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Abstract

Dendritic cells (DC) have the potential to instigate a tumour-specific immune response, but

their ability to prime naïve lymphocytes depends on their activation status. Thus, for tumour

immunotherapy to be effective, the provision of appropriate DC activation stimuli such as Toll-

like receptor (TLR) agonists is crucial in order to overcome immunosuppression associated

with the tumour microenvironment. To address this, we investigated how ovarian carcinoma

(OC)-associated ascites impedes activation of DC by TLR agonists. Our results show that

ascites reduces the TLR-mediated up-regulation of CD86 and partially inhibits the production

of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-12 and tumour necrosis factor α
(TNFα) in monocyte-derived DC from healthy controls. We further observe an impaired T cell

stimulatory capacity of DC upon activation with TLR agonists in the presence of ascites, indi-

cating that their functionality is affected by the immunosuppressive factors. We identify IL-10

and prostaglandin E2 (PGE2) as the pivotal immunosuppressive components in OC-associ-

ated ascites compromising TLR-mediated DC activation. Interestingly, IL-10 is present in

both ascites from patients with malignant OC and in peritoneal fluid from patients with benign

ovarian conditions and both fluids have similar ability to reduce TLR-mediated DC activation.

However, depletion of IL-10 from ascites revealed that the presence of paracrine IL-10 is not

crucial for ascites-mediated suppression of DC activation in response to TLR activation.

Unlike IL-10, PGE2 is absent from peritoneal fluid of patients with benign conditions and

selectively reduces TNFα induction in response to TLR-mediated activation in the presence

of OC-associated ascites. Our study highlights PGE2 as an immunosuppressive component
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of the malignant OC microenvironment rendering PGE2 a potentially important target for

immunotherapy in OC.

Introduction

Chemo-resistance in patients experiencing relapse after conventional therapy is frequent in

OC and constitutes an important factor correlating with poor prognosis [1]. Thus there is an

urgent need for alternative intervention strategies. Immunotherapeutic induction of anti-

tumour immunity represents a promising treatment option in OC [2]. However, in order to

develop robust and effective immunotherapy protocols for clinical use, a better understanding

of the obstacles for anti-tumour immunity induction in OC posed by the immunosuppressive

tumour microenvironment is required.

Serous epithelial OC is the most common histological subtype of OC comprising 85% of all

cases. Although an aggressive tumour with invasive potential, its metastases remain largely

restricted to the peritoneal cavity even in late clinical stages, frequently accompanied by the

formation of ascites. The localization to the peritoneal compartment allows the tumour to cre-

ate an enclosed immunosuppressive milieu that it can thrive in, and the promotion of such an

immunomodulatory local environment is a central mechanism of tumour escape and progres-

sion in OC [3–6]. The OC microenvironment represents a complex immunosuppressive net-

work of cytokines and other factors. Many of the immunosuppressive components such as IL-

10, transforming growth factor β (TGFβ and leukemia inhibitory factor (LIF) are soluble fac-

tors that are abundant in OC-associated ascites [6–9]. Vascular endothelial growth factor α
(VEGFα) is part of this immunosuppressive network and promotes tumour growth by induc-

ing angiogenesis and recruiting immature myeloid cells to the tumour tissue [10]. Similarly,

pro-inflammatory cytokines such as IL-6 and TNFα that are also present in the OC microenvi-

ronment, support tumour progression by influencing angiogenesis and tumour infiltration

with myeloid cells [11, 12]. The recruited myeloid cells differentiate into tumour-associated

macrophages (TAM) and immature DC characterized by the production of indoleamine

2,3-dioxygenase (IDO), and are capable of inducing regulatory T cells [13].

The peritoneal cavity of OC patients is infiltrated with a variety of leukocyte populations,

and the immune cell composition within the tumour microenvironment impacts upon disease

progression and has been reported to correlate with clinical outcome [14, 15]. DC are present

in the OC environment [16, 17] and as professional antigen-presenting cells (APC) they are

thought to be pivotal for the initiation of tumour-specific immune responses because of their

ability to take up and process tumour antigens and prime cytotoxic T cell (CTL) responses.

However, the ability of DC to launch a potent anti-tumour immune response is dependent on

their direct activation via pattern recognition receptors (PRR) such as TLR [18]. Despite the

presence of damage-associated molecular patterns with the ability to trigger TLR-mediated

responses such as HMGB-1 [19], the tumour microenvironment does not provide agonists for

optimal TLR-mediated activation of DC and DC-based therapeutic approaches crucially rely

on synthetic TLR agonists as mediators of effective DC activation. In order to devise efficient

immunotherapeutic strategies for treatment of OC patients, it is vital to understand how DC

integrate the opposing signals provided by strongly stimulating synthetic TLR agonists and

immunosuppressive factors associated with the tumour microenvironment.

There are many different DC subsets. Some reside in peripheral tissues and have the ability

to migrate to the draining lymph nodes whereas others are resident in lymphoid tissues or
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circulate in the blood until they are recruited to sites of inflammation [20]. However it is cur-

rently still unclear which DC subsets are crucial for the initiation of anti-tumour immunity in

response to tumour immunotherapy and different immunotherapeutic strategies may recruit

different DC subsets. In this study, we used monocyte-derived DC from healthy donors as a

model system to investigate how inflammatory DC integrate concurrent stimulation with

TLR-mediated immunogenic and OC-associated immunosuppressive signals.

Results

OC-associated ascites partially suppresses TLR-mediated activation of

monocyte-derived DC

In order to investigate the immunosuppressive influence of soluble factors associated with the

OC microenvironment, we examined the effect of ascites collected from patients suffering

from advanced-stage serous epithelial OC on activation of monocyte-derived DC by TLR ago-

nists. The cellular fraction was removed from the ascites samples by centrifugation and only

the cell-free ascites was investigated for its immunosuppressive properties. Monocyte-derived

DC express TLR3, TLR4 and TLR8 and as such, polyI:C, LPS and R848 were chosen for stimu-

lation of these TLR, respectively. The TLR agonists were used at concentrations optimised for

the induction of pro-inflammatory cytokines such as IL-6 and TNFα in overnight cultures.

Compared to R848 and LPS, polyI:C induced rather low levels of IL-6 and TNFα and no IL-

12p40 (S1 Fig). For all three TLR agonists, the up-regulation of the co-stimulatory molecule

CD86 was reduced in the presence of 25% of ascites (Fig 1A). In the presence of 10% ascites,

CD86 up-regulation was significantly reduced in response to R848, but not in response to LPS

or polyI:C (Fig 1A). This was the case both when monocyte-derived DC from different healthy

donors were cultured with ascites from the same OC patient as well as when culturing the

same donor’s monocyte-derived DC with ascites from up to four different patients. CD86 lev-

els on monocyte-derived DC cultured without TLR agonists were not affected by the presence

of ascites (S2A Fig). In addition to CD86, we monitored changes in the up-regulation of other

surface markers such as CD40 and HLA-DR, as well as the immunoregulatory molecules

PD-L1 (CD274) and PD-L2 (CD273). While all of these molecules were up-regulated in

response to TLR stimulation, their expression at the cell surface was not consistently affected

by the presence of ascites (data not shown).

