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HIV-1 Tat protein directly induces mitochondrial
membrane permeabilization and inactivates
cytochrome c oxidase

H Lecoeur2, A Borgne-Sanchez'>*, 0 Chaloin®, R El-Khoury®”, M Brabant', A Langonné', M Porceddu®*, J-J Briére®’, N Buron®4,
D Rebouillat!, C Péchoux®, A Deniaud®, C Brenner®'®'!, J-P Briand®, S Muller®, P Rustin®”'3 and E Jacotot* 3871213

The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of
AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic
full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria.
Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (A¥,) as well as
cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation
by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-
channel inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced
mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic
inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-
induced MMP. We finally observed that Tat inhibits cytochrome ¢ oxidase (COX) activity in disrupted mitochondria isolated from
liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.
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Mitochondria, the energy-producing organelles of eukaryotes,
generate cellular energy in the form of ATP (adenosine
triphosphate) coupling substrates oxidation and the proton
gradient established along with electron flow through the
electron transfer chain of the respirasome (complexes I, 11, and
IV) to the ATP synthesis by the F1FO-ATP synthase (complex
V).""® Mitochondria also play a key role in apoptosis and related
forms of cell death.*® Mitochondrial fission, inner membrane
permeabilization (IMP; leading to mitochondrial transmem-
brane potential (A¥,,) loss and matrix cofactor release),
rearrangements of mitochondrial lipids, and outer membrane
permeabilization (OMP; resulting in the release of, and/or
access to, intermembrane space proteins, including cyto-
chrome ¢) are pivotal events in the apoptotic process.®™

As a corollary, many viruses have evolved to encode proteins
that directly target mitochondria for modulating apoptosis.®'°
The human immunodeficiency virus type 1 (HIV-1) trans-
activator of transcription (Tat) protein is an important factor in
the HIV-induced pathogenesis of AIDS, contributing to immune
dysfunction, Kaposi’s sarcoma, HIV-associated dementia, and
cardiomyopathy.'"'? In infected cells, Tat transactivates virus
gene transcription and is essential for replication. During acute
infection of T cells by HIV, Tat released in the stromal
microenvironment of infected cells can bind and/or be
efficiently taken up by most cell types.'® Although antiretroviral
therapy has proven efficacy to reduce viral load, once proviral
DNA is formed, such treatment does not prevent production of
early viral proteins Tat, Rev, and Nef.'*'® The outcome of Tat
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Tat [1-86] preparation. (a) Principle of full-length Tat synthesis by NCL. (b) HPLC profile of the reaction mixture after 36 h and before purification. Gradient 5 — 20’

- 65% B, col. C4, 1.2ml/min, 220 nm. (¢) HPLC profile of [1-86]Tat after purification. Gradient 5 — 20’ — 65% B, col. C4, 1.2 ml/min, 220 nm. The purity was 97.2%. (d) Mass

spectrum of [1-86] Tat. Mr observed: 9753.2 (M + 1), Mr calculated: 9751.6

activity is dependent on its concentration, the cell types
involved, and whether activity is mediated within infected
cells or through paracrine-like effect to uninfected bystander
cells.'®

Several in vitro studies suggest that Tat may interfere
directly or indirectly with mitochondrial functions. For instance,
Tat-expressing cell lines have reduced expression of the
manganese superoxide dismutase (Mn-SOD), a mitochondrial
enzyme that is part of the cellular defense system against
oxidative stress."” Under low serum conditions, Tat transloca-
tion from the nucleus to the mitochondria, correlating with A¥
dissipation, reactive oxygen production, and apoptosis, was
also shown in Tat-expressing cell.'® Tat may also bind tubulin
and polymerized microtubules, leading to the alteration of
microtubule dynamics and activation of a mitochondria-
dependent apoptotic pathway.'®2° Using recombinant HIV-1
Tat1-72 protein, Norman et al.2! reported that Tat can induce a
decrease in free mitochondria calcium in primary neurons, and
inhibits mitochondrial complexes Il and IV in mitochondria
isolated from juvenile rat brain. Moreover, transgenic mice
expressing Tat selectively in cardiac myocytes present cardiac
dysfunction associated with severe mitochondrial damage.??
Based on these premises, we investigated if pure, biologically
active, synthetic Tat may directly interact with mitochondria
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from different tissues, and which mitochondrial target(s) Tat
would possibly hit.

