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a b s t r a c t 

Instantaneous wave-free ratio (iFR) has been proposed as a 

hemodynamic parameter that can reliably reflect the blood 

flow in stenosed coronary arteries. Currently, there are few 

investigations on the quantitative analysis of iFR in the 

patients regarding the variation of microcirculatory resis- 

tance (MR). The data aim to provide geometric (cross-section 

area of branches) and hemodynamic (flow rate and iFR of 

branches) parameters of normal and stenosed coronary ar- 

teries derived from CFD simulation. The CFD simulation was 

performed on the three-dimensional artery models recon- 

structed from computed tomography (CT) images of four sub- 

jects. The hemodynamic parameters were obtained in six sit- 

uations of MR to simulate coronary microvascular dysfunc- 

tion (CMD). This dataset could be used as the reference to es- 

timate the iFR and flow rate in patients with CMD and steno- 
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sis in coronary arteries. The geometric parameters could be 

used in the modelling of coronary arteries. 

© 2020 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Specifications Table 

Subject Cardiology and Cardiovascular Medicine 

Specific subject area Computational fluid dynamics simulation of blood flow in coronary arteries 

Type of data Table (xlsx format) 

How data were acquired The instrument for Computed Tomography (CT) image collection: Siemens 

Somatom Definition 64-slice dual-source CT scanner (SOMATOM Force; 

Siemens Healthcare, Forchheim, Germany). 

Software for 3-dimensional reconstruction: MIMICS 18.0 (materialise N.V., 

Belgium). 

Software for geometry amendment: Geomagic Studio 12.0 (3D Systems, Rock 

Hill, South Carolina, USA). 

Software for the computation of mesh, simulation of blood flow, and 

evaluation of hemodynamic characteristics of the arterial models: ANSYS 

15.0 software package (ANSYS, Inc., Canonsburg, PA) including ICEM and CFX. 

Data format Raw, analyzed, descriptive 

Parameters for data collection Age (year), Sex, Number of left coronary artery branches, Cross-section area of 

inlet and outlet branches of a left coronary artery, Diameter severity (DS) of 

stenosis, Area severity (AS) of stenosis, Flow rate (m ̂ 3/s), Instantaneous 

wave-free ratio (iFR) 

Description of data collection Age and Sex were derived from clinical recordings. The number of left 

coronary artery branches, Cross-section area of inlet and outlet branches of 

the left coronary artery, AS and DS of stenosis, flow rate, and iFR were 

measured from the CFD simulation results derived by ANSYS CFX. 

Data source location Coventry University, Coventry, UK 

Data accessibility Data is attached with this article (Tables 1, 2,and 3) 

Related research article H. Liu, S. Ou, P. Liu, Y. Xu, Y. Gong, L. Xia, X. Leng, T.W.H Leung, L. Shi, D. 

Zheng, Effect of microcirculation resistance on coronary blood flow and 

instantaneous wave-free ratio: a computational study, Comput. Meth. Prog. 

Bio. In Press 

alue of the data 

• Currently, there is a lack of data on the CFD simulation of iFR in coronary arteries with CMD.

This data could provide a reference for related studies on iFR estimation in the patients with

CMD. 

• This data could be helpful for clinicians to estimate flow rate and iFR in patients with CMD

and stenosis in coronary arteries, and the researchers focusing on computational modelling

of coronary arteries. 

• This data could be used as the reference to estimate the iFR and flow rate in patients with

similar severity of stenosis, with or without CMD. The geometric parameters (number and

cross-section area of left coronary artery branches, severity of stenosis) could be used in the

modelling of coronary arteries. 

ata description 

The dataset presented in this article describes the geometric and hemodynamic parameters

n coronary arteries. Cases 1 and 3 are with mild and severe stenosis, respectively. Case 2 and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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4 are normal controls for cases 1 and 3. Cases 1 and 2 have six outlet branches. Cases 3 and 4

have 11 outlet branches. The flow rate and iFR values were calculated in six different situations

of microcirculatory resistance (MR). 

• The “hyperemia” situation was simulated by applying the normal value of hyperemic MR at

the outlet branches. 

• The “resting” situation was simulated by multiplying normal hyperemic MR values of all out-

lets by 8/3. 

• In the “h-one-1.5 ′′ situation, the mild MR increase (multiplying normal hyperemic MR by

1.5) was applied to branch 1 which is the stenotic branch or its counterpart in corresponding

normal model. 