OC-associated ascites showed an inhibitory effect on the production of the cytokines IL-6,

IL-12p40 and TNFα in response to R848- and LPS-mediated activation (Fig 1B). For polyI:C-

mediated activation a similar trend was observed. However, overall levels of cytokine induc-

tion in response to polyI:C was weaker than for R848 and LPS and the reduction in cytokine

production in the presence of ascites was only significant for TNFα (Fig 1B). Interestingly, the

reduction in cytokine levels in the presence of ascites was not observed for all cytokines that

were monitored. IL-1β and IL-10 induced in response to TLR-mediated activation did not

show significant reduction in the presence of 25% ascites (S2B Fig and data not shown).

We were interested in comparing the immunosuppressive effect of OC-associated ascites to

peritoneal fluid from benign ovarian conditions in order to identify markers that distinguish

the malignant from the benign microenvironment. Despite the fact that increased levels of

peritoneal fluid are usually not observed for benign ovarian conditions, we collected some

specimens from patients suffering from benign ovarian conditions, such as fibroadenoma,

fibrothecoma, or fimbrial cysts. Like malignant ascites, peritoneal fluid from patients with

benign ovarian conditions also reduced up-regulation of the surface marker CD86 and par-

tially inhibited production of the cytokines IL-6 and IL-12p40 (Fig 2). In contrast, TLR
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Fig 1. Up-regulations of CD86 and induction of cytokines in response to TLR stimulation in the

presence or absence of OC-associated ascites. (A) Monocyte-derived DC were stimulated overnight with

3μg/ml R848, 1μg/ml LPS, 100μg/ml polyI:C in the presence of 0%, 10% or 25% of ascites from patients with

malignant OC. The mean fluorescence intensity (MFI) of the surface marker CD86 was assessed by flow

cytometry. (B) Monocyte-derived DC were cultured overnight as described above and cytokines were

measured in culture supernatants by flow cytomix analysis or sandwich ELISA (IL-12p40). In total, 12

independent experiments were performed (n = 12) with DC from individual healthy volunteers cultured with

ascites from 4, 3, 2 or 1 OC patients (n = 1, 1, 1 and 3 healthy volunteers, respectively). One-way ANOVA was

used for statistical analysis (Friedman test with Dunn post test): * = p<0.05; ** = p<0.01; *** = p<0.001;

ns = not significant.

https://doi.org/10.1371/journal.pone.0175712.g001
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Fig 2. Up-regulations of CD86 and induction of cytokines in response to TLR stimulation in the

presence or absence of peritoneal fluid from patients with benign conditions. Monocyte-derived DC

were stimulated overnight with 3μg/ml R848, 1μg/ml LPS or 100μg/ml polyI:C in the presence of 0%, 10% or

25% peritoneal fluid obtained from patients suffering from benign ovarian conditions. The following day, (A)

the MFI of surface marker CD86 was assessed by flow cytometry and (B) cytokines were measured in culture

supernatants by flow cytomix analysis or sandwich ELISA (IL-12p40). In total, 12 experiments (n = 12) were

performed with DC from 8 different healthy volunteers cultured with ascites from 2 (n = 4) or 1 (n = 4) patient

with benign ovarian conditions. One-way ANOVA was used for statistical analysis (Friedman test with Dunn

post test); * = p<0.05; ** = p<0.01; *** = p<0.001; ns = not significant.

https://doi.org/10.1371/journal.pone.0175712.g002
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agonist-induced TNFα production was largely unaffected by peritoneal fluid from these

benign ovarian tumours (Fig 2).

The immunosuppressive effects correlate positively with the IL-10 levels

of OC-associated ascites

In order to examine which soluble factors in OC-associated ascites may be responsible for

impaired TLR-mediated activation of monocyte-derived DC, we measured the levels of various

proteins with known immunosuppressive properties in the collected ascites samples such as

IL-10, LIF, Arginase-1 (Arg-1), and PGE2. We also determined the concentrations of the

angiogenesis-promoting and immunosuppressive factor VEGFα the chemokine CCL18 and

the pro-inflammatory cytokines IL-6, TNFα and interferon γ (IFNγ) to further characterise

the composition of the OC-associated microenvironment. As expected, the immunosuppres-

sive factors IL-10, LIF, Arg-1 and PGE2 were detected in all ascites samples with the protein

levels varying considerably between patients (Fig 3A). Similarly, the levels of the pro-inflam-

matory cytokines IL-6, the chemokine CCL18 and VEGFα differed between samples, creating

a unique composition of immunomodulatory factors in each patient (Fig 3A). TNFα and IFNγ
levels were low or absent for all ascites samples (Fig 3A). Secreted CTLA-4 was also measured

but was not detected in any ascites samples in our study (data not shown).

We investigated whether any of these factors correlated with the observed immunosuppres-

sive effect and detected a strong positive correlation between the levels of the immunosuppres-

sive cytokine IL-10 and the suppressive effect of the ascites samples on CD86 expression and

IL-6 production in response to TLR activation (Fig 3B). Similarly, high suppression of IL-

12p40 production was consistently observed for ascites samples with high concentration of IL-

10, however, due to one value where an ascites sample with comparatively low IL-10 levels sup-

pressed IL-12p40 induction by over 90%, this correlation was not statistically significant (Fig

3B). Interestingly, there was no correlation between TNFα suppression and IL-10 levels in

ascites (Fig 3B).

The levels of most other determined proteins found in OC-associated ascites did not corre-

late with the level of its suppressive properties (S1 Table). However, we observed statistically

significant negative correlations between the levels of VEGFα and suppression of CD86 induc-

tion, as well as between OC-associated Arg-1 levels and CD86 suppression, and Arg-1 levels

and inhibition of IL-6 production (S3 Fig). Although the statistical analysis suggests a positive

correlation between TNFα levels in ascites and suppression of CD86, IL-6 and IL-12p40

expression, given that only one sample contained detectable levels of TNFα (Fig 3A), this cor-

relation is likely to be skewed and should, therefore, be disregarded (S3 Fig).

We conclude that levels of IL-10 found in OC-associated ascites positively correlate with

the inhibitory properties of ascites on the TLR-mediated up-regulation of the co-stimulatory

molecule CD86, as well as the production of the cytokines IL-6 and IL-12p40 but not TNFα.

The suppressive effect of OC-associated ascites on R848-induced

activation of monocyte-derived DC is IL-10 dependent

In order to clarify whether IL-10 is mediating the inhibitory effect on TLR-mediated DC acti-

vation partially or in full, we added neutralizing antibodies against IL-10 to monocyte-derived

DC cultures containing R848 and 10% OC-associated ascites. We chose R848 as TLR agonist

for this set of experiments, since it induced the highest levels of cytokine production by DC in

the absence of ascites and robust and reproducible suppression of R848-induced cytokine pro-

duction was observed in the presence of 10% ascites. In parallel, we also tested neutralizing

antibodies against IL-6, TGFβ, LIF and VEGFα to identify any contributions to the observed
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Fig 3. Levels of various immunomodulatory factors in OC-associated ascites and their correlation

with the immunosuppressive effects observed in DC activation assays. (A) Protein levels of various

factors in ascites samples collected from OC patients were measured by sandwich ELISA. Eight malignant

ascites samples used throughout the study are shown. Each symbol represents one patient sample

throughout the graphs (n = 8). (B) Levels of IL-10 in ascites samples are correlated to the suppression of TLR-
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immunosuppressive effect by these factors. IL-6, LIF and VEGFα were present in the ascites

samples investigated in this study (Fig 3A). We also included TGFβ, which has been ascribed

immunosuppressive roles in different physiological scenarios but the concentration of which

we had not determined in the ascites. Upon addition of IL-10 neutralizing antibody, we

observed restored CD86 up-regulation and production of IL-6, IL-12p40 and TNFα to or

beyond the activation levels of DC stimulated with R848 alone without OC-associated ascites

(Fig 4A and 4B) indicating that the observed immunosuppressive effect is indeed IL-10

dependent. None of the other tested neutralizing antibodies had the same effect nor did the

combination of neutralizing antibodies show an additive or synergistic effect ruling out a con-

tribution by the other tested immunosuppressive factors in our system (Fig 4A and 4B).

