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Purpose: The mechanisms underlying chronic postsurgical pain after joint replacement (JR) are complex, and it has been suggested 
that chronic postsurgical pain can develop as a result of inadequate acute pain management. Few studies have addressed acute pain 
after JR using specific animal models. This study aimed to develop a novel JR model focused on postsurgical pain assessment and the 
time course of pain recovery.
Materials and Methods: Rats were allocated to the following three groups: sham (joint exposure), joint destruction (JD; resection of 
the femoral head), and JR (femoral head replacement using an originally developed implant). The time course of postsurgical pain 
behavior was measured using a dynamic weight-bearing apparatus, along with radiological assessments. The expression of calcitonin 
gene-related peptide-immunoreactive (CGRP-IR) neurons in the dorsal root ganglion (DRG) was evaluated by immunohistochemistry 
on days 28 and 42.
Results: The ratio of weight-bearing distribution in the JR group gradually recovered from day 14 and reached the same level as that 
in the sham group on day 42, which was significantly greater than that in the JD group after day 7 (p<0.05). Radiologically, no 
significant issues were found, except for transient central migration of the implant in the JR group. The percentage of CGRP-IR DRG 
neurons in the JR group was significantly lower than that in the JD group on day 28 (mean, 37.4 vs 58.1%, p<0.05) and day 42 (mean, 
32.3 vs 50.0%, p<0.05).
Conclusion: Our novel JR model presented acute postsurgical pain behavior that was successfully recovered to the baseline level 
at day 42 after surgery. Difference of the pain manifestation between the JR and JD groups could be supported by the expression of 
CGRP-IR in DRG neurons. This model is the first step toward understanding detailed mechanisms of post-JR pain.
Keywords: joint replacement, postsurgical pain, dynamic weight bearing, CGRP

Introduction
Joint replacement (JR) is a widely performed surgery in patients with advanced joint diseases. The number of patients 
with JR is expected to increase exponentially with the aging population. By 2030, the incidence of total hip arthroplasty 
(THA) and total knee arthroplasty is predicted to increase by approximately 200% and 700%, respectively.1 While JR is 
one of the most successful procedures in the field of orthopedic surgery,2 it does have several drawbacks, such as 
postsurgical pain,3,4 bacterial infection,5,6 implant loosening,7–10 and periprosthetic fractures.11 Specifically, postsurgical 
pain in the acute phase after JR is extremely severe and often poorly managed.12,13 Recently, accumulating evidence 
revealed that if pain management is inadequate, acute postsurgical pain can progress to chronic postsurgical pain 
(CPSP).13,14 To develop a more effective treatment strategy, it is essential to clarify the basic mechanisms underlying 
postsurgical pain in the acute phase. There have been some reports of animal models exhibiting JR,8–10,16–18 but the 
authors have made no mention of postsurgical pain. Among them, very few studies16–18 reported on the JR model using 
rodents, which have been most extensively used for pain research. Therefore, we decided to develop a novel animal 
model of JR using rats. Initially, we attempted to develop a knee replacement model because postoperative pain is 
reported to be the most severe after knee replacement, among JR surgeries;20,21 however, several attempts failed because 
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of the complex structures of the knee joint. We then changed the target joint from the knee to the hip, which is a simpler 
ball-and-socket joint. This study aimed to describe how we developed a hip replacement model and explain the 
postsurgical course, including pain recovery.

Materials and Methods
Animals
To assess post-JR pain, 15 adults (17–19-week-old) male Sprague-Dawley rats were used, in accordance with the 
guidelines of the International Association for the Study of Pain. The rats were maintained at the Institute of 
Laboratory Animals, Kochi Medical University. The rats were housed in plastic cages at 23 °C with a 14-h light/10-h 
dark cycle. Rats were allocated to the following three groups: sham-operated (sham: joint exposure, n=5), joint 
destruction (JD: resection of the femoral head, n=5), and JR (femoral head replacement using an originally developed 
implant, n=5). All experiments were approved by the Animal Care and Use Committee of Kochi University (N-00037).