• In the “h-branches-1.5 ′′ situation, mild MR increase (multiplying normal hyperemic MR by

1.5) was applied to the stenotic branch and all its cognate branches, or their counterparts in

corresponding normal cases (branches 1, 2, and 3). 

• The severe MR increase (“h-one-2 ′′ and “h-branches-2 ′′ , multiplying normal hyperemic MR

by 2) was simulated similarly as in “h-one-1.5 ′′ and “h-branches-1.5 ′′ . 

Table 1 listed the age (in years), sex, number of left coronary artery branches, the branch

with stenosis, the diameter severity (DS) and area severity (AS) (in percentage) of the stenosis,

and the cross-section area (in mm ̂ 2) of inlet and outlets. Table 2 and Table 3 listed the flow

rate (in m ̂ 3/s) and iFR of each outlet branch derived in six different MR situations. 

Experimental design, materials and methods 

1. Materials 

The imaging data were collected in the General Hospital of Guangzhou Military Command of

PLA from 2015 to 2016 with approval from the local ethics committee which conforms with the

declaration of Helsinki. Individuals were well informed with a consent form signed. The 64-slice

dual-source CT scanning was performed by skilled clinicians to get the CT images. 

2. Methods 

2.1. Three-dimensional reconstruction of artery models 

The three-dimensional (3-D) models of left coronary arteries were reconstructed from the CT

images using the software MIMICS 18.0 (materialise N.V., Belgium). The 3-D geometric mod-

els started from the inlet of left main coronary artery (LMCA) on the aorta and extended

to the distal branches of the left anterior descending artery (LAD) and left circumflex artery

(LCX), with small branches (diameter < 1 mm, or blurred structure) trimmed off. The geome-

try was smoothed with errors (self-intersections, spikes, small holes, etc.) amended in soft-

ware Geomagic Studio 12.0 (3D Systems, Rock Hill, South Carolina, USA). Finally, the inlet and

outlets were sectioned vertically to the local arterial centerlines. For each stenosis, the diam-

eter severity (DS) and area severity (AS) were defined as DS = 1 − diameter at stenotic throat 
normal diameter 

and

AS = 1 − cross − sectional area at stenotic throat 
normal cross − sectional area 

. 

2.2. CFD simulation 

The geometric models were input into the software ANSYS ICEM-CFX 15.0 (ANSYS, Inc.,

Canonsburg, PA) for meshing and CFD simulation. Tetrahedron elements were used for meshing.

The maximum element length was 0.25 mm globally and 0.1 mm at inlet and outlets to ensure

the reliability of pressure and iFR values in the simulation [1] . The fluid domain was modelled

using the incompressible, steady, and Newtonian Navier–Stokes equations. Non-Newtonian effect

on pressure is negligible in the CFD simulation of stenosed coronary arteries [1] . Laminar flow
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ssumption was used as in the existing study on CFD simulation of FFR in stenosed coronary

rteries [2] . 

The diastolic aortic blood pressure of 80 mmHg was applied at the inlet of LMCA. In vivo

easurement showed that the diastolic aortic blood pressure is 77.9 ± 12.9 mmHg (mean ±SD)

3] . The non-slip and solid wall assumption was used. MR was applied as an outlet condition.

he reference “hyperemia” situation was simulated by distributing the normal hyperemic MR

alue of left coronary artery to all outlet branches according to the modified Murray’s law:
Q 1 
Q 2 

= ( 
D 1 
D 2 

) 
7 
3 , where Q1 and Q2 are the flow rates, while D1 and D2 are the diameters of two

istal branches at a bifurcation [4] . The “resting” situation was simulated by multiplying normal

yperemic MR values of all outlets by 8/3, which is approximate to the average value in adults

ith FFR > 0.5 [5] . In all CFD simulations, the convergence criterion was 1.0E-4. 

.3. Calculation of iFR 

For each outlet branch, the flow rate was quantified as the area-averaged flow velocity on

he cross-section of an outlet. The iFR was measured during the wave-free period in diastole as

F R = 

P d 
P a 

| wave - free period , where Pa and Pd are aortic and distal-to-stenosis pressures, simplified as

he area-averaged pressure values of inlet and outlet. 
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The data were collected with approval from the local ethics committee which conforms with
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