Results

Full-length Tat synthesis. The full-length [1-86] Tat protein
is synthesized using the native chemical ligation (NCL)
method initially introduced by Dawson et al.>® The reaction is
performed between two fully unprotected peptides, the N-
terminal segment having a C-terminus thioester and the C-
terminal segment having an N-terminus cysteine residue
(Figure 1a). The first step is a trans-thioesterification of the
Co thioester by the thiol function of the Cys residue, and is
followed by a spontaneous S to N acyl shift to obtain a native
amide bond. The HPLC profile of the reaction products
after completion is shown in Figure 1b. The Tat protein
is further isolated at a purity above 95% (Figure 1c) and is
characterized by mass spectrometry (Figure 1d). The
synthesis of this protein by a classical solid-phase protocol
has already been reported.2* The chemical ligation used in
the present study represents an alternative and convenient
way to obtain a highly purified, well-characterized Tat
protein in relatively large amounts (up to 100mg). This
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Figure 2 Tat-induced swelling in liver isolated mitochondria. (a) Sequence of full-length Tat[1-86] (HIV-1 Lai) and Tat derived peptides. (b) Dose/time response of Tat[1-
86]-induced swelling. Isolated mouse liver mitochondria were exposed to full-length Tat at the indicated concentrations and mitochondrial swelling (measured as 90° light
scattering at 545 nm) was monitored continuously. (c) Comparative analysis of the effect of Tat-derived peptides on mitochondrial swelling. Isolated mouse liver mitochondria
were exposed to the indicated concentrations of Tat-derived peptides. Mitochondrial swelling was monitored for 30 min. Percentages of mitochondrial swelling were calculated
as described under Materials and Methods. Data are means ( + S.D.) of three independent experiments. (d) Evaluation of PTP-related inhibitors on mitochondrial swelling.
Liver mitochondria were exposed to Tat[1-86] (0.3 1M; 30 min) in the presence or absence (Co.) of the following compounds (added 5 min before Tat): cyclosporin A (CsA;
30 uM), ADP (1 mM), bongkrekic acid (BA; 50 uM), Bcl-2 (400 nM), Bcl-XL (400 nM), or DIDS (5 «M). Histograms represent mean values (£ S.D.) of five independent
experiments. *P< 0.05. (e) Time course follow-up of absorbance characteristics of mouse isolated liver mitochondria in the absence of Co. and the presence of either Tat[1-86]
or Tat + 5 M DIDS. Excess of DIDS was removed by centrifugation before Tat was added at the final concentration of 0.3 M. (f) Ultrastructure of Tat-treated mitochondria.
Representative electron micrographs of isolated liver mitochondria treated or not (Co.) with Tat[1-86] (30 min; 0.15 xM) and optionally pre-treated with DIDS (5 uM; 1 min

before Tat addition)

synthetic Tat (sTat) was shown to be fully functional in
transactivation assays.2>2"

Tat[1-86] induces swelling of isolated mitochon-
dria. When added to mouse liver mitochondria, submicro-
molar concentrations of synthetic Tat[1-86] (Figure 2a) induce
a rapid dose-dependent mitochondrial swelling (Figure 2b).
The effect of free holo-Tat on isolated mitochondria is fully
mimicked by Tat[22-86] and Tat[30-86], partly by Tat[48-86],
but is not observed with Tat[30-61], Tat[44-61] and Tat[61-86],
(Figure 2c), indicating that main functional domains (i.e., the
core region [38-48], the basic region [49-59], the glutamine-
rich region [60-72], and the C-terminus) are required for
efficient Tat-induced mitochondrial swelling. Permeability
transition pore (PTP) inhibitors including cyclosporin A (CsA,
a cyclophilin D ligand), ADP, and bongkrekic acid (BA, an

adenine nucleotide translocase ligand) are inefficient to
protect mitochondria from Tat-induced swelling (Figure 2d).
Accordingly, when Tat is added to liposomes containing a
PTP-enriched fraction,282° it does not induce proteoliposome
permeabilization (Supplementary Figure S1). Thus, in contrast
to Vpr, another HIV-1-encoded mitochondrial membrane
permeabilization (MMP) inducer,?®%® Tat-induced MMP is
not related to the PTP.