Implant Design
The hip implant was originally developed to create an animal model of hip replacement. Femurs were collected from 
a 20-week-old male rat to acquire data on the appropriate femoral head size, femoral neck angle, and femoral neck 
length. 3D printing was used to create a mold of the femoral head and neck. Regarding implant stem design, several 
changes were required to ensure initial stability and easy insertion. First, we developed a prototype implant 
(Generation 1) consisting of a femoral head with a 4.0 mm diameter and a 7-mm long cylindrical stem with screw 
threads (Figure 1A). The implant was inserted into the femoral neck after rasping the medullary canal. Although the 
femoral head was successfully replaced with Generation 1, it was technically difficult to insert a cylindrical stem into the 
narrow cavity of the femoral neck. Therefore, the distal part of the stem was tapered (Generation 2: Figure 1B), which fit 
the femoral neck and allowed for easier implant insertion. However, a few problems were encountered during the 
postoperative course, including implant loosening and hip dislocation. We believed that the cause of implant loosening 
was inadequate stability of the stem inside the femur and that the cause of hip dislocation was insufficient repair of soft 
tissue around the hip joint. Therefore, we changed the stem design to one with a femoral neck angle and inserted it into 
the medullary canal of the femoral shaft to prevent implant loosening (Generation 3, Figure 1C). The stem in Generation 
3 was made of pure titanium. The features of the implant were as follows: (1) 4.0-mm head diameter, (2) 150° neck 
angle, and 3) 7-mm stem length. In addition, a Surgical SimplexⓇ P Bone Cement (HowmedicaⓇ, Inc., Rutherford, NJ, 
USA) was inserted into the medullary canal before the stem insertion to increase fixation stability. Finally, the soft tissues 
around the hip joint, including the capsules, muscles, and tendons, were repaired meticulously to prevent hip dislocation.

Figure 1 Implant designs. (A) Generation 1, (B) Generation 2, and (C) Generation 3.
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Surgery
All surgeries were performed under inhalation anesthesia with 2.0% isoflurane and an oxygen flow rate of 1.0 L/min. The 
animals were placed in the right lateral decubitus position (Figure 2A), and a lateral approach was adopted to expose the 
hip joint. The skin incision was made from the greater trochanter to the middle femur. The tensor fasciae latae and 
gluteus medius muscles were excised (Figure 2B). The gluteus minimus was detached from the greater trochanter. The 
joint capsule was incised along the femoral neck, and the femoral head was exposed (Figure 2C and D). Following 
surgical dislocation of the hip joint, the proximal femur was cut at the level of the femoral neck, and the medullary canal 
of the proximal femur was reamed using an 18-gauge needle and a 1.5-mm screwdriver. After reaming the medullary 
canal, the implant was inserted into the cavity of the proximal femur using Surgical Simplex® P Bone Cement 
(Howmedica, Inc.). After hardening the cement, the hip joint was repositioned (Figure 2E), and the wound was closed 
with 4–0 nylon. After each step, the wounds were thoroughly washed with saline. The sham group underwent skin 
incision, muscle separation, and joint capsule resection to expose the hip joint. The JD group underwent resection of the 
proximal femur without implant insertion, which induced severe incongruency of the hip joint and subsequent JD.

Postoperative Assessments
Behavioral Assessments
Postsurgical pain was assessed with the dynamic weight-bearing (DWB) 2.0 (Bioseb Development, Vitrolles, France), 
consisting of a biometric floor instrumented cage (22×22×30 cm), a high-precision force sensor, and a high-definition 
camera that allows us to assess postsurgical pain in freely moving animals. Pain behavior was monitored and recorded for 
5 min at each time point. We assessed the ratio of weight-bearing distribution calculated as left/right hind paw, as 
previously reported.18 Stimulus-evoked responses, such as the von Frey test, have been widely used in pain research to 
assess pain-related behavior. However, we selected DWB in this study because asymmetric weight distribution partially 
reflects spontaneous pain during free walking in unilateral paw pain models,25–27 which appears to be more relevant and 
clinically important for assessing our novel JR model.

Figure 2 Macroscopic images during surgery. (A) Surgical position, (B) after incision of the fascia, (C) before cutting the joint capsule, (D) exposed Hip joint, (E) after 
femoral head replacement; dotted line, incision line; *Femoral head; **Greater trochanter. 
Abbreviations: Gmed, gluteus medius; TFL, tensor fasciae latae.
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Radiographic Assessments
Anteroposterior and lateral radiographs of the hip joint were taken under anesthesia at weekly intervals until the rats were 
euthanized on day 42. Particular attention was paid to implant displacement and peri-implant bone remodeling.