IL-10 dependent reduction in the T cell stimulatory capacity of monocyte-

derived DC in the presence of OC ascites

To investigate whether the IL-10 dependent reduction in monocyte-derived DC activation in

the presence of OC-associated ascites had an effect on APC functionality, we performed alloge-

neic MLR. DC were cultured overnight in medium only or with R848 in the absence or pres-

ence of ascites and IL-10 neutralizing antibody, then washed and subsequently co-cultured

with allogeneic naïve CD4+ T cells for 6 days. T cell proliferation was assessed by CFSE dilu-

tion. Our results showed that DC treated with R848 and ascites before the co-culture with T

cells exhibited a reduced T cell stimulatory capacity compared to DC pre-treated with R848

alone (Fig 4C and 4D). When IL-10 neutralizing antibody was added to DC cultures alongside

ascites, a large increase in T cell proliferation was observed indicating that IL-10-dependent

suppression of DC activation impairs their T cell stimulatory activity (Fig 4C and 4D).

To examine whether DC exposure to ascites influenced the type of T cell response induced,

intracellular staining of FoxP3 and the cytokines IL-10, IL-17 and IFNγ was performed in

these MLR experiments. We saw no alteration in the percentage of FoxP3+ or IFNγ+ cells

among the proliferating T cells after ascites exposure of DC. In all samples only a very small

number of T cells produced IL-10 or IL-17 (<1%), with no alteration regardless of ascites

exposure of DC (data not shown).

These data show that the inhibitory effects of OC-associated IL-10 on DC activation outlast

the period of immediate exposure of DC to this immunosuppressive factor, leading to subse-

quent impaired T cell stimulatory function of these cells in vitro.

Investigating the effects of autocrine versus paracrine IL-10 on TLR-

induced monocyte-derived DC activation in the presence of OC ascites

TLR stimulation induces the production of pro-inflammatory cytokines but also IL-10 in DC

[21]. The negative feedback of autocrine IL-10 limits the release of DC-derived pro-inflamma-

tory cytokines at high TLR agonist concentrations and is thought to protect the host from the

adverse effects of excessive immune activation [22]. We wanted to confirm the role of OC-

associated IL-10 by distinguishing the influence from paracrine versus TLR-induced autocrine

IL-10 in our experimental system. To this end we depleted ascites of IL-10 and performed DC

activation experiments [23]. To our surprise, DC activated in the presence of IL10-depleted

mediated up-regulation of CD86 and production of IL-6, IL-12 and TNFα. Suppression is expressed in per

cent reduction of surface marker and cytokine levels when 10% ascites was added to the cell culture as

compared to no ascites present; n = 26 (26 independent experiments conducted with monocyte-derived DC

from 9 different healthy controls, cultured with ascites from two (n = 4), three (n = 2) or four (n = 3) different OC

patients. The Pearson coefficient was calculated to assess statistical significance of correlations.

https://doi.org/10.1371/journal.pone.0175712.g003
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Fig 4. Neutralisation of IL-10 releases the impairment of DC activation in response to TLR stimulation

in the presence of OC-associated ascites. (A, B) Monocyte derived DC were cultured in the presence of

3μg/ml R848, 10% ascites and neutralizing antibodies (5μg/ml) as indicated. Neutralizing antibodies were

added to cultures alone or in combination. (A) CD86 expression levels were measured by flow-cytometry, and

(B) cytokine levels were measured in cell culture supernatants by flow cytomix analysis (IL-6, TNFα) or

sandwich ELISA (IL-12p40). n = 9–13 (13 independent experiments; monocyte-derived DC from 8 different

healthy donors, cultured with 1 (n = 4), 2 (n = 3) or 3 (n = 1) different ascites samples. IL-6 neutralizing

Suppression of DC activation in ovarian carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0175712 April 14, 2017 9 / 24

https://doi.org/10.1371/journal.pone.0175712


ascites did not show a release of suppression with regard to CD86 up-regulation and cytokine

induction in comparison to untreated or mock-treated ascites induction (Fig 5). The result

suggests that paracrine OC-associated IL-10 does not impair TLR-mediated DC activation and

that the increase in DC activation in the presence of IL-10 neutralizing antibody is largely

dependent on inhibition of autocrine IL-10. It also implies that immunosuppressive factors

other than IL-10 are responsible for the impairment of DC activation in the presence of

ascites.

In order to confirm the presence of one or more additional immunosuppressive factors, we

neutralized IL-10 in DC cultures activated with R848 in the presence and absence of ascites

and compared the levels of CD86 up-regulation and cytokine induction between these two

treatment conditions. Upon neutralization of IL-10 in DC cultures stimulated with R848 in

the absence of ascites (R848 +αIL-10) the expression of the monitored DC activation markers

(CD86, IL-6, IL-12p40 and TNFα) was consistently higher than observed for DC stimulated

with R848 in the presence of ascites and IL-10 neutralizing antibody (R848 +AF +αIL-10) even

though some of these results were not statistically significant (Fig 6A). This observation sup-

ports the notion that at least one other immunosuppressive factor impairing DC activation in

addition to IL-10 is present in OC-associated ascites. Interestingly, we could not detect a simi-

lar difference in DC activation in cultures activated with R848 and IL-10 neutralizing antibod-

ies in the presence and absence of peritoneal fluid from benign ovarian conditions (Fig 6B).

antibody was only used in 9 out of 13 experiments). One-way ANOVA (Friedman test with Dunn post test):

*** = p<0.001. Please note that the quantification of IL-6 in samples containing IL-6 neutralizing antibody

(αIL-6 and all AB) is compromised. (C, D) For allogeneic MLR, monocyte-derived DC from healthy donors

were cultured overnight in complete medium only, or stimulated with 3μg/ml R848 in the presence or absence

of 10% ascites fluid (AF) and/or IL-10 neutralizing antibody (5μg/ml) as indicated. Subsequently, such pre-

treated DC were washed and co-cultured with CFSE-stained CD4+ naïve T cells from another healthy donor

at a 1:200 ratio for 6 days. Naïve T cells from the same donor were used consistently for all experiments. The

proliferation of T cells was determined by CFSE dilution after 6 days. (C) A representative example of flow-

cytometry analysis is shown. (D) Cumulative data from 4 independent experiments showing proliferation in

percent of CD3+ cells that have undergone at least one round of division. n = 4 (4 independent experiments;

monocyte-derived DC from 3 different healthy donors, cultured with ascites from two (n = 1) or one (n = 2) OC

patient).