Tat-induced swelling of liver mitochondria is reduced by
pretreatment of mitochondria with the broad-spectrum anion
channel inhibitor 4,4'-diisothiocyanostilbene-2,2’-disulfonic
acid (DIDS), but not with recombinant Bcl-2 and Bcl-XL
(Figure 2d). Noticeably, the protective effect of DIDS is still
observed if DIDS-treated mitochondria are washed before Tat
addition (Figure 2e). Ultrastructural studies of isolated
mitochondria confirm that, in sucrose buffer, Tat addition

Cell Death and Disease
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Figure 3 Tat-induced swelling in heart-isolated mitochondria. Isolated mouse
heart mitochondria were exposed to full-length Tat[1-86] 0.6 M and mitochondrial
swelling (measured as 90° light scattering at 545nm) was monitored for 30 min.
When indicated, mitochondria were preexposed for 5min in the presence or
absence of the following compounds: cyclosporin A (CsA; 30 uM), ADP (1 mM),
bongkrekic acid (BA; 50 uM), Bcl-2 (400 nM), or DIDS (5 ¢M). Then, mitochondria
were incubated with Tat[1-86] (0.3 uM; 30 min). Percentages of mitochondrial
swelling (left panel) were calculated as described under Materials and Methods.
Positive control was defined by the addition of 50 M CaCl,. Histograms represent
mean values ( + S.D.) of three independent experiments

readily induces an outer membrane disruption of liver mitochon-
dria, resulting in numerous protrusions of the inner membrane.
DIDS pretreatment strongly prevents these Tat-induced mor-
phological changes in liver mitochondria (Figure 2f). Similar
results were found with synthetic Tat was added on mitochon-
dria isolated from mice heart (Figure 3), indicating that Tat-
induced mitochondrial swelling is not restricted to liver
mitochondria, and suggesting a common PTP-independent
mechanism. However, under our experimental conditions, and
using two different protocols for isolation, we have found that
brain mitochondria were not sensitive to calcium-induced (or
Tat-induced) swelling (data not shown).

Reportedly, Tat can also trigger calcium release from
mitochondria,?' possibly through a ryanodine receptor (RYR)-
dependent pathway.®! To investigate the possibility of a direct
interaction with Tat at the mitochondrial level, we pretreated
isolated mitochondria with ruthenium red, a RYR blocker also
known to inhibit the mitochondrial Ca®* uniporter. Ruthenium
red blocked calcium-induced mitochondrial swelling but had
no effect against Tat-mediated MMP in liver (Figure 2d) and
heart mitochondria (Supplementary Figure S2).

Characterization of Tat-induced AY¥,, and cytochrome c
release in isolated mitochondria. Real-time and fixed-time
flow cytometry analysis of A¥,,>2 indicates that full-length Tat
induces a rapid AY¥,, loss in liver mitochondria, heart
mitochondria, and brain mitochondria as well (Figures 4a
and b). Tat-induced AVY,, loss is inhibited by DIDS in
mitochondria isolated from these three tissues (Figure 4b).
Contrary to DIDS, PTP inhibitors and recombinant Bcl-2 are
unable to hamper Tat-induced AW, loss (Figure 4c). We also
found that Tat-induced A¥,, loss is associated with DIDS-
sensitive cytochrome c release (Figures 3d and e). As
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mitochondria isolated from heart and liver do not express Bax
but do express low and high quantities of Bak, respectively
(Supplementary Figure S3), we also investigated whether
Bax-inhibiting peptide (BIP) or Bax channel inhibitor (BCB;
which inhibits Bax and Bak oligomerization in the
mitochondrial outer membrane®®) might affect Tat-induced
cytochrome c release (Figures 4f and g). Neither BIP nor
BCB could modify Tat-induced cytochrome c release. Taken
together with the absence of the effect of Bcl-2 (Figures 2d
and 4c), one can suggest that Tat-induced MMP might be
independent of the canonic Bax/Bak-mediated mitochondrial
permeabilization pathway.