Immunohistochemistry Assessment
On days 28 and 42 after surgery, the animals were euthanized with carbon dioxide gas, and the left L3 and L4 dorsal root 
ganglia (DRGs) were collected referring to the previous reports about sensory innervation of the hip joint.15,19 The 
DRGs were placed in 10% formalin and 30% sucrose solution overnight, embedded in OCT compound (Sakura Finetek 
USA, Inc., Torrance, CA, USA), and kept frozen at −70 °C until sectioning. Frozen sections with a thickness of 14 µm 
were cut using a cryostat. Approximately 10–15 sections were obtained for each DRG. A double-immunofluorescence 
method was used to assess DRGs. The primary antibody used in this study was rabbit anti-α-CGRP (1:1000 Peninsula 
Laboratories, San Carlos, CA, USA) diluted in phosphate-buffered saline (PBS) with 10% goat serum and 0.05% Triton 
X-100. The secondary antibody used in this study was goat anti-rabbit IgG-FITC (1:500), which was diluted in PBS with 
10% goat serum, 0.05% Triton X-100, and 4’,6-diamidino-2-phenylindole. On the first day, the sections were blocked in 
3% normal goat serum for 1 h, immersed two times in PBS for 5 min, and then incubated with the primary antibody 
overnight at room temperature. On the next day, the sections were incubated with the secondary antibody for 1 h after 
being immersed two times in PBS for 5 min. Finally, the sections were mounted with VECTASHIELD (Vector, 
Burlingame, CA, USA). To avoid double counting, the numbers of CGRP-immunoreactive (IR) neurons and all DRG 
neurons were counted in every fifth section using a fluorescent microscope (Nikon Corp., Tokyo, Japan). We calculated 
the percentage of CGRP-IR DRG neurons (CGRP-IR neurons/all DRG neurons*100) to minimize the effect of 
individual differences between the rats on days 28 and 42. We compared the percentage of CGRP-IR DRG neurons 
in the three groups.

Statistical Analysis
IBM SPSSⓇ Statistics for Windows version 26 (IBM Corp., Armonk, NY, USA) was used for the statistical analysis. All 
data are presented as mean ± SEM. For between-group comparisons of pain behaviors and neuron counts, a one-way 
analysis of variance with an unpaired t-test was used. The Mann–Whitney U-test was used to compare the percentage of 
CGRP-IR DRG neurons between days 28 and 42 after surgery in each group. The results were considered significant if 
the p-value was <0.05.

Results
Behavioral Assessment
Figure 3 shows the time course of postsurgical pain. The ratio of weight-bearing distribution in the JR group gradually 
recovered from day 14 and reached the same level as that in the sham group on day 42, which was significantly greater 
than that in the JD group after day 7 (p < 0.05).

Radiological Assessments
In the sham group, no apparent changes were found in the hip joint after 42 days. The JR group showed no joint 
dislocation or implant loosening throughout the study period. Although there were no major issues in the final follow-up, 
subtle changes were detected in the series of radiographs. Up to day 21, a slight implant movement towards the 
acetabulum was found, ie, central migration (Figure 4A–D). Subsequent to the movement of the implant, central bulging 
of the acetabulum was confirmed on days 28–35. By day 42, bone remodeling associated with implant movement was 
completed (Figure 4E–G). These findings were observed in all the cases.

Immunohistochemistry Assessments
Representative fluorescent photographs showed CGRP-IR DRG neurons (Figure 5A–F). The percentage of CGRP-IR 
DRG neurons in the JD group was significantly higher than that in the sham group (*p=0.027 on day 28 and p=0.010 
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on day 42) and JR group (*p=0.036 on day 28 and p=0.004 on day 42), (Table 1). However, the expression of CGRP was 
not significantly different between day 28 and day 42 in each group (Table 1).

Discussion
The mechanisms underlying CPSP after JR are complex and have not yet been elucidated.3 Recent systematic 
reviews13,24,28 provided possible risk factors for CPSP development such as preoperative pain intensity, pain sensitiza-
tion, psychosocial problems, surgical procedures, acute postoperative care; however, these outcomes were derived from 

Figure 3 Recovery of postsurgical behavior. Data are presented as the mean ± SEM. n=5 per group. **p<0.01 vs JD, †p<0.05 vs JR, §p<0.05 vs JD, §§p<0.01 vs JD. 
Abbreviations: JD, joint destruction; JR, joint replacement.

Figure 4 Postsurgical radiographic changes over time. (A) Day 0, (B) day 7, (C) day 14, (D) day 21, (E) day 28, (F) day 35, and (G) day 42 Up to day 21, the implants 
continued to move (arrowhead). On day 28, bone remodeling was confirmed (arrow).

Journal of Pain Research 2022:15                                                                                                     https://doi.org/10.2147/JPR.S368130                                                                                                                                                                                                                       

DovePress                                                                                                                       
2915

Dovepress                                                                                                                                                         Aoyama et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


clinical studies that could not address the detailed basic pain mechanisms. To resolve this issue, an animal model 
mimicking JR that can be used for postsurgical pain assessment is required.