https://doi.org/10.1371/journal.pone.0175712.g004

Fig 5. Depletion of IL-10 from OC-associated ascites does not release the suppression of TLR-mediated DC

activation. Monocyte-derived DC were stimulated with 3μg/ml R848 in the presence or absence of 10% ascites from

ovarian carcinoma patients which had previously been depleted of IL-10 (IL10 ΔAF) or which had undergone mock

depletion (mock ΔAF). Alternatively, DC cultures were treated with R848 and untreated ascites (AF) in the presence of

αIL-10 neutralizing antibody or isotype control antibody (5μg/ml); n = 3 (3 independent experiments; monocyte-derived

DC from 1 healthy donor, cultured with three ascites samples from three individual ovarian carcinoma patients). IL-6

levels were measured in cell culture supernatants by sandwich ELISA.

https://doi.org/10.1371/journal.pone.0175712.g005
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Fig 6. The suppression of DC activation by peritoneal fluid from patients with beningn conditions is

fully mediated by IL-10 unlike the suppressive activity of OC-associated ascites. Monocyte-derived DC

were stimulated overnight with 3μg/ml R848 in the presence or absence of (A) 10% malignant ascites from

OC patients or (B) 10% peritoneal fluid from benign ovarian tumours and IL-10 neutralizing antibody (5μg/ml)

as indicated. CD86 expression levels were assessed by flow cytometry, and cytokine levels were measured in
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This suggests that in contrast to malignant OC, IL-10 acts as a sole agent in impairing TLR-

mediated DC activation in the presence of peritoneal fluid from benign ovarian conditions.

The levels of IL-10 in peritoneal fluid from benign ovarian conditions varied between patients.

While the average amount of IL-10 in ascites was higher than in peritoneal fluid, this difference

was not significant (S4 Fig). However, this could be a result of the limited number of peritoneal

fluids that were investigated for IL-10 levels.

PGE2 and IL-10 in OC-associated ascites have an additive effect on

suppression of TLR-mediated TNFα induction

To elucidate which factors present in ascites distinguish the malignant OC environment from

the environment of benign ovarian tumours, we investigated which proteins in addition to

IL-10 in ascites exerted a suppressive influence on TLR-mediated DC activation. Given the

absence of TNFα suppression by benign peritoneal fluid in response to R848 and LPS (Fig 2B),

and the lack of correlation between TNFα suppression and IL-10 levels in ascites (Fig 3B), we

focussed on proteins that have previously been shown to regulate TNFα production. PGE2 rep-

resented a promising candidate, because monocyte-derived DC express the PGE2 receptors

EP2 and EP4, and PGE2 has been described to regulate cytokine production in DC including

TNFα [24, 25]. To investigate whether PGE2 present in ascites inhibits TNFα induction, we

neutralized PGE2 in cultures of cells stimulated with R848 in the presence of OC-associated

ascites. Indeed, neutralization of PGE2 significantly alleviated the ascites-induced suppression

of TNFα induction upon TLR stimulation (Fig 7A). This effect was specific to TNFα amongst

the activation markers examined, with the co-stimulatory molecule CD86 and the cytokines

IL-6 and IL-12p40 remaining unaffected by PGE2 neutralizing antibody (Fig 7B). To exclude

the possibility that the observed effect was caused by neutralization of autocrine PGE2 pro-

duced by DC upon TLR activation, we neutralized PGE2 in R848-activated cultures without

ascites. We saw no effect of PGE2 neutralization on TNFα levels in response to R848-mediated

activation (S5 Fig), which suggests that autocrine PGE2 does not play a role in the suppression

of TLR-induced TNFα production by monocyte-derived DC.

Since we had previously also observed an alleviation of TNFα suppression by IL-10 neutral-

izing antibodies (Fig 4B), we were interested to see whether IL-10 and PGE2 in OC-associated

ascites acted synergistically or additively. Our data show that while IL-10 is the major inhibitor

of TNFα induction, PGE2 has an additive effect on TNFα suppression (Fig 7C). In order to

evaluate the role of OC-associated PGE2, we depleted ascites samples of PGE2 alone or of

PGE2 and IL-10 together and examined TNFα release in the presence and absence of these

OC-associated suppressive factors. DC stimulated with R848 in the presence PGE2-depleted

ascites showed levels of TNFα production equivalent to mock-depleted samples (Fig 7D).

However, the suppressive activity of ascites depleted of PGE2 and IL-10 was significantly

reduced compared to mock-treated or untreated samples while PGE2 depletion alone had no

such effect (Fig 7D). This finding not only underlines a particular immunosuppressive role of

PGE2 in OC, it also rehabilitates a suppressive role of OC-associated IL-10. It is currently

unclear why IL-10 depletion in the absence of PGE2 depletion fails to reveal the immunosup-

pressive activity of OC-associated IL-10 in our experimental system.

cell culture supernatants by flow cytomix analysis (A: IL-6 and TNFα) or sandwich ELISA (A: IL-12p40 and B:

TNFα, IL-6 and IL-12p40); for malignant samples n = 6 (6 independent experiments; monocyte-derived DC

from 5 different healthy donors, cultured with 1 (n = 4), or 2 (n = 1) different ascites samples); for benign

samples n = 9 (9 independent experiments; monocyte-derived DC from 5 different healthy donors, cultured

with 1 (n = 3), or 3 (n = 2) different peritoneal fluids); One-way ANOVA (Friedman test with Dunn post test): * =

p<0.05, ns = not significant.

https://doi.org/10.1371/journal.pone.0175712.g006
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To further confirm PGE2 as a factor that distinguishes the malignant OC environment

from that of benign ovarian tumours, we measured the levels of PGE2 in malignant ascites and

benign peritoneal fluid samples used in our study (Fig 7E). The levels of PGE2 in malignant

ascites vary between patients and while some samples were negative for this protein, most

malignant ascites samples contained detectable levels of PGE2. Interestingly however, all sam-

ples of peritoneal fluid from benign ovarian conditions showed low or non-detectable levels of

PGE2. Hence, our data suggest PGE2 is a factor absent from benign ovarian conditions that

can be present in the malignant OC environment and that specifically impairs TLR-mediated

TNFα induction by DC.

