect of the angular difference weight on
performances of descriptors is addressed in Section 4.5.
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(c) Sik = 5.98; (d) Sik = 9.10.

Based on the shape distance metric, the gradient weight, w, needs to be adjusted to fit the linear
regression (dk − di) ·w = Sik where w =

[
ν ν ω ω

]
. The descriptor has different weights for

the curvatures and gradients. Given a set of pairs of descriptors or local shapes, the weight can be
optimized between the descriptor difference and the corresponding shape distance. The optimization
problem is defined as:

(ν,ω) = arg min
ν,ω

∑
i,k
{(dk − di) ·w/Sik − 1}

subject to ν,ω > 0
. (13)

The relative weight for the gradient terms is calculated as ώ = ω/ν. As the optimal weight value
varies depending on the data from 0.2 to 0.5, we selected a fixed value of 0.3 for all evaluations in the
following section. Therefore, the final form of PCWG is:

dk =
[
Cα Cβ ώDα ώDβ

]
. (14)

In this section we have introduced how to compute the curvatures and their gradients by using the
optimization techniques. The terms seem to be complicated but there are only two equations to solve,
Equations (9) and (11), which are closed-form linear equations with no iterations. Besides, it is not
computationally complex. Complexity of solving Equation (9) is linear with the number of neighbor
points. Computing F(p1:N)

TF(p1:N) is complex as O
(

ND2
)

where N is the number of neighbor points
and D is the dimensionality of a point, which is a constant 3, and then subsequent solving linear
equation (9 dimensional) and eigen decomposition of A (3 × 3 matrix) are finished in a constant time.
The processing times with various parameters were measured and discussed in Section 4.2.

4. Evaluation Results

To prove the discriminative power of the proposed descriptor, it was compared with the
five aforementioned descriptors using the public datasets. The performance of the descriptors was
evaluated by multi-level recognition tests. The first level test was on shape recognition. It was
a primitive performance for local shape descriptors to see how effectively descriptors distinguish
between different local shapes. Thus, it is critical for point cloud registration or point-level association.
The second and third level tests were on object instance and category recognitions, respectively, and
they measured the statistical robustness of object-level description. Also, invariance of descriptors
to noise and scale changes was addressed. We selected three values of 4, 5, and 6 cm for the support
radius. A radius less than 4 cm results in unstable normal vectors. On the other hand, a radius larger
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than 6 cm is also undesirable because it becomes vulnerable to occlusions and cannot describe small
shapes. In the following sections, we introduced the public datasets and existing descriptors, and
compared them to our descriptor based on the evaluation results.

4.1. Datasets

We used three public RGB-D datasets, the CoRBS dataset [37] and the RGB-D Scenes dataset [42]
for shape recognition and the RGB-D Object dataset [42] for object recognition. The properties of the
datasets for shape recognition were summarized in Table 2. The CoRBS dataset was captured by Kinect
v2 and we selected four video sequences which captured four different objects. In Table 2, the numbers
after the scene name indicate the video ID to identify a specific video among the videos from the same
scenes and the length in the fourth column means the length of a camera trajectory. The RGB-D Scenes
dataset was captured by Kinect v1 in home and office environments. We selected five video sequences,
which are the first videos from each scene.

Table 2. The properties of the datasets used for shape recognition.

Dataset (Sensor) Scene Name Dataset Index Length (m) # Frames

CoRBS
(Kinect v2)

Electrical cabinet #2 1 23.0 1902
Desk #2 2 11.5 2380

Human #2 3 11.3 2547
Racing car #2 4 34.1 3209

RGB-D Scenes
(Kinect v1)

Desk #1 5 N/A 98
Kitchen_small #1 6 N/A 180
Meeting_small #1 7 N/A 180

Table #1 8 N/A 125
Table_small #1 9 N/A 199

The RGB-D Object dataset has a hierarchical structure of video sequences in four levels: category,
instance, video, and frames. The dataset contains 300 objects which belongs to 51 categories, and there
are multiple videos with hundreds of frames for each object taken at different viewpoints. The main
advantage of the dataset is that various items usually observed in a home environment are included.
The sample images from the datasets are shown in Figure 3.
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4.2. Implementation Details