Tat inhibits substrate oxidation in mitochondria isolated
from heart, brain, and liver. Compared with untreated
organelles (Figure 5a, traces a, e, g), mitochondria prein-
cubated with Tat[1-86] (Figure 5a, traces b, f, h) exhibit a
severe deficiency in succinate oxidation. Adding cytochrome
c to Tat-treated mitochondria oxidizing succinate does not
stimulate the rate of oxygen uptake (Figure 5a, traces b, f, h),
suggesting that Tat inhibits respiratory chain function by an
additional mechanism. Noticeably, DIDS partly prevents Tat-
induced succinate oxidation defect and permits a full
restoration of oxygen consumption by exogenous cyto-
chrome c¢ (Figure 5a, trace c). In contrast, RYR appears
not to be implicated as we observed that respiratory control
ratios (RCRs) measured using succinate as a substrate in
heart mitochondria did not differ in the absence (RCR: 2.7) or
presence (RCR: 2.8) of 1 uM ruthenium red (Supplementary
Figure S4). Tat-induced inhibition of substrate oxidation is
dose dependent (Figure 5b). Interestingly, up to 5 uM Tat, the
addition of exogenous cytochrome c reverses Tat-induced
inhibition of substrate oxidation (Figure 5b). This suggests
that Tat-induced OMP and IMP may be two independent/
successive events.

Full length HIV-1 Tat is a cytochrome ¢ oxidase (COX)
inhibitor. The activity assays of complexes I-IV in brain
mouse homogenate show that complex IV (but not electron
transfer complexes |- Ill) is strongly inhibited (>95%) by
1uM Tat[1-86] (Table 1). To determine if full-length Tat
inhibits COX activity in liver mitochondria, we evaluated the
effects of Tat[1-86] on the ability of COX to oxidize
exogenous cytochrome ¢ in permeabilized organelles.®* In
order to avoid medium-induced artifacts, experiments were
performed in three different media classically used for
swelling, respirometry, and COX enzymatic activity
evaluations, respectively. In lauryl maltoside-treated liver
mitochondria, Tat[1-86] strongly inhibits cytochrome ¢
oxidation whatever the medium considered (Figure 6a,
panel 1), and this effect is not prevented by DIDS
pretreatment (Figure 6b, panel 2). In contrast, Vpr52-96,
another MMP-inducing HIV-related peptide, does not induce
COX inhibition (Figure 6a, panel 3). Shorter Tat-derived
peptides do not (Tat[44-61] and Tat[61-86]), or only poorly
(Tat[30-86]), inhibit mitochondrial COX (Figure 6a, panel 4).
COX inhibition by full-length Tat is not tissue specific as
a dose-dependent COX inhibition is also observed in
(lauryl maltoside) permeabilized mitochondria isolated
from heart and brain (Figure 6b). We next determined the
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Figure 4 Permeabilization of inner and outer membranes induced by Tat in liver, brain, and heart mitochondria. (a) Real-time flow cytometry analysis of AWy, in Tat-
treated mitochondria. Basal fluorescence of JC-1-loaded liver mitochondria was recorded for 2 min. The organelles were then exposed (arrow) or not (Co.) to 0.3 uM Tat[1-86].
The arrow indicates the time of Tat addition. Time-FI-2 (orange fluorescence because of J-aggregate formation) dot plots are shown. (b) Fixed-time flow cytometry comparative
analysis of AW, in liver, heart, and brain mitochondria. Mitochondria were exposed to Tat (Tat concentration as in (a)) for 30 min in the absence (black bars) or presence (gray
bars) of DIDS (5 uM; added 1 min before Tat), and compared with untreated mitochondria (white bars). Histograms represent mean values ( = S.D.) of three independent
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Tat the following compounds: cyclosporin A (CsA; 30 uM), ADP (1 mM), bongkrekic acid (BA; 50 uM), Bcl-2 (400 nM), or DIDS (5 uM). Percentages of AW, loss were
calculated as described under Materials and Methods. Positive control was defined by the addition of 50 M CICCP. Histograms represent mean values (n=3 £ S.D.). (d-g)
Tat-induced cytochrome c release from isolated mitochondria. (d and e) Western blot analysis of Tat-induced cytochrome crelease. Liver (d), brain (d), and heart (e) isolated
mitochondria were incubated or not for 5 min with DIDS (5 uM; RT) centrifugated (to remove free DIDS) and mitochondrial pellet were resuspended and incubated 30 min at
37°Cin the presence or absence of 0.15, 0.3, 0.6, and 1.2 uM Tat[1-86]. Then, supernatants from mitochondria (6800 g for 10 min; 4°C) were subjected to immunodetection of
cytochrome (cyt) c. (f and g) Quantitation of cytochrome ¢ release. Isolated liver (f) and heart (g) mitochondria were treated with 0.6 uM of the synthetic Tat protein and
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kinetics properties of COX in liver mitochondria under our
experimental conditions (Vinax=73 (+8)/s; Kin (red cyt )=
1.95 (+0.8) uM). Tat addition to isolated liver mitochondria
reduces Viax (Vmax [Tat] =35 ( 4)/s) without any effect on
K (red oyt o), Suggesting that Tat does not directly compete
with cytochrome ¢ (Figure 6c¢). Finally, Tat[1-86] is able to
inhibit COX activity in homogenates from various human
tissues including liver, heart, brain, and skeletal muscle
(Supplementary Figure S5).