Discussion

In this study, we have examined the immunosuppressive influence of soluble factors in ascites

from OC patients on TLR-mediated activation of monocyte-derived DC in vitro. We have

observed partially impaired up-regulation of the co-stimulatory molecule CD86 and reduced

production of the cytokines IL-6, IL-12p40 and TNFα when DC are activated with TLR

Fig 7. Paracrine OC-associated PGE2 impairs TLR-mediated DC activation and distinguishes malignant carcinoma

from benign ovarian conditions. Monocyte-derived DC were stimulated overnight with 3μg/ml R848. (A-B) Malignant ascites

and neutralizing antibodies (5μg/ml) against PGE2 were added as indicated; n = 11 (11 independent experiments; monocyte-

derived DC from 4 different healthy donors, cultured with 2 (n = 1), or 3 (n = 3) different ascites samples) (C) Neutralizing

antibodies against IL-10 and PGE2 were added as indicated to cultures containing 3μg/ml R848 and 10% ascites; n = 9 (9

independent experiments, monocyte-derived DC from 4 different healthy controls, cultured with 1 (n = 1), 2 (n = 1) or 3 (n = 2)

different ascites samples). (D) Malignant ascites which had previously been depleted of PGE2 (PGE2 ΔAF) or PGE2 and IL-10

(PGE2/IL10 ΔAF) or which had undergone mock depletion (mock ΔAF) was added as indicated. As control, DC cultures were

treated with R848 and untreated ascites (AF); n = 4 (4 independent experiments; monocyte-derived DC from 1 healthy donor,

cultured with ascites samples from two individual ovarian carcinoma patients). The level of TNFα is expressed in relation to the

TNFα levels induced in response to LPS, which were set to 100%. (A-D) Cytokine levels in cell culture supernatants were

measured by sandwich ELISA. One-way ANOVA (Friedman test with Dunn post test); * = p<0.05; ** = p<0.01; *** = p<0.001;

ns = not significant. (E) PGE2 levels in malignant ascites (n = 9) and benign peritoneal fluid (n = 6) were measured by sandwich

ELISA. Mann-Whitney U test was used for statistical analysis.

https://doi.org/10.1371/journal.pone.0175712.g007
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agonists in the presence of ascites. Co-stimulatory molecules and pro-inflammatory cytokines

are generally used as surrogate markers for the T cell priming activity of DC and their up-regu-

lation typically correlates well with the T cell stimulatory activity of these antigen-presenting

cells. Interestingly, the suppression was specific to these activation markers, with other moni-

tored markers such as HLA-DR, CD40, IL-1β as well as immunoregulatory molecules such as

PD-L1 and PD-L2 and IL-10 showing a high variability between donors and no consistent

patterns of suppression or up-regulation. DC activated in the presence of ascites displayed

reduced T cell stimulatory activity, showing that the selective suppression of activation mark-

ers in the presence of ascites was sufficient to partially compromise the functionality of DC as

antigen presenting cells in vitro.

Identification of the components in the OC environment that contribute to the observed

suppressive effect is an important step towards optimization of DC-based immunotherapeutic

protocols that employ TLR agonists as adjuvants in support of T cell priming. Monocyte-

derived DC are believed to represent inflammatory DC phenotypically and functionally and

are distinct from primary DC subsets. It is currently unclear how TLR-mediated activation of

primary DC subsets is affected by immunosuppressive factors in the OC microenvironment.

The different primary DC subsets have diverging TLR expression profiles with plasmacytoid

DC being for example particularly specialised in sensing viral infections [26]. However, inde-

pendent of their TLR expression profile and their responsiveness to particular TLR agonists,

the mechanisms that impair TLR-mediated DC activation in the tumour microenvironment

will depend on the expression of the receptors for individual OC-associated immunosuppres-

sive factors and their downstream signalling cascades. These will have to be investigated indi-

vidually for the different DC subsets to complete the whole picture. Noteworthy, inflammatory

DC are thought to be particular strong inducers of T cell activation. Safeguarding and optimis-

ing their activation during immunotherapeutic intervention is likely to have beneficial out-

comes for therapeutic strategies aiming to capitalize on their antigen-presenting and T cell-

priming functionality. By selectively blocking a range of immunosuppressive factors with neu-

tralizing antibodies, we have shown that OC-associated IL-10 and PGE2 are pivotal to sup-

pressing TLR-mediated DC activation in vitro.

The immunosuppressive role of IL-10 in OC is well documented, with OC patients showing

elevated IL-10 levels in sera in comparison with healthy controls and women with benign ovar-

ian tumours [7]. Importantly, IL-10 levels in both serum and ascites correlate with advanced

disease and drop significantly after de-bulking surgery [7, 27]. Several cell types within the OC

environment secrete IL-10, with TAM and regulatory T cells being major contributors [6, 28].

Equally, epithelial OC cells show higher IL-10 production compared to normal ovarian epithe-

lium [29]. Unexpectedly, in our experimental system we could not confirm that paracrine OC-

associated IL-10 rather than autocrine IL-10 affects TLR-mediated DC activation. This is

somewhat counterintuitive since paracrine IL-10 has been shown to have a dose-dependent

suppressive effect on DC and it is difficult to reconcile with findings that OC-associated IL-10

correlates with clinical prognosis [7, 30]. The mechanistic basis for this result and its correct

interpretation are currently unclear. Interestingly, when depleting ascites samples of IL-10 and

PGE2 simultaneously, we observed a significant reduction in ascites-induced suppression of

DC activation suggesting that OC-associated IL-10 may act synergistically with PGE2. A possi-

ble explanation could be that when depleting paracrine IL-10, paracrine PGE2 may still be able

to act suppressive in combination with autocrine IL-10 even though autocrine IL-10 becomes

available only later upon TLR-mediated activation. The effect of depleting paracrine PGE2

alone may be too weak to be noticed, masked by the suppressive activity of paracrine and auto-

crine IL-10. However, when paracrine IL-10 and PGE2 are depleted together releasing early
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suppression of activation of DC before TLR-induced IL-10 production kicks in, their synergis-

tic effects could become obvious.

Interestingly, IL-10 levels in OC-associated ascites did not significantly differ from levels in

peritoneal fluid from patients with benign ovarian conditions. Furthermore, we could demon-

strate that IL-10 neutralization releases most or all of the suppression of TLR-mediated DC

activation by ascites and peritoneal fluid, respectively. This would suggest that IL10-mediated

immunosuppression is similarly present in benign and malignant tumour microenvironments

and while clearly contributing to impaired immune responsiveness is not a defining driving

force behind tumor progression in the malignant tumour environment. In contrast, PGE2

which was missing from the peritoneal fluid samples that we have investigated and may repre-

sent an immunosuppressive driver that defines a malignant tumour microenvironment.

Even though IL-10 may not be driver of malignancy, in light of our and other laboratories’

data, reducing IL-10 in the OC environment could potentially enhance immunotherapeutic

strategies in OC patients, especially those aiming to activate DC in situ by in vivo targeting.

The reduction of IL-10 in serum and ascites as observed after de-bulking surgery offers an

interesting window of opportunity, which should be considered when designing the timeframe

of DC vaccination studies. Systemic IL-10 blockade bears a significant risk of adverse autoim-

mune reactions, which makes any such approach problematic, although interestingly, a small

study administering neutralizing IL-10-specific antibodies to six systemic lupus erythematosus

patients showed that this was surprisingly well tolerated [31]. Nevertheless, the associated risks

should not be underestimated and clinical trials using this protocol in larger cohorts may not

be feasible. However, since OC metastases are generally restricted to the peritoneal cavity even

in late clinical stages, an i.p. administration of IL-10-specific antibodies or IL-10R blockers

may hold promise and may be an approach worth exploring in in vivo models of murine OC

where IL-10 signalling has also been shown to be of central importance to the regulation of

immune responses within the tumour environment [32].