In the implementation, depth images are scaled down to a size of 320 × 240 in order to speed
up the processing and suppress noise. As all the datasets provide 640 × 480 images, 2 × 2 depth
pixels are averaged as a single depth value. Neighbor points around a keypoint were evenly sampled
within the support radius to prevent curvatures from being biased to a denser region within the radius.
The number of sampled points was less than or equal to 50. For efficiency of computation, neighbor
search results were shared with both normal and descriptor estimation. The three components,
neighbor searching, normal estimation, and descriptor estimation were implemented in OpenCL [43].
As the processing time might vary with a support radius and the maximum number of sampled points,
we measured the processing time with different combinations of parameters with the GPU device of
GTX 1080. The processing times for neighbor searching and normal estimation were less than 1 ms
and they are ignorable for any combination of parameters. As normal vectors were commonly used by
all the descriptors, we would analyze only the processing time of our descriptor.

As summarized in Table 3, descriptor estimation took several milliseconds. As expected, the
processing time apparently increases with the maximum number of sampled points. The support
radius was inversely related to the processing time. That is because the search area is more likely to be
occluded with a larger radius and hence the effective number of sampled points decreases. The table
shows that the proposed method is fast enough to run in real time regardless of the parameters, even
with less powerful devices.

Table 3. Processing time (ms) of PCWG estimation vs. the support radius and the maximum number
of sampled points.

Radius\#points 30 40 50

4 3.53 4.13 4.64
5 3.21 3.79 4.06
6 3.18 3.75 4.03

In Section 3.3, the gradient weight ώwas optimized by Equation (13) under the assumption that
a distance between shape descriptors should be proportional to the corresponding shape distance.
To see the validity of the assumption, shape recognition rates are evaluated while varying gradient
weights as shown in Figure 4. The shape recognition rate (Precision-1) is defined in Section 4.4 in detail.
The shape recognition rates are averaged over all the datasets in Table 2. The performance did not vary
much with gradient weight but does with a support radius. As we expected in Section 3.3, the best
result is obtained when the gradient weight is 0.3 and the radius is 5 cm. In addition, we can observe
that the best radius is 5 cm and the smaller radius (4 cm) is less dependent on the gradient terms than
the best radius.
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TriSI [17] was implemented by computing three spin images along the three principal axes, v1, v2, and
v3, and concatenating them as a single vector. Guo et al. reduced the dimensionality of TriSI with the
PCA approach, but we did not because the quality of the compression depended on the pre-training
data which was difficult to standardize. We used the raw TriSI, and hence its dimensionality became
459. We implemented BRAND [28] by ourselves. The local binary pattern with a radius of 24 pixels
was created by Gaussian distribution of N

(
0, 482/25

)
and texture information was not used but only

geometric information was used for binary tests. The PCWG descriptor was also compared with the
pure principal curvatures (PC) with a dimensionality of 2. Therefore, seven types of descriptors were
compared in total.

4.4. Shape Recognition

As mentioned in Section 2.4, keypoint matching does not work effectively because local shapes
are ambiguous. Instead, we developed a new method to evaluate local shape recognition performance.
To evaluate how well the descriptors recognize a similar shape among various shapes, we needed to
extract a set of representative shapes which are both frequently observed and as diverse as possible.

We extracted two sets of representative descriptors from each dataset: one was a reference set,
and the other was a query set. The sets of pairs of representative descriptors and shapes were used to
evaluate shape recognition rates. The samples of representative shapes were shown in Figure 2 where
the blue shape is the reference shape and the red shapes are from the query set.

The representative shapes were found by clustering a huge pool of shape descriptors and
selecting the centroids of the clusters. For fair competition among the descriptors, a concatenation of
PCWG, FPFH, SHOT, and TriSI descriptors, named as a total descriptor, was used for the clustering.
The principal curvatures and Spin Image were not used because they are included in the PCWG and
TriSI descriptors, respectively. As naive clustering of the total descriptors is prone to be biased to
dominant shapes (flat shapes), the iterative clustering with following steps was used:

1. Total descriptors are computed at the sampled points in frames of a video sequence.
2. Total descriptors are grouped by K-means clustering.
3. The dominant clusters are resampled to reduce the population.
4. Iterate from 2, until no dominant cluster exists.