Discussion

In the present study, we have investigated the potential direct
effect of synthetic Tat protein (from HIV-1 Lai isolate; clade B)
on mitochondria that could trigger pathogenic events. Based
on the evidences obtained with isolated mitochondria
(liver, heart, and brain), it appears that the HIV-1-encoded

Tat[1-86] protein directly interacts with mitochondrial mem-
branes, triggering PTP-independent AY,, loss and cyto-
chrome c release. Under our experimental conditions, Tat
also induces mitochondrial swelling in liver and heart
mitochondria. All these Tat-induced MMP events are pre-
vented by the general anion channel blocker DIDS but not by
PTP inhibitors or Bax/Bak inhibitors.

We also report for the first time a severe decrease of
succinate oxidation upon Tat addition to intact mitochondria
from heart, brain, and liver mice. Interestingly, when Tat is
added to these mitochondria after disruption, or to various
human homogenates (liver, heart, brain, and skeletal muscle),
a severe and specific COX inhibition is observed, whereas
other mitochondrial respiratory chain complexes (I-lll) are not
affected. A previous report showed that recombinant HIV-1
Tat[1-72] could induce a slight decrease in rat brain complex
Il and IV activities.2! Our results do not confirm any effect of

o
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Figure 5 Oxidative properties of purified mitochondria exposed to Tat. (a)
Oxygen consumption upon addition of the indicated reagents. Trace a: liver
mitochondria (no pretreatment). Trace b: Liver mitochondria pretreated for 3 min
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(b) Influence of Tat concentration on oxidative activities of liver, heart, and brain
mitochondria. Oxygen consumption by purified mitochondria was measured after
addition of succinate (as in (a)). Mitochondria were treated 3 min with the indicated
concentrations of Tat. Then, oxygen uptake by purified mitochondria was measured
after addition of succinate (as in (a)) in the absence (gray bars) or presence of (black
bars) of exogenous cytochrome c. Histograms represents % mean respiratory
activity (n = 3; variability was <5%). Calculations are as described under Materials
and Methods

Tat on complex Il activity, but agree on, and widen (to liver,
brain, and heart), in mice and humans, the existence of a
direct COX inhibition by HIV-1 Tat. The use of different lengths
(1-72 versus 1-86) or sources of Tat might have contributed to
discrepancies at the level of complex Ill. As we have found
that iron—sulfur (Fe-S) centers containing enzymes of the
respirasome are not affected by Tat, it is highly improbable
that Tat could directly induce ROS production from isolated
mitochondria. However, we cannot exclude that ROS produc-
tion could occur as a consequence of mitochondrial dysfunc-
tion and electron leak from the respiratory chain.3®

Huo et al.2° recently described an interesting mechanism in
Jurkat T cell lines, where Tat is acetylated at Lysine 28, and
thereby induces Bim translocation from microtubules to
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Table 1 Tat effects on respiratory chain complex activities

Malonate-  Antimycin- Rotenone- COX
sensitive sensitive sensitive  (CIV)
SCCR (CII-lll) QCCR (Clll) NCCR (Cl+liI)
Brain
homogenate (nmol/min per mg protein)
Co. 16 48 20 63
Tat 1 uM 15 45 20 2
Buffer (5 ul)® — — — 63

Abbreviations: SCCR, succinate cytochrome c¢ reductase; QCCR, quinol
cytochrome c reductase; NCCR, NADH cytochrome c reductase.