While IL-10 levels in OC-associated ascites correlated with a reduced induction of most DC

activation markers in our study, IL-10 levels did not correlate with the suppression of TNFα
production indicating the presence of at least one other immunosuppressive factor. Further

blocking experiments with neutralizing antibody revealed that OC-associated PGE2 selectively

reduces TLR-induced TNFα induction in DC, but does not affect any of the other activation

markers. PGE2 is an inflammatory mediator with known immunosuppressive function and

has been shown to be crucial for DC migration and to influence cytokine release in response to

TLR activation [24, 25, 33]. Tumour-derived PGE2 has been shown to synergize with TGFβ in

inhibiting interferon α production by plasmacytoid DC [34]. The levels of TGFβ present in the

OC-associated ascites samples tested in this study are unknown. However, TGFβ is unlikely to

play a role in our study, since neutralizing TGFβ-specific antibodies had no effect on DC acti-

vation in the presence of ascites and since the main immunosuppressive factor compromising

TLR-mediated DC activation in our study was IL-10. In other studies, it was shown that PGE2

is crucial for induction of IDO in DC and, thus, promotes the induction of regulatory T cells

[35, 36]. In our study we were unable to detect IDO induction by DC in the presence of ascites

and we did not observe the induction of FoxP3+ T cells in the allogenic MLR assay (data not

shown). The discrepancies in the observed PGE2-mediated effects on DC activation between

different studies are very likely a consequence of differences in the concentration of PGE2 and

in the presence or absence of other factors influencing DC activation. The low levels of PGE2

present in our DC cultures (�0.75ng/ml) in combination with the presence of high levels of

IL-10 and strong TLR agonists seem to create an environment in which PGE2 affects TNFα
induction but has no significant effect on other activation markers such as IL-12p40 and IL-6

or the induction of IDO. The selectivity of PGE2-dependent supression of DC activation is
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remarkable. There is evidence from a study of monocytes from trauma patients that points

towards the regulation of TNFα induction by PGE2, though the precise mechanism seems to

be very complex and not entirely understood [37]. Similarly, it was shown in rodents that

PGE2 can suppress the release of TNFα from macrophages after TLR-stimulation [38, 39].

In order to clarify whether the two identified immunosuppressive pathways are unique for

the malignant OC environment, we investigated whether IL-10- and/or PGE2-mediated inhi-

bition of DC activation is observed when using peritoneal fluid from patients with benign

ovarian conditions. Interestingly, impaired TLR-mediated up-regulation of CD86 and the

cytokines IL-6 and IL-12p40 was observed in the presence of peritoneal fluid associated with

benign ovarian conditions, however, TNFα induction was largely unaffected. When dissecting

the factors that mediate the observed effect, it became evident that immunosuppression by

peritoneal fluid from benign conditions is largely dependent on IL-10 and independent of

PGE2. This observation was further supported by the fact that peritoneal fluid from patients

with benign ovarian conditions contains levels of IL-10 similar to that observed for OC-associ-

ated ascites, but is largely devoid of PGE2. Thus, these data suggest that PGE2 may be a unique

marker of malignant ovarian conditions.

Reports supporting the notion that PGE2 is associated with the malignant tumour microen-

vironment have emerged in the recent past [40]. PGE2 has been found to contribute to the

immunosuppressive microenvironment by inducing myeloid-derived suppressor cells

(MDSC) and suppressive M2 macrophages in the tumour tissue [41, 42]. PGE2 levels in OC-

associated ascites are elevated due to overexpression of the key enzymes of PGE2 synthesis

cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively) in cancerous tissue of malignant

ovarian tumours as compared to normal ovarian tissue and benign tumours [43]. Inhibitors of

COX-1 and COX-2 are a widely used class of drugs referred to as non-steroidal anti-inflamma-

tory drugs (NSAID) and are regarded as potentially powerful drugs for treatment of malignant

conditions [44]. NSAID potently block the synthesis of eicosanoids including PGE2 and are

applied in a variety of medical conditions such as rheumatic diseases. The use of COX inhibi-

tors in cancer therapy and prevention is currently being explored [45] and interestingly, COX

inhibitors have previously been used successfully in murine experimental models of breast and

lung tumours to enhance DC-based vaccines [46, 47]. In light of our findings, the application

of COX inhibitors may equally be an attractive measure to boost the efficacy of DC vaccines in

OC.

In this context it is also important to point out that PGE2 was not detected in ascites sam-

ples from all OC patients indicating that there may be two different patient groups for which

PGE2-mediated immune suppression either does or does not play a role in driving tumour

progression. Also, most likely due to this segregation of OC patients into groups with PGE2-

containing versus PGE2-devoid ascites, we could not detect a correlation between the levels of

PGE2 in ascites and the suppression of TNFα upon TLR-mediated DC stimulation and a larger

sample cohort will be required to revisit this point. It would be interesting to identify whether

the presence versus absence of PGE2 in the tumour microenvironment influences patient

prognosis in general, patient susceptibility to treatment with COX inhibitors and/or respon-

siveness to certain immunotherapeutic intervention strategies. Much larger patient cohorts

will be necessary to address these important questions.

Finally, another question to address in future studies is how our findings in monocyte-

derived DC translate into experimental settings of TLR-mediated activation of primary DC

subsets and in particular peritoneal DC under the influence of the immunosuppressive OC

environment. All our experiments have been performed with DC that were exposed to ascites

and TLR agonists simultaneously. It will be important to confirm that DC pre-exposed to the

immunosuppressive tumour microenvironment respond in the same or a similar manner to
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TLR stimulation. However, it is worth taking into account that the generation of inflammatory

DC may be induced upon application of TLR agonists in response to immunotherapeutic

intervention and thus these DC may not be exposed to the immunosuppressive tumour micro-

environment in the same way as primary DC. Exploring these questions will allow for a better

understanding of the potential to activate DC in situ and bears great significance for the opti-

mization and enhancement of DC-based therapies in OC. While optimising the activation of

DC is essential for DC-based therapies, it will be equally important to take into account the

activation of other accessory cell types in OC. The immunosuppressive activity of not only IL-

10 and PGE2 but also other OC-associated factors on such accessory cell types will negatively

influence the induction and the effectiveness of anti-tumour immunity. Ultimately, the opti-

mal activation of DC and other hematopoietic and non-hematopoietic cell types will be impor-

tant for the development of effective anti-tumour immunity.

Material and methods

Patient specimens and Peripheral Blood Mononuclear Cells (PBMC)

from healthy donors

Ascites from patients suffering from advanced stage (FIGO stage III and IV) serous epithelial

ovarian carcinoma was collected by paracentesis (n = 9: St Thomas’ Hospital, London, UK).

No information was available regarding the treatment that the patients had received prior to

paracentesis. Peritoneal fluid from patients with benign ovarian conditions (fibroadenoma

n = 1, fibrothecoma n = 2, benign cyst n = 2 or cystadenoma n = 1) was collected during sur-

gery (St. Thomas Hospital, London and Nuffield Department of Obstetrics and Gynecology,

Oxford, UK). Upon receipt, samples were centrifuged and the non-cellular supernatant was

aliquoted and stored at -80˚C. Upon thawing before use in cell cultures, fluid was passed

through a sterile filter with 20μm pore size (Corning Inc., Amsterdam, The Netherlands).