In this study, we developed a simple and reproducible animal model to evaluate the course of pain after JR using rat 
hip joints. The ratio of weight-bearing distribution in the JR group recovered within 42 days, and the percentage of 
CGRP-IR DRG neurons in the JR group was significantly lower than that in the JD group. These results suggest that our 
model demonstrates a recovery process of postsurgical pain behavior, which is similar to clinical observations.

Although postsurgical pain mechanisms have been documented using various animal models,29–31 pain following 
joint surgery has not been well studied. Two recent reports have used a rat model to drill a hole in the articular surface of 
the knee joint.22,23 Buvanendran et al reported the features of postsurgical pain-related behavior and its recovery 
following systemic and intrathecal administration of morphine, ketorolac, and celecoxib.22 Majuta et al reported that 
spontaneous postsurgical pain behavior was attenuated using a monoclonal antibody against the nerve growth factor.23 

They evaluated pain behaviors after joint surgery and the effects of pharmacological treatment; however, their models 
were completely different from a model of JR surgery.

Regarding JR models in rats, Powers et al and Paish et al recently developed a THA model, but they mainly reported 
on implant design and surgical techniques without postsurgical pain assessment. In this study, we documented pain after 
hip replacement surgery in rats, which may pave the way for future research into CPSP after JR.

Pain recovery after JR was initiated from day 14, which was slower than expected. A plausible mechanism for this 
delay is the joint incongruency between the artificial femoral head and the original acetabulum. Up to day 21, wear of the 
acetabulum due to the artificial femoral head was observed, which possibly induced an inflammatory reaction and 
decreased the ratio of weight-bearing distribution to the operated paw. On day 28, bone remodeling in the acetabulum 
was completed, after which stability of the hip joint improved and pain recovery was probably accelerated. Essentially, 

Figure 5 CGRP-IR DRG neurons. Expression of CGRP-IR DRG neurons (white arrow) in the sham (A and D), JD (B and E), and JR (C and F) groups. Bar: 100 μm. 
Abbreviations: CGRP-IR DRG neurons, calcitonin gene-related peptide immunoreactive dorsal root ganglion neurons; JD, joint destruction; JR, joint replacement.

Table 1 Percentage of CGRP-IR DRG Neurons in the Sham, JD, and JR 
Groups

POD Sham JD JR

Day 28 31.4 ± 4.2 58.1 ± 5.3* 37.4 ± 3.1

Day 42 32.8 ± 4.9 50.0 ± 2.1* 32.3 ± 4.0

Notes: All data are presented as mean ± SEM. n=5 per group. *p < 0.05, vs sham and JR. 
Abbreviations: CGRP-IR DRG neurons, calcitonin gene-related peptide immunoreactive dorsal 
root ganglion neurons; JD, joint destruction; JR, joint replacement; POD, postoperative day.

https://doi.org/10.2147/JPR.S368130                                                                                                                                                                                                                                   

DovePress                                                                                                                                                               

Journal of Pain Research 2022:15 2916

Aoyama et al                                                                                                                                                         Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


the percentage of CGRP-IR DRG neurons was comparable between the JR and sham groups on day 28, which supports 
this interpretation from a neurological aspect.

This study had some limitations. First, it took time to recover the weight-bearing distribution ratio after the JR. As 
mentioned, joint incongruency between the artificial femoral head and the original acetabulum was possibly associated 
with this issue, and some improvements may be needed, such as a more congruent and smoother surface of the artificial 
femoral head and/or acetabular implants for THA. Second, the assessments of postsurgical pain were limited. The 
usefulness of this model could have been emphasized by additional evaluations such as stimulus-evoked pain behavior, 
histology, and proinflammatory cytokine measurement. Third, the observation period was relatively short. Although we 
observed a complete recovery of weight-bearing distribution within the observation period, a longer follow-up period is 
required to evaluate the sustainability of the implant. Lastly, there was no size variation in the artificial femoral head. 
Paish et al created implants to fit the body size of rats, whereas we created only one size. To obtain better results, 
additional implants tailored to the size of each rat may be necessary.

Despite hurdles to overcome, our novel JR model has the potential to address some basic mechanisms of CPSP, which 
will be clinically important for developing new treatment strategies.

Conclusion
Our novel JR model presented acute postsurgical pain behavior that successfully recovered to the baseline level 
on day 42. The difference in pain manifestation between the JR and JD groups is neurologically supported by the 
expression of CGRP-IR in DRG neurons. This model is the first step in understanding the detailed mechanisms of 
pain after JR.
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