@Buffer refers to Tat solution buffer.

Values are means of triplicate experiments. Variability was <5%.

Activities of the various segments of the respiratory chain (succinate
cytochrome ¢ and NADH cytochrome c reductases) and of isolated complexes
(decylubiquinol cytochrome ¢ reductase and cytochrome c oxidase) were
spectrophotometrically measured as described under Materials and Methods.

mitochondria, and favors apoptosis.'® Although it is plausible
that such mechanism could occur in other tissues, we show
clearly that the direct effect of Tat on isolated mitochondria
does not require such modification as the Tat effects we have
observed are reproduced with Tat[30-86].

A number of COX inhibitors have been previously de-
scribed, including the well-known sodium azide, cyanide,
carbon monoxide, nitric oxide,3*3® D-2-hydroxyglutaric
acid,® 4-hydroxy-2-nonenal,*® cephalosporins,*' or Alzhei-
mer’s amyloid precursor protein 695.42 However, HIV Tat is
the first viral protein inhibiting COX. The respirometry
experiments show that Tat effect with concentrations up to
5uM can be essentially counterbalanced by exogenous
cytochrome c¢ addition. This indicates that the decrease of
oxygen uptake observed under our experimental conditions is
initially because of OMP and loss of cytochrome c rather than
COX inhibition. Taken together, these experiments suggest
that when Tat reaches mitochondria (at the doses studied), it
permeabilizes outer membrane to cytochrome ¢ but does not
initially target COX. Under our in vitro conditions, inhibition of
this latter complex by Tat only happens after disruption of
mitochondrial membranes. Accordingly, in situ studies of
immunochemistry-based detection of COX activity in Tat-
treated lymphocytes and neurons indicate that, when added
at sublethal concentrations, Tat does not affect COX activity in
intact cells. In the context of HIV infection, long-term chronic
exposures to Tat might lead to a progressive and local
mitochondrial accumulation and result in COX inhibition in the
absence of, or before, OMP.

HIV infection is associated with profound cellular alterations
including immune dysfunctions and neurological and cardiac
complications.***® HIV Tat has been involved in many
aspects of AIDS pathogenesis**™® including apoptosis of
different cell types.'246~*8 Hence, Tat cytotoxicity may be (at
least in part) related to direct MMP induction, possibly
triggering a cytochrome c-dependent apoptotic pathway.
Other HIV-1 proteins, Vpr, Env, and PR, may also (directly
or indirectly) affect mitochondrial function; Vpr via a direct PTP
interaction,2® PR by cleaving procaspase-8 and/or Bcl-2,4%:5°
and Env by a cell-to-cell-mediated signaling pathway leading
to Bax activation.>™®* This hints at the possibility that
several apoptogenic HIV-1 proteins — Vpr, Tat, Env, and
PR — cooperate at the mitochondrial level, contributing to
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Figure 6 Cytochrome ¢ oxidase inhibition by Tat protein and Tat-derived peptides i
detergent-treated (2.5 mM dodecylmaltoside) mouse liver mitochondria. Part 1: Inhibition
1 uM Tat, versus untreated mitochondria (Co.). Experiments were performed in three d
Absence of protective effect of 5 uM DIDS against COX inhibition by 1 ¢M Tat[1-86]. Part
1 uM Tat[1-86] and Tat-derived peptides (30-86, 44-61 and 61-86) on COX activity (n

n permeabilized mitochondria. (a) Assay of cytochrome ¢ oxidase (COX) activity in
of cytochrome c oxidation in permeabilized mitochondria induced by the addition of
istinct media, namely COX (M1), swelling (M2), and electrode (M3) media. Part 2:
3: Similar experiment with 1 M of the negative control Vpr 52-96. Part 4: Effects of
=3). (b) Inhibition of COX activity in mouse liver, brain, and heart mitochondria by

increasing concentration of Tat[1-86]. DIDS was added at the indicated concentration. (¢) Km (red Cyt c) calculation in the presence or not of full-length Tat

5

HIV-related cell damage in lymphocytes,®® neurons, and

cardiomyocytes.