Peripheral blood from healthy volunteers was obtained by venipuncture and collected in

heparinized vacutainer tubes (BD, Oxford, UK). PBMC were isolated by density gradient cen-

trifugation using Lymphocyte Separation Medium 1077 (PAA Laboratories, Yeovil Somerset,

UK). After centrifugation, the PBMC fraction was washed twice with PBS and live cells were

counted in a Neubauer counting chamber.

The collection of ascites, peritoneal fluid and blood samples for this study was approved by

the Guy’s Research Ethics Committee (REC Number: 09/H0804/45) and the Berkshire

Research Ethics Committee (REC Number: 11/SC/0014 as part of the Oxford Gynaecological

Oncology Target Validation Study GO-Target-01). The Guy’s Research Ethics Committee

approved this study in its entirety including the consent procedure (REC Number: 09/H0804/

45). Informed consent was obtained from all participants in written form and archived locally.

Generation of monocyte-derived DC

CD14+ monocytes were isolated from PBMCs by negative selection using the EasySep1

Human Monocyte Enrichment Kit (StemCell Technologies, Grenoble, France) following the

manufacturer’s instructions. The purity of the enriched CD14+ monocytes was assessed by

flow cytometry and was typically over 95%. Enriched CD14+ monocytes were seeded at a den-

sity of 6-9x106 cells/well in 3ml complete medium (RPMI 1640 (Gibco Life Technologies) con-

taining 10% FCS (Sigma Aldrich), 100U/ml penicillin/streptomycin, 2mM Glutamine, 50μM β
mercaptoethanol (all Invitrogen, Paisley, UK). Granulocyte-macrophage colony stimulating

factor (GM-CSF) and interleukin-4 were both added at a concentration of 20μg/ml (both R&D

Systems, Abingdon, UK) and cells were cultured at 37˚C in a 5% CO2 atmosphere for 7 days.
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GM-CSF and IL-4 were replenished on day 2 and day 5 along with 500μl fresh medium. Cells

were harvested on day 7 of culture. The differentiation of monocytes into monocyte-derived

DC was verified by flow cytometry analysis of the surface markers CD14 and CD1a.

Activation assay

Monocyte-derived DC were seeded at a density of 1x105 cells/well in 200μl complete RPMI

1640 medium in 96-well plates. All samples were performed in triplicates. TLR agonists were

added at optimized concentrations of 3μg/ml for imidazoquinoline (R848; Invivogen, Tou-

louse, France), 1μg/ml for lipopolysaccharide (LPS; Invivogen) and 100μg/ml for polyinosinic:

polycytidylic acid (polyI:C; GE Healthcare, Amersham, UK). Where indicated, 10% or 25% of

sterile filtered, non-cellular ascites from patients with malignant OC or peritoneal fluid from

patients with benign ovarian conditions was added to the cell cultures. Cells were incubated

for 18h overnight at 37˚C in a 5% CO2 atmosphere. Supernatants were harvested and analyzed

for cytokine levels. In addition, cells were harvested for analysis of surface marker expression

by flow cytometry. In order to assess the viability of DC, samples were stained with LIVE/

DEAD Fixable Dead Cell Stain Kit from Invitrogen prior to flow cytometric analysis. Neither

R848, nor ascites negatively impacted on the cell viability of the DC cultures (S6 Fig).

In order to identify the factors that suppress DC activation, cells were cultured as described

above in the presence of neutralizing antibodies against the following factors: IL-10 (mouse

IgG2b clone 25209), TGF-β (mouse IgG1 clone 27235), VEGFα (mouse IgG2b clone 26503),

LIF (mouse IgG2b clone 9824), IL-6 (mouse IgG2b clone 1936; all R&D) and PGE2 (mouse

IgG1 clone 2B5; Cayman Europe, Tallinn, Estonia). The antibodies were added to cell cultures

either separately or in combinations with a final concentration of 5μg/ml per antibody. Mouse

IgG2b clone 20116 (IL-10, VEGFα, LIF and IL-6 neutralizing antibodies) and mouse IgG1

clone 11711 (TGFβ and PGE2) isotype control antibodies were also used at 5μg/ml.

Depletion of IL-10 and PGE2 from ascites

Neutralizing antibody against IL-10 (R&D) or PGE2 (Cayman Europe) or relevant mouse

IgG2b and mouse IgG1 isotype control antibodies were covalently linked to PureProteome

N-Hydroxysuccinimide (NHS) FlexiBind Magnetic Beads (Millipore) following the manufac-

turer’s protocol. Antibody-coupled beads were added to ascites (20μl antibody-conjugated

bead slurry per 1 ml ascites) and the samples were incubated overnight at 4˚C with continues

mixing. After overnight incubation, beads were removed from ascites samples using the Pure-

Proteome Magnetic Stand. Ascites depleted of IL-10, PGE2 and mock-depleted samples were

stored at -80˚C until their use in activation assays. The successful depletion of ascites samples

was confirmed by sandwich ELISA for IL-10 and PGE2, respectively [23].

Allogeneic Mixed Leukocyte Reaction (MLR)

Naïve CD4+ T-cells were isolated from PBMCs by negative selection using the EasySep1

Human Naïve CD4+ T-cell Enrichment Kit (StemCell Technologies) following the manufac-

turer’s instructions. Enriched naïve CD4+ T-cells were labeled with carboxyfluorescein

diacetate succinimidyl ester (CFSE) (Molecular Probes, Paisley, UK). For this, cells were resus-

pended in 1μM CFSE solution at a density of 1x107 cells/ml and incubated at room tempera-

ture for 10 minutes. To quench the staining, an equivalent volume of FCS was added for 2

minutes, before cells were washed and seeded into round bottom 96-well plates at a density of

5x104 cells/well.

Monocyte-derived DC were pre-cultured overnight under varying conditions with or with-

out TLR agonists and/or ascites as described above. DC were washed thoroughly before being
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added to the CFSE-labeled CD4+ T cells at ratios of 1:100 or 1:200 (DC: T cells). Samples were

performed in triplicates. The MLR cultures were incubated at 37˚C in a 5% CO2 atmosphere

for 6 days. After harvest, cells were analyzed by flow cytometry to assess T cell proliferation by

CFSE dilution and T cell polarization by intracellular cytokine staining.

Flow cytometry

Cells were stained according to the manufacturer’s recommendations with the following anti-

bodies alone or in varying combinations, depending on the experiment: CD14-FITC,

CD4-APC and CD45RA-PE (all Immunotools, Friesoythe, Germany), CD40-PE (AbD Sero-

tec, Kidlington, UK), CD86-V450, HLA-DR-PerCPCy5.5, CD1a-PE and CD3-APC/Cy7 (all

BD). For surface marker staining, PBS containing 1% FCS and 5mM EDTA (Sigma Aldrich)

was used as staining buffer. For intracellular cytokine staining with IFNγ-PerCPCy5.5

(eBioscience), IL17A-PE and IL10-Brilliant Violet 421 (both BioLegend), monensin solution

(BioLegend) was added to cell cultures for 6 hours before harvesting. Once harvested, cells

were fixed and permeabilized using the fixation and permeabilization buffer set from BioLe-

gend. Staining with FoxP3-Alexa Fluor 647 (BD) was performed with FoxP3 staining buffer set

(eBioscience). The samples were analyzed by flow cytometry on a BD FACS Canto II.