In the first step, tens of points with more than 25 neighbor points were evenly sampled except for
large planar regions in each frame. The number of clusters, K, was 100 in the second step. The dominant
cluster was defined as a cluster with population more than 4T/K, where T is the number of the total
descriptors. In the third step, the dominant clusters were reduced to 2T/M. To obtain the two sets of
descriptors, the reference set was extracted first, and then the query set was selected after excluding
the reference set from the pool of descriptors.

Given the two sets of representative descriptors, the correspondence to a queried descriptor was
predicted by finding the closest descriptor in the reference set. Precision-1 refers to the ratio of the
correspondences where the closest descriptor was from the closest shape in terms of the shape distance
of Equation (12). Precision-5 means the ratio of the correspondences where the closest descriptor
belongs to the five closest shapes. Correspondences with shape distances larger than the support
radius were rejected in the evaluation. The two metrics were computed for the seven descriptors for
the same sets of representative shapes.

Figures 5 and 6 show the evaluation results of Precision-1 and Precision-5, respectively, over
the eight datasets with the three different support radii. In the figures, PCWG was denoted by the
bold red lines. Overall, PCWG stayed in the middle of other descriptors. It means that PCWG’s
performance is comparable with the others despite its extremely low dimensionality. That is confirmed
by Tables 4 and 5 where precision-1 and -5 were averaged over the nine datasets for each support
radius and the last column shows the ranking of PCWG. In the tables, it is noteworthy that the relative
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performance of PCWG with a radius of 4 cm was ranked second and first in Precision-1 and Precision-5,
respectively. It indicates that PCWG is good at roughly searching small shapes.
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Table 4. Average precision-1 for three support radii.

Radius (cm) PC PCWG FPFH SHOT SpinImage TriSI BRAND Rank
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Table 5. Average precision-5 for three support radii.

Radius (cm) PC PCWG FPFH SHOT SpinImage TriSI BRAND Rank

4 0.366 0.432 0.374 0.324 0.371 0.422 0.146 1
5 0.400 0.447 0.433 0.329 0.419 0.461 0.216 2
6 0.399 0.454 0.464 0.394 0.437 0.508 0.206 3

The best overall performance came from TriSI which is the most high-dimensional descriptor but
the second best was FPFH of which dimensionality is just 33. On the other hand, the performance of
SHOT and BRAND were disappointing since SHOT has the second largest dimensionality, 352, and
BRAND was reported that it performed better than CSHOT or Spin Image in [28]. The reason seems to
be that texture information was not adopted into BRAND in our implementation. For BRAND, there
were so many equally distanced shapes because it used the hamming distance while the others use a
floating-point L1 distance.

There is another notable point that precisions of most descriptors were generally low in the racing
car dataset, especially when a support radius is small. The reason seems to be the scale of the object
(racing car). In Figure 3, the racing car looks like it contains various shapes but the scale of the shapes
are larger than the support radii. Since local shapes within the radii, 4 to 6 cm, were not distinctive
enough in the dataset, the shape recognition rates generally fell down except for BRAND.

From the shape recognition results, we can conclude that the performance of descriptors does not
depend on dimensionality, and our compact descriptor can work as effectively as high dimensional
descriptors when querying shape from depth images.