Materials and Methods

Animals. Mice were housed with a 12-h light/dark cycle. Free access to a
standard laboratory chow diet and drinking water was provided. Experimental
procedures were conducted according to the European Community guidelines for
the care and use of experimental animals. Mice experimentation conducted at
Theraptosis were approved by the local animal ethical committee (Biocitech,
Romainville, France). Mice experimentation that was done at Inserm U676 was
approved by the animal ethical institutional review committee, according to the
INSERM guidelines, and was carried out in accordance with the European
Community guidelines for the care and use of experimental animals.

Mitochondria isolation and purification. Liver and heart mitochondria
were isolated from 4- to 6-week-old BALB/c mice (IFFA CREDO, Saint-Germain sur
I'Arbresle, France). Liver mitochondria were prepared by standard differential
centrifugations followed by Percoll purification as described previously.® Mice hearts
were minced and homogenized with a Dounce homogenizer in buffer containing

300mM sucrose, 5mM TES (N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic
acid, 2-{(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid) pH 7.2,
0.2mM EGTA, and 1 mg/ml BSA. The suspension was centrifuged at 800 g for
10 min and the resulting supernatant at 10000 g for 10 min at 4°C. The pellet was
resuspended in homogenization buffer before to be layered on a three-phase percoll
density gradient. After centrifugation (for 10 min at 8740 g), mitochondria were
collected from the lower interface and washed in homogenization buffer by
centrifugation at 10000 g (10 min). Brain mitochondria were isolated according to
previously described protocols.*®” Isolated mitochondria were subjected to various
assays for integrity and functionality as described.®® Alternatively, mitochondria were
isolated from mouse heart, brain, and liver by differential centrifugation (according
to Musatov et al*®), and used in spectrophotometry, spectrofiuorimetry, and
respirometry assays. We did not find significant differences in most read-outs when
using the alternative purification protocols as compared with the percoll density
gradient-based purifications. Only flow cytometry-based assays strictly requested
gradient-based purification.

Human tissue. Human liver, brain, and heart homogenates were prepared from
5 to 10mg post-mortem tissues for diagnostic purpose with informed consents.
Microaliquots (10-30 ul left after diagnostic investigation) used in this study
presented normal activity of the respiratory chain complexes.*

Cell Death and Disease



HIV-1 Tat targets mitochondrial functions
H Lecoeur et al

|

Synthesis of full-length Tat and Tat peptides. Tat[1-86] protein from
HIV-1 Lai strain was prepared using the NCL method introduced by Dawson et al.,2®
as described in Supplementary Materials and Methods. Other Tat fragments used in
this study, namely Tat [30-86], Tat [48-86], Tat [61-86], Tat [30-61], and Tat [44-61],
were assembled using solid-phase Fmoc chemistry, purified, and analyzed as
described for the Tat [22-86] fragment.%®

Reagents. ADP, BA, ruthenium red, DIDS, and carbonyl cyanide m-
chlorophenylhydrazone (mCICCP) were purchased from SIGMA (Saint Quentin
Fallavier, France), CsA from BIOMOL Research Laboratories (Le Perray-en-Yvelines,
France), and the recombinant proteins Bcl-2 and Bel-xL from Oncogene Research
products (Oncogene Research Products, Merck, VWR Intemational, Fontenay-sous-
Bois, France). BCB ((6)-1-(3,6-dibromocarbazol-9-yl)-3-piperazin-1-yl-propan-2-ol)
was purchased from Calbiochem (San Diego, CA, USA) and BIP-V5 (H-Val-Pro-
Met-Leu-Lys-OH; cat. no. 196810) was purchased from Calbiochem (Nottingham, UK).