Cytokine analysis

Flow Cytomix1 (eBioscience, Hatfield, UK) simplex kits for IL-6 and TNFα were used for the

measurement of cytokine levels in cell culture supernatants. The samples were acquired on a

BD FACS Canto II. Alternatively, cytokines in cell culture supernatants were measured by IL-

6 ELISA (BD) and TNFα ELISA (BioLegend, Cambridge, UK). Absolute cytokine values mea-

sured by flow cytomix versus ELISA differed considerably, especially for TNFα. In all experi-

ments, IL-12p40 analysis in cell culture supernatants was performed by ELISA (BD).

PGE2 Parameter Assay kit (Arbor Assays, Ann Arbor, MI, U.S.A.), CTLA-4 Platinum

ELISA kit (eBioscience), Arginase-1 ELISA kit (Hycult Biotech, Uden, The Netherlands), LIF

ELISA kit and VEGFα, CCL18, IL-6, IL-10, TNFα, IFNγ and IL-17 matched antibody pairs (all

R&D) were used following respective manufacturers’ protocols for cytokine analysis in perito-

neal fluid.

Statistics

Statistical analysis of activation assay samples was performed using one-way ANOVA Fried-

man test with Dunn post-test (Prism Program; Graphpad software, La Jolla, USA). In the

graphs p values are indicated as follows: � p<0.05; �� p<0.01; ��� p<0.0001; n.s. not significant

(p>0.05). For statistical analysis of experiments with only two groups, the Wilcoxon signed

ranks test was used for paired samples whereas the Mann-Whitney U test was used for

unpaired samples. To determine correlations between cytokine levels in ascites and suppres-

sion, the distribution of variables was assessed by D’Agostino and Pearson omnibus normality

test. Where cytokine levels in ascites samples were distributed normally, correlation to sup-

pression was assessed by calculating the Pearson coefficient using Prism Software. For cytokine

levels lacking normal distribution across ascites samples, the Spearman coefficient was calcu-

lated instead.

Supporting information

S1 Fig. CD86 up-regulation and cytokine induction in response to TLR stimulation of

monocyte-derived DC. Monocyte-derived DC were cultured overnight in complete medium
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only, or stimulated with 3μg/ml R848, 1μg/ml LPS or 100μg/ml polyI:C. The mean fluores-

cence intensity (MFI) of CD86 was assessed by flow cytometry. Cytokines were measured in

culture supernatants by flow cytomix analysis (IL-6, TNFα) or sandwich ELISA (IL-12p40).

n = 12 (12 independent experiments with DC from six different healthy volunteers cultured

with ascites from 4 (n = 1), 3 (n = 1), 2 (n = 1) or 1 (n = 3) OC patient); One-way ANOVA

(Friedman test with Dunn post test): � = p<0.05; �� = p<0.01; ��� = p<0.001; ns = not signifi-

cant.

(TIFF)

S2 Fig. CD86 up-regulation and IL1β induction in response to TLR stimulation is not

altered in the presence of OC-associated ascites. Monocyte-derived DC were (A) cultured

with medium or (B) stimulated overnight with 3μg/ml R848, 1μg/ml LPS or 100μg/ml polyI:C

in the presence of 0%, 10% or 25% of ascites from patients suffering from malignant OC. The

following day, the MFI of surface marker CD86 was assessed by flow cytometry and cytokines

were measured in culture supernatants by flow cytomix analysis or sandwich ELISA (IL-

12p40). 12 independent experiments were performed (n = 12) with DC from six different

healthy volunteers cultured with ascites from 4 (n = 1), 3 (n = 1), 2 (n = 1) or 1 (n = 3) OC

patient). One-way ANOVA was used for statistical analysis (Friedman test with Dunn post

test); � = p<0.05; �� = p<0.01; ��� = p<0.001; ns = not significant.

(TIFF)

S3 Fig. Correlation of DC activation markers with OC-associated immunosuppressive fac-

tors. Levels of proteins in ascites samples are correlated to the suppression of TLR-mediated

up-regulation of CD86 and production of IL-6 and IL-12p40. Suppression is expressed in per

cent reduction of surface marker and cytokine levels when 10% ascites was added to the cell

culture as compared to no ascites present. (A) Correlation between VEGFα levels and CD86

suppression: Pearson r = -0.5524 p = 0.0034 (B) Correlation between Arg-1 levels and CD86

suppression: Pearson r = -0.5513 p = 0.0035; correlation between Arg-1 levels and IL-6 sup-

pression: Pearson r = -0.4527 p = 0.0202 and (C) correlation between TNFα levels and CD86

suppression: Spearman r = 0.5845 p = 0.0017; correlation between TNFα levels and IL-6 sup-

pression: Spearman r = 0.4775 p = 0.0136; correlation between TNFα levels and IL-12p40 sup-

pression: Spearman r = 0.4470 p = 0.0221.

(TIFF)

S4 Fig. IL-10 levels in peritoneal fluid from patient with benign ovarian conditions. Protein

levels of IL10 in peritoneal fluid collected from patients with benign conditions were measured

by sandwich ELISA (n = 3).

(TIFF)

S5 Fig. Neutralisation of autocrine PGE2 does not alter the induction of TNFα in response

to R848. Monocyted-derived DC were stimulated overnight with 3μg/ml R848 with or without

PGE2-specific neutralizing antibody (5μg/ml). TNFα levels were measured in culture superna-

tants by sandwich ELISA. n = 3. Wilcoxon matched pairs test; ns = not significant.

(TIFF)

S6 Fig. Neither R848, nor ascites negatively impacts the viability of DC. Monocyte-derived

DC were cultured overnight in complete medium only (control) or in the presence or absence

of 3μg/ml R848 or 25% ascites from patients suffering from malignant OC. The next day cells

were harvested and stained with LIVE/DEAD fixable dead cell stain kit and the percentage of

live versus dead cells was assessed by flow cytometry. Cells were gated on forward / sideward

scatter plots as shown in A and staining with the fixable green-fluorescence dye was analysed
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as shown in B and C. As control cells were incubated overnight in the absence of fetal calf

serum (w/o FCS), which increased the percentage of dead cells from 4.2% (control) to 21.3%

(w/o FCS). The data are representative of three independent experiments.

(TIFF)

S1 Table. Correlation of CD86 expression and cytokine production by DC with the expres-

sion levels of different immunomodulatory factors in OC acites. Correlation of cytokine

levels in OC-associated ascites with the suppressive activity of individual ascites samples as

assessed by suppression of TLR-mediated CD86 up-regulation or production of the cytokines

IL-6, IL-12p40 or TNFα. Distribution of cytokine levels in ascites samples was assessed by

d’Agostino and Pearson omnibus normality test. For normally distributed cytokine levels

(Arg, VEGFα, IL-6), the Pearson correlation coefficient was calculated. For cytokines lacking

normal distribution of levels between ascites samples (LIF, PGE2, CCL18, TNFα, IFNγ), the

Spearman correlation coefficient was calculated. r = Pearson r or Spearman r coefficient; two-

tailed; � = p<0.05 �� = p<0.01.

(TIFF)

S1 Dataset. Minimal data sets. The separate sheets contain the minimal data sets for the

results shown in the manuscript.

(XLS)
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