4.5. Effect of Angular Difference Weight

The effect of the angular difference weight, η, in Equation (12) is addressed here. This parameter
balances the point-to-plane distance and the angular difference. Since the shape distance was used to
find ground truth correspondences for shape recognition, the parameter should be carefully selected
but it is more desirable that the shape recognition rate is insensitive to the parameter. We evaluated
Precision-1 with different values of the parameter. For simplicity, a single support radius, 5 cm, was
used and the precisions over the nine datasets were averaged. The results were shown in Figure 7.
While the angular difference weight varied from 0.0025 to 0.04, the precisions differed just 1 or
2 percentages. As the shape recognition rate is not sensitive to the angular difference weight, our
shape distance metric with η = 0.01 can be considered to be generally reliable to find ground truth
correspondences and not biased to any descriptor.
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4.6. Robustness to Noise and Scale Variation

An ideal descriptor should be invariant to noise and scale changes. In order to evaluate the
robustness of descriptors, shape recognition rates were recomputed with additive noise or scaled
depth images. To simplify the test, we used a single support radius of 5 cm. Robustness to noise was
evaluated by adding Gaussian noise to depth images. Wasenmüller et al. [45] showed the graph where
the standard deviation of noise of Kinect v2 increased with a depth, which could be approximately
modeled by the following linear equation:

σ(d) = 1.3 ∗ d + 0.3 (15)

where σ(d) represents the standard deviation of noise in millimeters at a depth, d. To simulate
amplifying noise, we added noise with the standard deviation of τσ(d) to raw depth images. In our
simulation, shape recognition rates were re-evaluated with different noise levels of τ = 0, 1, 2, 3
and the results were shown in Figure 8 where precisions were averaged over the nine datasets. As
expected, the both precisions tended to decrease with increasing noise levels regardless of descriptor
types. The slopes of decrements did not differ much among the top-5 descriptors in the both precisions.
Though curvatures and even its gradients of surfaces are known to be sensitive to noise, the graph of
PCWG is blended with other descriptors in the figure. Thus the PCWG’s robustness to noise is similar
to the existing descriptors.
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Another issue is scale invariance. Image scale of an object changes with a distance. Ideally, shape
descriptors should not affected by distance when they describe shapes within the same physical radius
at the same location. However, descriptors can be influenced by scale changes in reality because both
image resolution and noise property vary with a distance. As a camera position changes, we cannot
re-compute a descriptor at the exactly the same position with the previous position, where a descriptor
was computed, but only at the closest position in the current point cloud. As this slight error as well as
sensor random noise affects the normal vector at the point, descriptor may change.

To simulate robustness of descriptors to scale changes, we computed descriptors at different
image scales. As commented in Section 4.2, we used scaled images of 320 × 240 resolution in our
experiment where the raw images were at 640 × 480 resolution. The reference descriptor set in
Section 4.4 was re-computed at both double-scale (640 × 480) and half-scale (160 × 120) images. These
scaled descriptors were used as the query descriptor sets and the shape recognition rates were evaluated
as summarized in Table 6. The precisions were averaged over the nine datasets. FPFH and SHOT
showed the best results on average while PCWG was ranked low. Overall, descriptors tended to be
more robust when a scale was reduced except for FPFH. Similar to the results in the previous section,
BRAND showed the lowest performance. We counted binary ‘one’s in BRAND at different scales,
and BRAND contained about 25 ones at mid and high resolution and 10 ones at low resolution on
average. The number of ones was largely affected by image resolution, which explains the result.
It seems that PCWG was less robust to scale changes because the curvatures are highly sensitive
to variation in normal vectors. The other descriptors are also largely dependent on normal vectors,
but the effect of a normal vector is weakened by quantization of property values and smoothing
histograms in descriptors. On the other hand, curvatures are directly influenced by normal vectors.
However, gradient terms in PCWG helped the robustness, compared to PC and PCWG showed almost
comparable results in Precision-5.

Table 6. Shape recognition rates between different image scales.

Scale Precision PC PCWG FPFH SHOT SpinImage TriSI BRAND

1/2 Precision-1 0.538 0.622 0.668 0.917 0.946 0.860 0.025
1/2 Precision-5 0.888 0.871 0.835 0.950 0.985 0.939 0.090