Detection of large amplitude swelling and AY,, loss. Mitochondria
were resuspended in a buffer, referred as the swelling buffer, containing 0.2M
sucrose, 5mM succinate, 10mM MOPS (3-{N-morpholino]-propanesulfonic acid),
1mM KH,PO,, 2uM Rotenone, and 10 M EGTA at pH 7.4. Large amplitude
swelling was determined by measuring absorbance at 545 nm (As,s). Percentages of
specific swelling were calculated as follows: (Aini—Areagent) X 100/(Aint—A caz ),
where Aca -, AReagents @nd Ay correspond to the absorbance value obtained for
CaCl,-treated, reagent-treated, and pretreated mitochondria respectively. AWy, loss
was assessed by 5,5,6,6',-tetracholoro-1,1,3,3 -tetraethylbenzimidazolylcarbocya
nine iodide (JC-1; Molecular Probes, Saint Aubin, France) incorporation followed by
fixed- and real-time flow cytometry analysis.®? Alteratively, mitochondrial swelling
and AW, were analyzed by spectrophotometry and spectrofluorimetry in 96-well
plates (22 ug/ml) as described.>® Briefly, isolated mitochondria were incubated in
swelling buffer supplemented with 1 M rhodamine 123 (Rh123; Molecular Probes).
Then, absorbance at 545nm and Rh123 fluorescence (excitation 485 nm, emission
535 nm) were recorded during 30 cycles of 1 min using a fluorescence multi-well plate
reader (Infinite 200, Tecan, Méannedorf, Switzerland).

Cytochrome c release detection. Mitochondria (30 ug protein) isolated
from liver, brain, and heart were incubated in swelling buffer with 20 zg/ml
Alamethicin (Ala, positive control, 100% baseline for ELISA), or Tat peptides for
30 min at 30°C. After a 7-min centrifugation at 10 000 g (4°C), proteins contained in
supernatant were analyzed for quantification of cytochrome c¢ release using ELISA
kit from MBL (Cliniscience, Montrouge, France), or subjected to immunoblot
detection of cytochrome c¢ (mouse mAb clone 7H8.2C12; PharMingen, BD
Biosciences, Le Pont de Claix, France).

Polarographic studies. Polarographic studies were performed using a Clark
oxygen electrode (Hansatech Ltd, Norfolk, UK) in a magnetically stirred 250-pl cell
thermostated at 37°C as previously described.>* Experiments were carried out in an
electrode medium consisting of 0.3 M mannitol, 5mM MgCl,, 10 mM KCI, 10 mM
phosphate buffer pH 7.4, and 1 mg/ml BSA. The relative respiratory activity of
mitochondria treated by Tat was calculated as follows: respiratory activity =
(02 7at—02 o) x 100/05 ¢o, where Op 14 and Op ¢, correspond to oxygen
consumption of Tat-treated and control mitochondria, respectively.

Spectrophotometric assays. Respiratory chain enzyme activities were
spectrophotometrically measured at 37°C in 1 ml of 10 mM phosphate buffer pH 6.5,
added with 1 mg/ml BSA using a double wavelength spectrophotometer (550-540 nm)
(Cary 50, Varian, Melboure, Australia).®* COX (CIV) activity was assayed in
the presence of 10 uM reduced cytochrome ¢ and 2.5mM lauryl maltoside.
Malonate-sensitive succinate cytochrome c reductase (complex Il 4 I1l), rotenone
sensitive cytochrome ¢ reductase (complex 1+1ll) and antimycin-sensitive
decylubiquinol-cytochrome ¢ reductase (complex Ill) were measured under
standard conditions as previously described.3*

Electron microscopy. Isolated mitochondria were fixed with 2%
glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, for 3h at 4°C. After several
washes with this buffer, specimens were post-fixed with 1% osmium tetroxide
containing 1.5% potassium cyanoferrate, dehydrated in gradual ethanol (30-100%),
and embedded in Epon. Thin sections (70nm) were collected onto 200 mesh
cupper grids, and counterstained with uranyl acetate and lead citrate before
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examination with a Philips CM12 transmission electron microscope (Philips
Research, Eindhoven, The Netherlands) at 80 kV.

Statistical analysis. Data obtained on isolated mitochondria were analyzed
using Student’s ttest for all pairwise comparisons of mean responses among the
different treatments or conditions tested. Results are presented as the mean + S.D. for
replicate experiments. Differences were considered significant when P<0.05 (¥).
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