2 Precision-1 0.246 0.318 0.775 0.569 0.341 0.426 0.020
2 Precision-5 0.602 0.645 0.947 0.721 0.664 0.711 0.094

4.7. Object Recognition

Object recognition is another important application of local shape descriptors. The six types of
descriptors out of the seven were compared in object recognition except for BRAND, which showed
meaninglessly low performance in the shape recognition. For object recognition, a typical bag-of-words
(BoW) approach [46] was used. As our aim was not to achieve a higher recognition rate but to compare
relative performances of descriptors, we used neither an SVM classifier nor the weighted distance [47]
but used simple L1 distance for recognition. More advanced BoW techniques may result in higher
recognition rates but if the performances of all the descriptors are improved, relative results will be
the same. In addition, this simple classifier could not be optimized for any descriptor and is easy to
implement and fast. To train code words, descriptors from the very first videos of all instances in the
RGB-D object dataset were clustered for each type of descriptor. Objects were recognized in two levels,
instance and category. In each level, recognition rates were evaluated with all the combinations of
three codebook sizes (50, 100 and 200) and the support radii.

For object instance recognition, the video-level BoW descriptor was computed by averaging the
BoW descriptors of the first five frames of the video. Two sets of video-level BoW descriptors were
constructed. As multiple videos belong to each instance, one set is from the second videos of all
instances and the other set is from the third videos. The performance of instance recognition was
evaluated by cross validation between the two sets of video-level BoW descriptors.
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For category recognition, the instance-level BoW descriptor was obtained by averaging the
video-level descriptors belonging to the same instance. For each category, the instance-level descriptors
were computed from five instances belonging to the category. Three of them were selected to model the
reference category-level BoW descriptor by averaging the selected instance-level descriptors. The other
two instance-level descriptors were matched with the closest category-level descriptor for category
recognition. For cross validation, the initial selection of instances for the category-level descriptor was
the three consecutive instances beginning from the first one, and the selection kept to be shifted to
begin with the next one. Total ten tests were made for each category from two query instances for each
of the five selections.

Figures 9 and 10 show the instance and category recognition results, respectively. Generally,
PCWG ranked high in instance recognition but low in category recognition, and surprisingly, the
simplest PC also showed the meaningful performance in instance recognition. On the contrary, SHOT
showed the best performance in the category recognition but the worst in instance recognition. It seems
that PCWG was better in matching specific shapes, while SHOT was better in the generalization of
shapes. Spin Image showed generally low performance in category recognition. It is noteworthy that
the both performances tend to increase with the radius in most of the descriptors. It is more apparent
in the category recognition.
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Overall, the superiority of PCWG in instance recognition points out the large redundancy of the
existing descriptors, while the inferiority in category recognition reveals an excessive sensitivity to
small changes in shapes.

5. Conclusions

Since local shape descriptors have lower performances than local texture descriptors in general,
their large dimensionalities motivated us to figure out the origin of high dimensionalities and an
alternative compact descriptor with comparable performance. The answer to the question in the title is
here: High dimensional descriptors have a potential to discriminate various shapes, especially when
the shape is complicated and densely modeled. However, they usually waste memory dealing with
depth images from Kinect-like popular sensors where the shapes are uncomplicated and the sensor
resolutions are limited.

That is why we proposed a new descriptor, PCWG. The principal curvatures roughly describe a
shape as a quadratic surface and their gradients add the details of the shape. Closed-form equations
were derived to estimate the descriptor from the point cloud, and we implemented it based on
GPU. We proved the inefficiency of the existing descriptors in Section 2 and showed the competitive
performance of the PCWG in Section 4. Although the proposed descriptor is only four dimensional,
it showed superior performance in shape and object instance recognition with a small support
radius, a medium performance with larger support radii, and lower performance in object category
recognition. The PCWG’s high sensitivity to shapes is advantageous for low-level shape matching but
disadvantageous for shape abstraction. This is because a small change in a part of a local shape affects
the entire vector of the PCWG, while it affects only a part of the histogram-based descriptors.

In conclusion, our descriptor is useful for point association and object instance recognition in
ordinary environments with limited resources. For the future works, we will develop a more advanced
descriptor to express more complicated shapes with the least additional dimensions. For instance,
texture information can be adopted to make up for the simplicity of PCWG. The extension of PCWG
could lead to a new descriptor, which satisfies both the better performance in all recognition levels and
the new approaches in Section 2.4.
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